大型高含硫气田安全开采及硫磺回收技术
- 格式:docx
- 大小:42.60 KB
- 文档页数:24
克劳斯法硫磺回收工艺技术现状及发展趋势克劳斯法是一种常用的硫磺回收工艺技术,主要用于焦化企业的硫磺资源回收利用。
随着环保意识的不断提高和能源资源的日益紧缺,硫磺回收技术得到了广泛关注和应用。
本文将对克劳斯法硫磺回收工艺技术的现状和发展趋势进行介绍和分析。
克劳斯法是一种基于氧化还原反应的硫磺回收工艺技术,其原理基本上是将焦化煤气中的二氧化硫还原成硫化氢,再经过反应器和吸收器处理,最终得到高纯度的硫磺。
克劳斯法硫磺回收工艺技术具有硫磺回收率高、产品质量好、操作稳定等优点,因此得到了广泛的应用。
目前,国内外焦化企业在硫磺回收方面都在积极引进和应用克劳斯法技术。
特别是在我国,随着《大气污染防治行动计划》的实施,环保压力日益增大,使得硫磺回收技术得到了更广泛的应用和关注。
许多焦化企业已经或正在进行硫磺回收工艺技术改造,以适应环保政策的要求。
克劳斯法硫磺回收工艺技术在技术改造和优化方面也取得了一系列的进展。
通过增加反应器和吸收器的容积,优化反应条件等手段,可以提高硫磺回收率和产品质量,降低生产成本,实现资源的更好利用。
1. 技术创新和优化随着环保要求的不断提高,克劳斯法硫磺回收工艺技术将不断进行技术改造和优化,以满足环保要求和提高经济效益。
未来,克劳斯法硫磺回收工艺技术可能会进一步提高硫磺回收率,减少废水和废气排放,提高产品质量,降低生产成本。
2. 节能减排随着我国能源资源的日益紧缺,节能减排将成为未来克劳斯法硫磺回收工艺技术发展的一个重要趋势。
通过采用新的节能技术和设备,优化工艺流程和操作条件,可以有效降低能源消耗,减少废气排放,实现可持续发展。
3. 自动化和智能化随着信息技术的不断发展,克劳斯法硫磺回收工艺技术将朝着自动化和智能化方向发展。
通过引入先进的控制系统和设备,实现生产过程的智能化监控和调节,可以提高生产效率,降低人工成本,提高产品质量和安全性。
4. 成套化和集成化未来,克劳斯法硫磺回收工艺技术可能会向成套化和集成化方向发展。
克劳斯法硫磺回收工艺技术现状及发展趋势1. 克劳斯法硫磺回收原理克劳斯法是一种将含硫污水中的硫酸盐还原成硫磺的化学过程。
其原理是通过还原反应,使硫酸盐转化为硫醇,并进一步转化为元素硫。
克劳斯法将含硫污水中的硫酸盐转化为硫磺,同时释放出二氧化碳和水。
这种方法简单、原理清晰,对硫磺回收效果良好。
目前,克劳斯法硫磺回收工艺技术在化工、冶金等行业得到了广泛应用。
在化肥生产过程中,硫磺是必不可少的原料,而化肥生产废水中常含有大量硫酸盐,采用克劳斯法可以将硫酸盐回收为硫磺,节约了资源并减少了对环境的污染。
在冶金行业,由于冶炼过程中废气中含有大量硫化氢,采用克劳斯法可以将硫化氢转化为硫磺,实现了硫磺的回收。
克劳斯法硫磺回收工艺技术具有技术成熟、工艺简单、回收效率高的特点。
在实际应用中,该技术被广泛应用,并取得了显著的经济和环保效益。
克劳斯法硫磺回收工艺技术成为了当前硫磺回收的主要技术之一。
1. 技术改进方向目前,虽然克劳斯法硫磺回收工艺技术已经相对成熟,但仍然存在一些问题亟待解决。
现有的克劳斯法硫磺回收工艺技术存在能耗高、产物纯度较低、设备运行稳定性等方面的问题。
未来的发展方向主要包括降低能耗、提高产物纯度、改善设备运行稳定性等方面。
2. 配套设备的研发克劳斯法硫磺回收工艺技术需要配套的设备进行生产实施,例如还原反应器、脱硫器、结晶器等。
未来的发展趋势是研发更加高效、节能、环保的配套设备,以满足克劳斯法硫磺回收工艺技术的需求。
3. 与其他技术的结合应用随着科学技术的不断发展,克劳斯法硫磺回收工艺技术将与其他技术相结合,以期达到更好的效果。
