人工智能第一章总结
- 格式:docx
- 大小:16.77 KB
- 文档页数:1
人工智能重点总结第一章:开展简史〔此处为简答题〕1.人工智能的萌芽〔1956年以前〕1936年,图灵创立了自动机理论〔后人称为图灵机〕,提出一个理论计算机模型,为电子计算机设计奠定了根底,促进了人工智能,特别是思维机器的研究。
麦克洛克和皮茨于1943年提出“拟脑模型〞是世界上第一个神经网络模型〔MP模型〕,开创了从结构上研究人类大脑的途径。
1948年维纳发表?控制论—关于动物与机器中的控制与通信的科学?,不但开创了近代控制论,而且为人工智能的控制学派树立了里程碑。
1、古希腊伟大的哲学家思想家亚里士多德的主要奉献是为形式逻辑奠定了根底。
形式逻辑是一切推理活动的最根本的出发点。
在他的代表作?工具论?中,就给出了形式逻辑的一些根本规律,如矛盾律、排中律,并且实际上已经提到了同一律和充足理由律。
此外亚里士多得还研究了概念、判断问题,以及概念的分类和概念之间的关系判断问题的分类和它们之间的关系。
其最著名的创造就是提出人人熟知的三段论。
2、英国的哲学家、自然科学家 Bacon〔培根〕〔1561-1626〕,他的主要奉献是系统地给出了归纳法,成为和 Aristotle 的演绎法相辅相成的思维法那么。
Bacon 另一个功绩是强调了知识的作用。
Bacon 的著名警句是"知识就是力量"。
3、德国数学家、哲学家 Leibnitz〔莱布尼茨〕〔1646-1716〕,他提出了关于数理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运算和推理。
他曾经做出了能进行四那么运算的手摇计算机4、英国数学家、逻辑学家 Boole〔布尔〕〔1815-1864〕,他初步实现了布莱尼茨的思维符号化和数学化的思想,提出了一种崭新的代数系统--布尔代数。
5、美籍奥地利数理逻辑学家Godel〔哥德尔〕〔1906-1978〕,他证明了一阶谓词的完备性定理;任何包含初等数论的形式系统,如果它是无矛盾的,那么一定是不完备的。
此定理的意义在于,人的思维形式化和机械化的某种极限,在理论上证明了有些事是做不到的。
《人工智能》需要掌握的基本知识和基本方法第一章:1.人工智能的定义:P5人工智能是一门研究如何构造智能机器(智能计算机)或智能系统,使它能模拟、延伸、扩展人类智能的学科。
2、人工智能研究的基本内容:P10-P11(1)知识表示(2)机器感知(3)机器思维(4)机器学习(5)机器行为3..当前人工智能有哪些学派?(自己查资料)答:目前人工智能的主要学派有下面三家:(1)符号主义(symbolicism),又称为逻辑主义(logicism)、心理学派(psychologism)或计算机学派(computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
(2)连接主义(connectionism),又称为仿生学派(bionicsism)或生理学派(physiologism),其主要原理为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义(actionism),又称为进化主义(evolutionism)或控制论学派(cyberneticsism),其原理为控制论及感知-动作型控制系统。
4、他们对人工智能在理论上有何不同观?(自己查资料)答:(1)认为人工智能源于数理逻辑(2)认为人工智能源于仿生学(3)认为人工智能源于控制论第二章1.掌握一阶逻辑谓词的表示方法:用于求解将谓词公式化为子句集2.产生式系统的基本结构,各部分的功能以及主要工作过程。
P38-P39(1)规则库规则库是产生式系统求解问题的基础,其知识是否完整、一致,表达是否准确、灵活,对知识的组织是否合理等,将直接到系统的性能。
