基于模糊滑模的卫星姿态控制系统故障诊断
- 格式:pdf
- 大小:212.35 KB
- 文档页数:6
基于模糊控制的航天器姿态控制系统设计航天器姿态控制是航天器的关键技术之一,是指对航天器的姿态进行控制,使其保持或者改变特定的方向、角度或者位置。
目前,航天器姿态控制系统越来越受到人们的关注,因为它是实现卫星定位、导航和控制的关键技术之一,并对整个航天事业发挥着重要的作用。
现今,基于模糊控制的航天器姿态控制系统在航天器领域被广泛应用,成为研究热点之一。
本文将详细介绍基于模糊控制的航天器姿态控制系统设计。
一、概述基于模糊控制的航天器姿态控制系统设计在处理非线性、复杂、不精确、不确定以及模糊的问题上相对于传统控制方法优越。
该设计方案主要采用模糊控制算法构建的控制器,通过传感器获得航天器姿态信息并输入控制器,控制器运用模糊算法来产生合适的控制量,从而实现航天器姿态控制。
二、控制系统设计本设计方案的航天器姿态控制系统由三个部分组成,分别为传感器部分、控制器部分和实际控制对象部分。
1.传感器部分该部分主要用于采集航天器的姿态信息,包括姿态角度、角速度等参数。
传感器一般分为惯性传感器和光学传感器,惯性传感器适合用于短期姿态控制,而光学传感器则适合用于长期姿态监测。
2.控制器部分该部分是本系统的核心部分,主要负责产生控制量来控制航天器姿态。
本设计方案的控制器主要采用模糊控制算法,该算法具有处理不确定因素和非线性因素的特点,能够适应实际控制对象的动态特性。
为了保证该控制器的精度和稳定性,需要对其进行模糊规则库的建立和调整。
首先,需要根据航天器的姿态参数构建模糊规则库,然后对模糊规则库进行优化和调整,以满足控制器的精度和稳定性要求。
3.实际控制对象部分该部分主要是实际控制对象,也就是要控制的航天器。
本设计方案的控制对象为六自由度的刚体,可以采用非线性动力学模型来描述。
基于上述三个部分,本设计方案的姿态控制系统可以实现航天器的姿态控制,具有精度高、响应速度快、适应性强等优点。
三、实验结果基于模糊控制的航天器姿态控制系统设计的实验结果表明,该系统具有很好的姿态控制效果。
测控技术2019年第38卷第5期・7・试验与测试基于模糊贝叶斯风险和T-S模糊模型的故障诊断路涛J梁智超2,索明亮3,(1.空军装备部外场保障局,北京100843;2.复杂航空系统仿真实验室,北京100076;3.北京航空航天大学可靠性与系统工程学院,北京100191;4.可靠性与环境工程技术重点实验室,北京100191)摘要:为解决复杂装备故障诊断中的知识获取和决策制定问题,提出一种数据驱动的故障诊断方法。
利用模糊贝叶斯风险模型以风险最小化原则挖掘数据中有价值知识,最,其中的概率分布用于T-S(Takagi-Sugeno)模糊规则提取,以分段线性化思想逼近复杂的数据知识。
在数值实验中,以C-MAPSS(Commercial Modular Aero-Propulsion System Simulation)发动机数据为研究对象,验证方法的有,结果表明本文方法适用于复杂装备的故障诊断。
知识获取方法明,本文方法的诊断准确率。
关键词:故障诊断;数据驱动;模糊贝叶斯风险;T-S模糊;航空发动机中图分类号:TP277文献标识码:A文章编号:1000-8829(2019)05-0007-06doi:10.19708/j.ckjs.2019.05.002Fault Diagnosis Based on Fuzzy Bayes Risk and T-S Fuzzy ModelLU Tao1,LIANG Zhi-chao2,SUO Ming-liang3,4(1.Field Support Bureau of Air Force Equipment Department,Beijing100843,China;2.Science and Technology on Complex Aviation Systems Simulation Laboratory,Beijing100076,China;3.School of Reliability and Systems Engineering,Beihang University,Beijing100191,China;4.Science and Technology on Reliability and Environmental Engineering Laboratory,Beijing100191,China)Abstract:A kind of data-driven fault diagnosis approach is proposed to solve the problems of knowledge acquisition and decision making in the diagnosis of complex ing the fuzzy Bayes risk model to mine the valuable knowledge under the raw data with the principle of risk minimization to obtain the relative optimal attribute subset.The generated probability distribution is used for T-S fuzzy rule extraction,and the complex data knowledge is approximated according to the idea of piecewise linearization.In the numerical experiments,two diagnostic cases were carried out to illustrate the efficiency of the proposed method by utilizing the data of C-MAPSS,and the results show that the proposed method is suitable for fault diagnosis of complex equipment.Compared with other knowledge acquisition methods,this method can achieve higher diagnostic accuracy.Key words:fault diagnosis;data-driven;fuzzy Bayes risk;T-S fuzzy;aeroengine复杂装备的诞生是工业技术快速发展的必然结果,随之而来的是对复杂装备的健康管理问题。
《电液位置伺服控制系统的模糊滑模控制方法研究》一、引言随着工业自动化技术的快速发展,电液位置伺服控制系统在各种高精度、高动态性能的机械设备中得到了广泛应用。
然而,由于系统中的非线性和不确定性因素,传统的控制方法往往难以达到理想的控制效果。
因此,研究新型的控制方法,提高电液位置伺服控制系统的性能,具有重要的理论意义和实际应用价值。
本文重点研究了模糊滑模控制在电液位置伺服控制系统中的应用,为解决该类问题提供了新的思路。
二、电液位置伺服控制系统概述电液位置伺服控制系统是一种以液压传动为基础,通过电机驱动液压泵,进而控制执行机构位置的系统。
其核心目标是实现对执行机构位置的精确控制。
由于系统中存在非线性和不确定性因素,如液压缸的摩擦力、外部负载扰动等,使得系统控制变得复杂。
传统的控制方法如PID控制、模糊控制等,虽然在一定程度上可以实现对系统的控制,但往往难以达到理想的控制效果。
三、模糊滑模控制方法研究针对电液位置伺服控制系统的特点,本文提出了一种模糊滑模控制方法。
该方法将模糊控制和滑模控制相结合,通过模糊控制器对系统的不确定性进行估计和补偿,同时利用滑模控制的快速性和鲁棒性,实现对系统的高精度控制。
1. 模糊控制器设计模糊控制器是本方法的核心部分。
通过对系统的不确定性因素进行观察和学习,模糊控制器可以自动调整其参数,以适应系统状态的变化。
在电液位置伺服控制系统中,模糊控制器通过接收系统的位置、速度等信息,利用模糊推理机制对系统的不确定性进行估计和补偿。
2. 滑模控制器设计滑模控制是一种变结构控制方法,其核心思想是根据系统状态的变化,实时调整系统的控制策略。
在电液位置伺服控制系统中,滑模控制器通过设计适当的滑模面和滑模控制律,使系统在受到外部扰动时,能够快速地回到预设的滑模面上,从而实现高精度的位置控制。
四、实验验证与分析为了验证本文提出的模糊滑模控制方法的有效性,我们进行了大量的实验。
实验结果表明,与传统的控制方法相比,模糊滑模控制方法在电液位置伺服控制系统中具有更好的控制性能。