可以将克劳斯法与生物技术相结合,利用微生物对硫酸盐进行生物降解,进而进一步提高硫磺回收效率。
还可以将克劳斯法与化学物理技术相结合,以达到降低产物纯度、提高能效等方面的目标。
4. 环保化发展随着社会对环保意识的不断提高,环保化已成为各行业的发展趋势。
克劳斯法硫磺回收工艺技术的发展趋势将更加注重环保化,努力达到减少废物排放、减少资源消耗等目标。
硫磺回收催化剂及工艺技术作者:李骏来源:《中国化工贸易·下旬刊》2020年第04期摘要:近年来我国高硫高酸原油加工产业逐渐加大了发展规模,并且开始对大型含硫油的气田进行开发,由此硫磺回收装置也开始趋于大型化,催化剂系列化,对于尾气处理的技术也逐渐多样化,获得了极大的发展和进步。
中国石化齐鲁分公司研究院在开发硫磺回收催化剂的领域的研究取得了很多成果,并且开发出了能够适应多种工艺条件和酸性气组成的硫磺回收催化剂系列。
本文将着重探讨硫磺回收催化剂的主要性能、工业应用以及工艺技术要点和注意事项。
关键词:硫磺回收;催化剂;工艺技术;原油加工硫磺回收主要起源于我国1960年中期,最早的硫磺回收系列装置在四川东溪天然气田中投产使用,首次能够从天然气中回收到酸性气体中的硫磺。
1971年齐鲁石化研究所研发出了我国第一套回收酸性气体中硫磺的装置,是我国的第一次研发硫磺回收技术成功的标志。
1 硫磺回收催化剂的性能1.1 制硫催化剂1.1.1 助剂型硫磺回收催化剂LS-821就是一种助剂型硫磺回收催化剂,比起LS-811,其Claus装置的转化率更高,即从LS-81194%的转化率提升到95.8%,而且对有机硫化物能够达到100%的水解效果,和法国研发的CRS-21比较,LS-821丝毫不逊色。
而LS-931型号的催化剂添加了助催化剂,其装置转化率为95.1%,也比LS-811型号性能要高出许多。
它具有和美国开发的S-501型号的催化剂性相同的性能,比如高反应活性、耐硫酸盐化中毒性能以及稳定性等,能够应用各种不同类型的反应器中进行硫磺回收。
1.1.2 活性Al2O3型催化剂LS-801主要原料构成是偏铝酸钠,制备工艺比较简单,原料也容易得到。
在此基础上,制备工艺条件通过改善,又合成了LS-811型号的Al2O3催化剂,比起铝矾土催化剂而言,假设工艺条件和回收装置相同,LS-811转化率为94%,铝矾土催化剂只有82%左右的转化率,而LS811能够达到90%的水解率,硫化物质量分数可以小于1%,比较于法国生产的CR型号的催化剂则有着性能相当的特性。
西南油气田地面工程关键技术综述李勇;宁永乔;王薛辉;李力;熊刚;王毅辉;赵志宏【摘要】西南油气田是中国最早的天然气工业生产基地,是我国第一个以天然气为主的千万吨级大油气田,目前,西南油气田天然气产量已突破150×108m3/a.介绍了西南油气田在天然气开发建设过程中,经过探索、总结、创新而形成的具有代表性的一系列地面工程关键技术,包括井下节流采气、含硫气田地面集输、天然气净化、天然气深冷、管道完整性管理等技术的主要内容和应用情况.根据生产发展需要,对今后油气田地面工程新技术的研究方向进行了展望.【期刊名称】《石油规划设计》【年(卷),期】2013(024)001【总页数】7页(P1-7)【关键词】西南油气田;含硫气田;集输与净化;井下节流;天然气深冷;管道完整性管理【作者】李勇;宁永乔;王薛辉;李力;熊刚;王毅辉;赵志宏【作者单位】中国石油西南油气田分公司采气工程研究院【正文语种】中文【中图分类】TE3;TE861 地面工程建设概况中国石油西南油气田分公司根据“油气并举、以气为主”的战略方针,先后获得气田112个,含气构造57个,气藏类型包括了非含硫气田、中低含硫气田、高含硫气田以及天然气凝析气田。