(2)综合数据库综合数据库又称为事实库、上下文、黑板等。
它是一个用于存放问题求解过程中各种当前信息的数据结构。
(3)控制系统控制系统又称为推理机构,由一组程序组成,负责整个产生式系统的运行,实现对问题的求解。
工作过程:(a) 从规则库中选择与综合数据库中的已知事实进行匹配。
(b)匹配成功的规则可能不止一条,进行冲突消解。
人工智能基础知识全解析第一章:人工智能概述人工智能(Artificial Intelligence,简称AI)是指由计算机系统实现的智能行为,具备感知、理解、决策、学习和交互等能力。
其诞生与发展离不开计算机技术、数学、认知科学和哲学等多个领域的融合。
人工智能的研究目标是设计实现能够模拟人类智能的计算机程序,并让计算机具备像人一样的思维能力。
第二章:人工智能的分类人工智能可分为弱人工智能(Narrow AI)和强人工智能(Strong AI)两个类别。
弱人工智能专注于解决特定问题,例如图像识别、语音识别和自然语言处理等。
而强人工智能则是指具备与人类智能相等或超越的智能水平,能够解决多领域的问题,进行自主学习和推理。
第三章:人工智能的应用领域人工智能在现实生活和各行各业领域得到了广泛应用。
在医疗领域,人工智能可用于辅助诊断、药物研发和健康管理等方面。
在交通领域,人工智能可以优化交通流量、自动驾驶和智能物流等。
在金融领域,人工智能可以进行风险评估、欺诈检测和智能投资等。
在工业领域,人工智能可以实现智能制造、物联网和智能供应链管理等。
第四章:人工智能的核心技术人工智能的核心技术包括机器学习、深度学习、自然语言处理和计算机视觉等。
其中,机器学习是人工智能的基础,通过训练模型使计算机从数据中学习规律和知识。
深度学习是机器学习的一种方法,通过构建神经网络模型实现对复杂数据的建模和分析。
自然语言处理主要研究计算机与人类自然语言的交互和理解。
计算机视觉则研究使计算机理解和处理图像和视频等视觉信息的技术。
第五章:人工智能的挑战与限制虽然人工智能在许多领域都取得了巨大进展,但仍面临着一些挑战和限制。
其中之一是数据隐私和安全问题,大量的数据需要得到隐私保护和安全防护。
另外,人工智能系统的决策过程和黑盒特性也带来了透明度和可解释性的问题。
此外,道德和伦理方面的考虑,如人工智能对人类就业岗位的影响以及对社会公平和正义的挑战等也备受关注。
人工智能基础人工智能基础第一章:什么是人工智能人工智能(Artificial Intelligence)被定义为通过计算机来模拟人类智能的一种技术,包括机器学习、自然语言处理、计算机视觉、知识推理等多个领域。
人工智能应用的场景非常广泛,如智能音响、自动驾驶、医学影像诊断等。
在实际应用中,人工智能通常依赖于大量数据输入和训练,通过算法引导计算机进行决策和预测。
人工智能技术的目标是实现类似人类的学习、推理、分析、理解和决策的功能。
第二章:人工智能模型人工智能模型指的是一组算法和数学公式,用于进行数据分析和预测。
人工智能模型有很多种,其中最常用的包括决策树、神经网络、支持向量机、贝叶斯分类器等。
每一种模型都有其特定的优点和适用场景。
例如,神经网络可以处理非常复杂的非线性问题,而贝叶斯分类器则适用于处理大量输入数据和类别分布不均的情况。
人工智能模型的训练过程通常需要大量数据,机器会通过学习这些数据中的模式和特征,来创建一个算法模型,用于进行未来的预测和决策。
模型训练的目的是最小化预测误差,并在能够预测未知数据时拥有高精度、高泛化性。
为了弥补数据量不足的问题,人工智能技术还可以采用数据增强和迁移学习等手段来提升模型性能。
第三章:机器学习机器学习(Machine Learning)是人工智能领域中最基础的技术之一,在人工智能的应用场景中得到了广泛的运用。