同时,绝大部分气藏地质条件复杂、渗透率低、储层非均质性强、“气水同产”气井数量多、单井产量小、地层压力系统差异较大。
经过约50年的滚动开发,中国石油西南油气田分公司地面工程根据气藏开发特点,在引进、吸收基础上,不断创新和完善天然气开发地面工程配套技术,实现了气田的效益开发和可持续发展。
目前,西南油气田分公司已建成在役油、气、水井2566口,天然气集输站1259座,集输气管道20628km,集输气能力250×108m3/a;建成天然气净化厂14座,干法脱硫装置 238套,天然气净化能力4450×104m3/d,含硫天然气净化占总产量的65%;建成天然气脱水装置56套,脱水规模7550×104m3/d;建成天然气增压站140座,增压规模为68×108m3/a;建成天然气提氦、LNG装置等7套,天然气处理能力750×104m3/d。
高含硫天然气净化装置高效运行关键技术研究及应用摘要:天然气提纯技术在当今大量消耗的天然气资源的背景下有着重要的作用,已成为该领域的重点研究课题。
随着我国油气资源的大规模开发,特别是在我国川渝地区相关油气资源中掺杂了大量的高硫天然气,未进行提纯的这类毒气完全不能满足社会和人民的需要,所以,采用一种科学而有效的方式对高含硫气进行提纯是非常必要的,以适应产业的发展需要,并恰当地运用到实际的生产生活中。
文章首先介绍了高含硫天然气提纯技术的发展概况,然后结合普光气田的实例,对高含硫天然气提纯技术的应用进行了探讨。
关键词:高含硫天然气净化技术应用研究引言在当今社会,随着环保意识的日益增强,人们对生活品质的要求也在不断提高,使天然气的应用越发广泛,但天然气并非一种可直接投入使用的纯净物,其中以甲烷居多,同时有少量的乙烷、丙烷和丁烷,此外一般情况下,天然气中还存在一定量的硫化氢、二氧化碳、氮、水汽和少量一氧化碳及微量的稀有气体,如氦和氩等,如果直接投用会对人们的生活环境造成很大的负面影响,因此,对其进行相应的净化处理是非常必要的。
1高含硫天然气净化技术的现状1.1对硫磺回收技术的分析高含硫天然气的一个明显特征就是:它的组成比较复杂,一般硫化氢含量在2—70%,硫回收工艺就是利用这种特性,以有效降低硫化氢含量。
一般来说,硫化氢的含量越高,硫磺回收装置的脱硫作用就越好,而且产生的副产品更少,同时导致二氧化硫在尾气中的排放量也随之降低。
鉴于我国多数油气田在开发过程中存在着高浓度的硫化氢和二氧化硫,为了提高天然气的提纯程度,提高硫磺的生产效率,因此,要想进一步提高硫的回收率,就必须对硫的回收设备和脱硫工艺进行深入的研究。
例如,每年生产100×108立方米的天然气,它含有大约13%的硫化氢,目前的净化设备使废气中的二氧化硫浓度达到了数千吨,与产业规范及社会环保需求相去甚远。
鉴于此,环境保护部门将重点关注大型高含硫天然气净化工厂,目标是对硫磺回收工艺进行优化,提高硫磺回收效率。
目录第一章总论 (3)1.1项目背景 (3)1.2硫磺性质及用途 (4)第二章工艺技术选择 (4)2.1克劳斯工艺 (4)2。
1.1MCRC工艺 (4)2.1.2CPS硫横回收工艺 (5)2。
1。
3超级克劳斯工艺 (6)2。
1.4三级克劳斯工艺 (8)2.2尾气处理工艺 (9)2。
2。
1碱洗尾气处理工艺 (9)2。
2.2加氢还原吸收工艺 (13)2。
3尾气焚烧部分 (13)2。
4液硫脱气 (14)第三章超级克劳斯硫磺回收工艺 (15)3.1工艺方案 (15)3。
2工艺技术特点 (15)3。
3工艺流程叙述 (15)3.3.1制硫部分 (15)3.3。
2催化反应段 (15)3.3.3部分氧化反应段 (16)3。
3。
4碱洗尾气处理工艺 (17)3。
3.5工艺流程图 (17)3。
4反应原理 (18)3.4.2制硫部分一、二级转化器内发生的反应: (18)3。
4。
3尾气处理系统中 (19)3。
5物料平衡 (19)3.6克劳斯催化剂 (20)3。
6。
1催化剂的发展 (20)3.6.2催化剂的选择 (21)3.7主要设备 (21)3.7.1反应器 (21)3.7.2硫冷凝器 (22)3。
7。
3主火嘴及反应炉 (22)3。
7。
4焚烧炉 (22)3。
7.5废热锅炉 (22)3.7。
6酸性气分液罐 (23)3。
8影响Claus硫磺回收装置操作的主要因素 (23)3。
9影响克劳斯反应的因素 (24)第四章工艺过程中出现的故障及措施 (26)4.1酸性气含烃超标 (26)4。
2系统压降升高 (27)4。
3阀门易坏 (28)4。
4设备腐蚀严重 (28)第一章总论1。
1项目背景自从本世纪30年代改良克劳斯法实现工业化以后,以含H2S酸性气为原料的回收硫生产得到了迅速发展,特别是50年代以来开采和加工了大量的含硫原油和天然气,工业上普遍采用克劳斯过程回收元素硫.经近半个世纪的演变,克劳斯法在催化剂研制、自控仪表应用、材质和防腐技术改善等方面取得了很大的进展,但在工艺技术方面,基本设计变化不大,普遍采用的仍然是直流式或分流式工艺.由于受反应温度下化学反应平衡的限制,即使在设备和操作条件良好的情况下,使用活性好的催化剂和三级转化工艺,克劳斯法硫的回收率最高也只能达到97%左右,其余的H2S、气态硫和硫化物即相当于装置处理量的3%~4%的硫,最后都以SO的形式排入大气,严重地污染了环境.2随着社会经济的不断发展,世界可供原油正在重质化,高含硫、高含金属原油所占份额也越来越大,迫使炼油厂商不断地开发新的技术,对重质原油进行深度加工。
西南油气田硫黄回收成套技术业绩1. 引言硫黄是一种重要的化工原料,广泛应用于橡胶、制药、农药、化肥等行业。
然而,硫黄资源的回收和利用一直是一个全球性的难题。
西南油气田硫黄回收成套技术的开发和应用,为解决硫黄资源浪费和环境污染问题提供了有效的解决方案。
本文将详细介绍西南油气田硫黄回收成套技术的业绩,包括技术原理、应用案例和经济效益。
2. 技术原理西南油气田硫黄回收成套技术主要包括硫黄气体分离、硫黄液体回收和硫黄固体处理三个环节。
2.1 硫黄气体分离在油气开采过程中,产生大量含硫气体。
硫黄气体分离技术通过冷凝和吸附等方法,将含硫气体中的硫黄气体分离出来,实现硫黄的初步回收。
2.2 硫黄液体回收分离得到的硫黄气体经过一系列处理,转化为硫黄液体。
硫黄液体回收技术主要包括蒸馏和萃取等过程,通过控制温度、压力和化学反应条件,将硫黄气体转化为高纯度的硫黄液体。
2.3 硫黄固体处理硫黄液体经过回收后,还需进行固体处理。
硫黄固体处理技术主要包括干燥、过滤和结晶等过程,将硫黄液体中的杂质去除,得到纯净的硫黄固体。
3. 应用案例西南油气田硫黄回收成套技术已在多个油气田成功应用,并取得了显著的成果。
3.1 成果一:硫黄回收率提高通过引入硫黄回收成套技术,西南油气田的硫黄回收率显著提高。
在过去,硫黄资源主要通过焚烧等方式处理,回收率较低。
而现在,硫黄回收率已经达到90%以上,有效降低了硫黄资源浪费。
3.2 成果二:环境污染减少硫黄气体是一种强烈的臭味气体,对环境和人体健康造成严重危害。
通过硫黄回收成套技术的应用,西南油气田成功减少了硫黄气体的排放,有效改善了周边环境质量。
3.3 成果三:经济效益显著硫黄资源的回收和利用不仅对环境友好,还具有显著的经济效益。
硫黄是一种重要的化工原料,回收后可以作为再生资源用于生产橡胶、制药等行业,减少了原材料的采购成本,提高了企业的经济效益。