机器学习通常分为三种主要类型:监督学习、无监督学习和半监督学习。
其中,监督学习是最常用的机器学习技术之一,它通过训练数据和相应的标签来建立分类和回归模型。
监督学习的典型应用场景包括图像分类、物体识别、语音识别等。
无监督学习与监督学习的区别在于,它不需要标签数据,而是只使用原始数据进行学习和聚类。
无监督学习的应用场景包括推荐系统、高维数据可视化、异常检测等。
半监督学习则是监督学习和无监督学习的结合,它使用少量的标签数据和大量的未标签数据来进行学习和分类,可以提高分类效果和减少训练数据的需求。
al人工智能第一章:人工智能的概述人工智能(AI)是一项新兴的科技领域,它涉及一系列技术和方法,旨在模拟和实现人类智能的思维和行为。
这种技术可以用于解决许多复杂的问题,改善人类生活质量,并为社会和商业带来长期的经济利益。
第二章:人工智能的类型目前,人工智能可以分为三种类型:弱人工智能、强人工智能和超级智能。
弱人工智能已经在现实生活中广泛应用,它是专注于解决特定问题的人工智能,例如语音识别和图像分类。
强人工智能则是一种更具有普遍性和综合性的人工智能,它可以在更广泛的场景中使用,例如人机交互和自主决策。
超级智能则是更具挑战性的目标,它指的是能够等同于人脑进行各种任务和思考的人工智能。
第三章:人工智能的应用领域人工智能的应用领域非常广泛,其中包括医疗保健、金融、零售、教育、制造业和安全等领域。
许多公司正在利用人工智能来改善服务、并提高效率,例如,电商巨头亚马逊正在使用人工智能来改进销售推荐,而谷歌正在利用人工智能来改进搜索引擎功能。
第四章:人工智能的优缺点在人工智能的发展中,不可避免会出现一些争议,许多人对此持有不同的态度。
一方面,人工智能代表了科技进步的巨大潜力,可以协助解决人们的问题,提高生产效率。
另一方面,人工智能有可能导致大规模失业,并且可能会对员工隐私、安全和人权产生负面影响。
第五章:人工智能未来的发展趋势无论争议与否,人工智能都是未来的趋势。
随着技术的不断发展,人工智能将逐渐进入到更广泛的场景中,可能会在工作、社交和娱乐等方面带来深刻的改变。
同时,人工智能的发展也将会迎来各种新的挑战,例如如何更好地保护隐私和人权、如何与传统产业结合等。
第六章:结论人工智能是复杂和多面的技术领域,需要我们对此持续关注。
在未来,我们需要继续探索更好的方法来利用人工智能,实现更大的进步。
同时,我们也需要认真考虑如何管理人工智能的风险,避免潜在的负面影响。
最终,人工智能是一个不断发展的领域,我们需要拥抱这一变化,并与其一起前行。
人工智能第一章:人工智能(1)人工智能基本概念、方法和技术:基本技术:知识表示、推理、搜索、规划(2)人工智能的主要研究、应用领域机器感知:机器视觉;机器听觉;自然语言理解;机器翻译机器思维:机器推理机器学习:符号学习;连接学习机器行为:智能控制智能机器:智能机器人;机器智能智能应用:博弈;自动定理证明;自动程序设计专家系统;智能决策;智能检索;智能CAD;智能CAI智能交通;智能电力;智能产品;智能建筑等(3)人工智能新技术计算智能:神经计算;模糊计算;进化计算;自然计算人工生命:人工脑;细胞自动机分布智能:多Agent , 群体智能数据挖掘:知识发现;数据挖掘(4)人工智能研究领域:重点介绍机器学习机器思维:就是让计算机模仿和实现人的思维能力,以对感知到的外界信息和自己产生的内部信息进行思维性加工。
机器思维包括:推理、搜索、规划等方面的研究。
机器感知是机器获取外界信息的主要途径,也是机器智能的重要组成部分。
所谓机器感知,就是要让计算机具有类似于人的感知能力,如视觉、听觉、触觉、味觉。
机器行为就是让计算机能够具有像人那样地行动和表达能力,如走、跑、拿、说、唱、写画等。