4. 经济效益西南油气田硫黄回收成套技术的应用带来了显著的经济效益。
普光气田安全高效开发技术及工业化应用曹耀峰【摘要】针对普光超深高含硫气田安全高效开发面临的诸多世界性技术难题,按照“学习借鉴、攻关创新、集成应用”紧密衔接的科技创新路径,组建产学研一体化技术攻关团队,形成开放式创新体系,实现科技攻关与现场先导试验良性互动,成功推动了超深高含硫气田安全高效开发技术的研发与配套、关键装备国产化、标准体系建设及其工业化应用,使我国成为世界上少数几个掌握开发特大型超深高含硫气田核心技术的国家,为我国乃至世界复杂山地超深高含硫气田安全高效开发做出了贡献。
%To solve the multi-types of technical problem concerning with the development technology of Puguang Gas Field which is deeply reserved and abounds with hydrogen sulfide,we have organized a scientific innovation team of industry-teaching-research integration. So that,we have formed a technology innovation system,realized the general interaction of key science and technology program and site-testing,promoted the research and development of gas field with super-deep and high-sulfur ,localization of key equipment ,the construction of standard system and its industrial application,pushed China to be one of the few countries of holding the core technology for high-sulfur gas field development,and made important contribution to super-deep and high-sulfur gas field development of China and even the whole world.【期刊名称】《中国工程科学》【年(卷),期】2013(000)011【总页数】4页(P49-52)【关键词】普光气田;超深高硫;技术创新;工业化应用【作者】曹耀峰【作者单位】中国石油化工集团公司,北京 100728【正文语种】中文【中图分类】TE3721世纪人类将进入低碳经济时代,天然气作为清洁能源的地位日益突出。
高含硫气田开采安全技术一、绪论含硫气田是指产出的天然气中含有硫化氢以及硫醇、硫醚等有机物的气田.硫化氢含量在2%~70%为高含硫化氢气田[1]。
世界上已发现了400多个具有商业价值的含硫化氢气田[1,2].而目前我国含硫气田(含硫2%~4% )气产量占全国气产量的60%.四川、渤海湾、鄂尔多斯、塔里木和准噶尔等盆地相继发现了含硫化氢天然气[1,3—10]。
硫化氢含有剧毒[10],对人员有一定的危害。
随着天然气勘探力度的不断加大,油气钻井的难度不断增加,含硫天然气田的开采变得格外重要,现已成为我国天然气开发的一个重要方向。
因此,对于高含硫气田开采过程的安全分析和安全管理变得格外重要.文章通过对高含硫气田开采过程进行分析,从人机物法环角度,提出安全管理的要求,并对易发情况提出应对措施。
二、我国高含硫气田概况1.我国高含硫气田基本情况天然气属于清洁能源,大力发展天然气工业是中国重大能源战略决策。
中国高含硫天然气资源丰富,开发潜力巨大.截至2011年,中国累计探明高含硫天然气储量约123110m ∧⨯,其中90%都集中在四川盆地[11].从20世纪50年代至2000年,中国石油天然气集团公司己在四川盆地开发动用高含硫天然气831402.510m ∧⨯,2000年后随着川东北地区下三叠统飞仙关组气藏和龙岗二、三叠系礁滩气藏的探明,更是迎来了高含硫天然气开采高峰(表1)[12].随着海相天然气资源勘探力度的加大,中国高含硫天然气探明储量将进入快速增长期,为进一步加快高含硫气田开采奠定了资源基础.除天然气外,硫磺也是高含硫气田所蕴藏的宝贵资源。
因此,安全、经济、高效地开采天然气并将有毒硫化氢转化为硫磺,对优化能源结构和节能减排意义重大.表1 四川盆地主要的高含硫气田统计表2. 高含硫气藏划分标准高含硫气藏开发的先导性试验从20世纪60年代开始进行(试验井是卧龙河气田的卧63井,其2H S 含量3419.490/g m ),对2H S 含量达到多少才称为高含硫气藏,概念比较模糊。
编订:__________________单位:__________________时间:__________________大型高含硫气田安全开采及硫磺回收技术Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-2529-43 大型高含硫气田安全开采及硫磺回收技术使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
摘要:我国高含硫天然气资源丰富,开采潜力大,但其资源利用面临腐蚀性强、成本高、毒性大、事故后果严重等难题。
为此,总结了中国石油天然气集团公司近年来在深层高温、高压、大产量高含硫天然气开采中产能测试、完井及改造、集输与腐蚀控制、脱硫与硫磺回收、安全环境风险防控等方面开展技术攻关所取得的创新成果:①高含硫气井产能测试技术非稳态测试用时减少50%,平均误差为7.5%,试井测试深度达7 000 m,硫化氢测试含量达230 g/m³;②高含硫气井完井裸眼封隔器分段工具的分段级数达12级,不动管柱水力喷射分段工具的分段级数达9级;③高含硫气田气液密闭混输工艺和腐蚀控制技术体系长效膜缓蚀剂的膜持续时间为45 d;④高含硫天然气净化技术体系的改良低温克劳斯硫磺回收工艺的硫磺回收率达99.45%,高含硫天然气脱硫技术及工艺计算模型的有机硫脱除率达85%,催化剂硫化氢的转化率为96%,总硫转化率为98%。
最后还提出了加快建设高含硫气田开采国家级研发平台以推动本领域技术进步的建议。
关键词:川渝地区高含硫气田开采产能测试完井及改造腐蚀控制脱硫硫磺回收风险防控1 高含硫气田概况天然气属于清洁能源,大力发展天然气工业是中国重大能源战略决策。
中国高含硫天然气资源丰富,开发潜力巨大。
截至20xx年,中国累计探明高含硫天然气储量约1×l0的12次方(原多次方位置应该标在右上位置,但word格式不支持) m³,其中90%都集中在四川盆地。
从20世纪50年代至20xx年,中国石油天然气集团公司已在四川盆地开发动用高含硫天然气1 402.5×l0的8次方(原多次方位置应该标在右上位置,但word格式不支持) m³,20xx年后随着川东北地区下三叠统飞仙关组气藏和龙岗二、三叠系礁滩气藏的探明,更是迎来了高含硫天然气开采高峰(表1)[1]。
随着海相天然气资源勘探力度的加大,中国高含硫天然气探明储量将进入快速增长期,为进一步加快高含硫气田开采奠定了资源基础。