知识表示:知识表示的观点陈述性观点:知识的存储与知识的使用相分离优点:灵活、简洁,演绎过程完整、确定,知识维护方便缺点:推理效率低、推理过程不透明过程性观点:知识寓于使用知识的过程中优点:推理效率高、过程清晰缺点:灵活性差、知识维护不便知识表示的方法逻辑表示法:一阶谓词逻辑产生式表示法:产生式规则结构表示法:语义网络,框架谓词逻辑表示的应用机器人移盒子问题:分别定义描述状态和动作的谓词描述状态的谓词:TABLE(x):x是桌子EMPTY(y):y手中是空的AT(y, z):y在z处HOLDS(y, w):y拿着wON(w, x):w在x桌面上变元的个体域:x的个体域是{a, b}y的个体域是{robot}z的个体域是{a, b, c}w的个体域是{box}问题的初始状态:AT(robot, c)EMPTY(robot)ON(box, a)TABLE(a)TABLE(b)问题的目标状态:AT(robot, c)EMPTY(robot)ON(box, b)TABLE(a)TABLE(b)机器人行动的目标把问题的初始状态转换为目标状态,而要实现问题状态的转换需要完成一系列的操作描述操作的谓词条件部分:用来说明执行该操作必须具备的先决条件可用谓词公式来表示动作部分:给出了该操作对问题状态的改变情况通过在执行该操作前的问题状态中删去和增加相应的谓词来实现需要定义的操作:Goto(x, y):从x处走到y处。
人工智能:Artificial Intelligence,简称AI,主要研究如何使用人工的方法和技术,使用各种自动化机器或智能化机器模仿、延伸和扩展人的智能,实现某些机器的智能行为。
人工智能的研究目标及其意义:1目标:远期目标是要制造智能机器,即探索智能的基本机理,研究使用各种机器,各种方法模拟人的思维过程或智能行为,最终制造出和人有相似或相近智力和行为能力的综合智能系统;近期目标是实现机器智能,即研究如何使用现有的计算机具备更高的智能,在一定领域或在一定程度上去完成需要人的复杂脑力劳动才能完成的工作。
2意义:普遍的计算机智能低下,无法满足社会需求;研究AI是当前信息化社会的迫切需求;智能化是自动化发展的必然趋势;研究AI,对人类自身的智能的奥秘也提供有益的帮助。
人工智能的科学范畴:当前的人工智能既属于计算机技术的一个前沿领域,也属于信息处理和自动化技术的一个前沿领域。
还涉及到智能科学、认知科学、心理科学等,是一门综合性的交叉学科和边缘学科。
人工智能的划分:1传统划分方法:符号主义学派、链接主义学派、行为主义学派2现代划分方法:符号智能流派、计算智能流派、群体智能流派
人工智能的研究途径与方法:1心里模拟,符号推演2生理模拟,神经计算3行为模拟,控制进化4群体模拟,仿生计算5博采广鉴,自然计算6原理分析,数学建模
人工智能的研究领域:1博弈2自动定理证明3专家系统4模式识别5机器学习6计算智能7自然语言处理8分布式人工智能9机器人
人工智能的基本技术:1知识表示技术2知识推理、计算和搜索技术3系统实现技术。
符号智能的表示是知识的表示,运算是基于知识表示的推理或符号操作,采用搜索方法进行问题求解,一般在问题空间上进行,计算智能的表示是对象表示,运算时给予对象的表示的操作或计算,采用搜索方法进行问题求解,一般是在解空间上进行。
人工智能的基本内容:1从人工智能的定义出发包括(感知与交流的模拟,记忆,联想,计算,思维的模拟,输出效率或行为模拟2从知识工程的角度出发包括(知识的获取,知识的处理以及知识的运用)
人工智能诞生1956年夏,达特莫斯大学的研究会,麦卡锡提议正式采用了“AI”术语。
发展:推理期,知识期,学习期
AI的现状与发展趋势:1多种途径齐头并进,多种方法协作互补2新思想、新技术不断涌现,新领域新方向不断开拓3理论研究更加深入,应用研究愈加广泛4研究队伍日益壮大,社会影响越来越大。
以上展现了AI繁荣景象和光明前景,虽有困难,问题和挑战,但前进和发展毕竟是大势所趋。