除天然气外,硫磺也是高含硫气田所蕴藏的宝贵资源。
因此,安全、经济、高效地开采天然气并将有毒硫化氢转化为硫磺,对优化能源结构和节能减排意义重大。
2 高含硫气田开采的难点中国高含硫气田普遍具有气藏埋藏深、地质条件复杂、压力高、含水、多位于人口稠密地的特点,资源开采面临腐蚀性强、成本高、毒性大、事故后果严重等难点。
2.1地质特征复杂中国高含硫气藏多为深层、高温、高压气藏,气藏非均质性强,常伴有地层水。
目前已经发现的高含硫气藏最大埋深为7 000 m,最大原始地层压力超过80MPa,气藏最高温度175℃,硫化氢最高含量超过200 g/m³。
高含硫气藏储层类型复杂,常常包含裂缝-孔洞、裂缝-孔隙、孔隙型以及边、底水活跃型储层。
2.2 开采评价要求高与大型高含硫气藏开采配套建设的天然气净化厂、集输管网投资大,建设工程量大,难于沿用常规气藏逐步完善产能建设的开发模式。
一次性规模化建设投产的开采方案对气藏早期描述、产能快速评价等开采早期评价技术提出了更高要求。
2.3 开采工程技术难度大高含硫气藏含有硫化氢、二氧化碳和有机硫,其开采工程技术更为复杂。
高含硫气藏的安全清洁高效开发对完井技术、井筒工艺及工具材质、压裂酸化液体系和增产改造工艺技术都提出了更高要求,同时,集输过程必须解决腐蚀监测与控制的难题,净化工艺必须满足大规模天然气处理和严格的污染物排放标准要求,安全环保方面必须实现气田水、硫化氢的零排放。
2.4 环境与安全风险高高含硫气藏多位于多山、多静风、人居稠密地区。
高含硫天然气腐蚀性强,所含硫化物毒性大,钻完井、地面集输、天然气净化等生产环节一旦出现问题将造成严重的环境与安全事故。
3 高含硫气田开采技术及取得的创新成果掌握大型高含硫气田开采技术是一个国家或国际综合性能源公司油气资源开采实力和工程技术水平的集中体现。
国外少数国家虽然掌握了高含硫气田开采技术,但技术不转让且服务费用高。
中国石油西南油气田公司在攻克中低含硫气田开采技术难关的基础上,从20xx年开始组织了多轮高含硫气田勘探开发的专项课题攻关,在高含硫气田开采产能测试、完井及改造、集输与腐蚀控制、脱硫与硫磺回收、安全环境风险防控等方面取得了重大进展,特别是20xx年7月龙岗二、三叠系礁滩气藏顺利投产,在国内率先实现大型超深高含硫气田的安全开采,标志着中国已经拥有具有自主知识产权的大型高含硫气田安全开采及硫磺回收技术。
3.1 自主研发了深层高含硫气井产能评价测试及分析技术3.1.1 自主研发了高含硫气井产能快速评价技术3.1.1.1 自主研发了高含硫气井产能评价测试设计方法通过改进实验设备和流程,采用电镜扫描仪与能谱分析仪首次掌握了元素硫膜状沉积形态及其对气相渗流的影响,由此建立了高含硫气井试井设计计算方法,提供了定量预判测试分析方法有效性和可行性的技术手段,填补了国内高含硫气井井下测试技术盲区,带动了相关技术的快速发展。
3.1.1.2 首次建立了高含硫气井产能评价非稳定测试分析方法基于高含硫气井渗流模型和二项式产能方程研究,建立了渗流率和地层压力约束的改进单点测试产能评价方法,与传统的“一点法”比较,评价方法的最大误差从280.5%降到了21.6%,平均误差从23.1%降到了7.5%。
应用自主研发的高含硫气井试井设计技术,解决了根据非稳定测试数据推算稳定流动数据、进而计算稳定产能的难题,奠定了高含硫气井产能快速评价技术的理论基础。
3.1.2 自主研发了深层高含硫气田测试工艺技术3.1.2.1自主研发了高抗硫射孔-酸化-测试联作技术自主研制了全通径井下测试工具,将影响大产量气井产能评价准确性的节流表皮系数从大于10降到小于l;创新形成了满足井深7 000 m、最高地层处理压力207 MPa的3套测试管柱使用技术,完井测试由常规7英寸(1英寸=25.4 ram)井眼测试发展到5英寸小井眼测试,为国内高含硫气井完井测试提供了关键支撑技术,已实施完井测试180井次。
3.1.2.2 自主研发了高抗硫大产量两相流地面测试技术自主研发了适用压力35 MPa的抗硫蒸汽热交换器、适用压力l0 MPa的抗硫两相分离器、适用压力1 MPa的抗硫缓冲计量罐、改进型适用压力l05 MPa的RTTS封隔器、远程数据自动采集及安全控制系统,使高含硫气井地面测试能力从30×10的4次方(原多次方位置应该标在右上位置,但word格式不支持) m³/d提高到450×10的4次方(原多次方位置应该标在右上位置,但word格式不支持) m³/d,解决了高含硫大产量气井测试技术的瓶颈问题。
图1为大产量高含硫气井地面测试流程图。
3.1.2.3 自主研发了高抗硫钢丝试井测试技术以腐蚀评价试验为基础,研制并配套完善了井下测试工具及地面控制系统,创新形成了高含硫、大斜度、大产量气井测流压设计方法以及试井测试安全控制技术,气井测试产量由30×10的4次方(原多次方位置应该标在右上位置,但word格式不支持)m³/d 提高到116×10的4次方(原多次方位置应该标在右上位置,但word格式不支持) m³/d,天然气中硫化氢测试含量由100 g/m³提升到230 g/m³,测试井深从4 000 m提升到6 800 m,测试井型由直井扩展到最大井斜角为47°的斜井。
已实施试井150口井,成功率达100%。
20xx年9月在剑门1井首次实施7 000 m井下测试获得成功,超过国外同类气井的测试纪录。
3.1.3 创建了高含硫气田水产出规律预测技术基于裂缝-孔隙型储层的气水渗流机理及含硫气藏水体沿裂缝发育带侵进的物理背景,创新建立和求解了双重介质储层生产井区径向渗流与水侵区线性渗流耦合数学模型,形成了水侵动态分析及预测技术,首次实现了早期产水及地层水侵对气井产能影响的预测,已成功应用于l2个年产天然气56×10的8次方(原多次方位置应该标在右上位置,但word格式不支持) m³的重点含硫气田,实现了气田产水的早期整体治理,维护了气田产能。
3.2 自主研发了以井筒防腐、分层改造工具、酸液及作业安全为核心的高温高压高含硫气井完井和增产改造技术3.2.1 自主研发了高含硫气井完井技术,保障了高含硫气井的安全生产3.2.1.1 自主研发了以封隔器完井井筒温度压力预测和管柱力学校核为核心的完井设计技术在国内首次建立了封隔器完井过程中的井筒温度分布及环空压力预测模型,预测误差小于6%,率先提出了复杂工况条件下封隔器完井管柱三轴应力校核的高含硫气井完井设计和现场施工的控制参数设计方法,现场施工成功率达l00%。
3.2.1.2 自主研发了以井筒防腐和作业安全为核心的完井管柱技术在室内和现场评价的基础上,研制了井下缓蚀剂,形成了使用适宜材质和化学剂的综合防腐技术;针对不同硫化氢含量和产量的天然气气井,研制了带化学剂加注通道和紧急井下切断装置的多功能完井管柱;编制了《含硫化氢气井井下作业推荐作法》等2项行业标准。
3.2.1.3 自主研发了井筒安全性评价技术在国内首次以安全屏障分析为核心,结合井下漏点与氦气密封检测技术,形成了井筒安全性评价技术,防控了异常带压气井生产安全风险,应用该技术避免了8口环空异常带压气井的废弃。
3.2.2 自主研发了高含硫储层改造工具和液体体系,有效提高了单井产量3.2.2.1 自主研发了高含硫水平井分段改造工具系列独创了不动管柱水力喷射分段工具,解决了国外工具带压上提油管导致井控风险高的问题,可实现不动管柱9级分压;率先实现了裸眼封隔器分段工具的国产化,达到国外同等技术水平,降低成本75%,可实现12级分压。