天线近场测量技术综述
- 格式:docx
- 大小:10.73 KB
- 文档页数:2
有源相控阵天线近场校准方法分析摘要:为了实现相控阵天线的标定,降低幅度相位误差和阵列故障对天线性能的影响,提出一种考虑因素耦合效应的近场标定方法。
在采用近场扫描方法完成逐通道标定的基础上,采用旋转矢量法进行两次时间校准。
当应用旋转矢量法(REV)时,为了使测量信号的变化明显,将大型相控阵天线分为中间,对边缘区域进行区域校准。
通过二次标定,可以判断阵列元件是否无效,提高相控阵天线的幅相一致性;通过分区校准降低了阵列元件之间相互耦合的影响,并缩短了校准时间。
基于此,本篇文章主要阐述了有源相控阵天线的优点,分析了有源相控阵天线近场校准的原理,并且对有源相控阵天线近场校准方法作了初步探讨,以期对相关领域的研究人员起到一定的借鉴作用。
关键词:相控阵天线校准;旋转矢量法;近场扫描法;互耦效应;幅相一致性一般而言,有源相控阵天线波束的指向较为灵活,并且它的功能性比较强,具有较好的抗干扰性,因此该波束广泛的应用在雷达系统上[1]。
相关工作人员在进行天线测试的工作过程中,通过天线测试可以进一步的设计好有源相控阵雷答,因此做好其进场校准工作尤为重要。
在相关工作过程中可以利用平面进场测试系统进行繁衍,并且利用计算机辅助校准,得到相关的快速检测方法[2]。
1有源相控阵天线优点将有源相控阵天线应用在雷达领域,其具有以下的优点:第一点,可以分出多波束追踪不同目标,指向性更强,同时也就表示死角更小;第二点,可以充当多用途天线,包含IFF、数据包、ECM都可以整合进aesa 里;第三点,可以随时变频、变功率让敌人不知道自己被发现或锁定;第四点,由于没有行波管导波线等所以更为轻巧可靠[3];第五点,由于低旁波所以不易被干扰或截获,可以集中波束所以探测距离更远;第六点,个别T/R模组故障不影响其它模组,可靠度高,一个元件坏了绝对不影响其他的工作;因为雷达是有波束指向的,而波束宽度往往比较窄,所以以往的机械雷达需要转动天线才能实现对各个方向的覆盖,而相控阵雷达是通过相位加权来实现波束指向的改变,因此响应快。
阵列天线近场校准方法及在波束形成中的应用杨雷明;李强;孙广俊【摘要】Testing antenna in far field is much more difficulty since its big antenna caliber of large scale phased ar-ray antenna, and this can be effectively solved by using method of testing antenna in near field. The amplitude and phase error on large scale antenna array is tested and calibrated by using method of testing antenna in near fields in practical engineering application. The test results show that this method can be used to evaluate amplitude and phase consistency of array antenna. In respect to closed-loop calibration of the receiver, the antenna error calibra-tion can distinctly reduce side lobes after beam-forming, and the angle measurement deviation decreases obvious-ly, especially in the low frequency band of shortwave.%大型相控阵天线阵列由于天线口径很大,给天线远场测试带来很多困难,天线近场测试方法可以有效解决这类问题。
LTE移动终端天线技术及测试1引⾔近年,伴随着⽆线通讯技术的发展和⽆线移动终端的普及应⽤,新通讯系统不断追求更⾼的数据传输速率和更⼤的信道容量。
在全球范围内,以WCDMA、TD-SCDMA和CDMA为代表的3G技术向长期演进技术(Long Term Evolution,LTE)及LTE-Advanced为代表的4G技术演进。
2013年底中国政府正式向中国移动、中国联通和中国电信发布TD-LTE牌照,开启了中国LTE商⽤的新纪元。
LTE系统在物理层采⽤正交频分复⽤(Orthogonal Frequency Division Multiplexing,OFDM)和多输⼊多输出(Multiple Input Multiple Output,MIMO)天线等作为关键技术,具有更⾼的数据速率。
传输信道理论峰值速率可达上⾏75Mbit/s、下⾏300Mbit/s。
⽽LTE-Advanced进⼀步采⽤了载波聚合(Carrier Aggregation,CA)、多层空间复⽤(Multi-layer Spatial Multiplexing)等技术,理论峰值传输速率得到提升,可达上⾏1.5Gbit/s、下⾏3Gbit/s。
作为商⽤的LTE移动终端,必须满⾜多模多频的需求,⽽天线必须兼顾宽带化⼩型化的要求。
LTE移动终端⼀般要求内置天线,⾄少两个以上的接收天线,多通道RF接收信号处理能⼒,可⽀持LTE、GSM、CDMA、WCDMA、TD-SCDMA等多种制式,并实现多种模式之间/语⾳和数据业务之间的切换。
从天线设计层⾯,LTE终端产品频率覆盖范围更宽(从700MHz到2.7GHz)。
⼀⽅⾯市场要求⼩巧精致的ID设计、⾼质量的⽤户体验;另⼀⽅⾯频率较低的700MHz频段需要较⼤的天线尺⼨,MIMO天线系统的双天线以及射频⾼性能指标(⾼隔离度、低相关性系数等)的要求导致产品尺⼨增加,这两⽅⾯的⽭盾使终端天线设计和测试成为LTE移动终端的⼀个关键技术难点。
实验四、电波天线特性测试一、实验原理天线的概念无线电发射机输出的射频信号功率,通过馈线输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。
选择合适的天线天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。
具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。
选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。
天线的方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。
天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。
衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的天线称为全向天线,有一个或多个最大方向的天线称为定向天线。
全向天线由于其无方向性,所以多用在点对多点通信的中心台。
定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。
垂直放置的半波对称振子具有平放的“面包圈”形的立体方向图。
立体方向图虽然立体感强,但绘制困难,平面方向图描述天线在某指定平面上的方向性。
天线的增益增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。
天线测试方法介绍天线测试是指对通信系统中的天线进行性能测试和验证,以确保天线能够正常工作并满足设计要求。
天线测试方法可以分为室内测试和室外测试两种。
一、室内测试方法:1.天线参数测试:包括天线增益、方向性、极化、带宽、驻波比、辐射功率等参数的测试。
可以使用天线测试仪器进行测量,如天线分析仪、信号发生器、功率计等设备,通过测量输出信号和接收信号的功率以及天线的辐射图案来评估天线的性能。
2.多路径衰落测试:通过模拟多径传输环境,测量天线在复杂信道环境中的性能。
可以使用信号发生器和功率计来模拟不同路径的信号,并通过天线接收到的信号来评估天线的接收性能和抗干扰能力。
3.天线阻抗匹配测试:通过测量天线输入端的阻抗参数,如阻抗匹配度、反射系数等来评估天线的阻抗匹配性能。
可以使用天线分析仪或网络分析仪等设备进行测量,通过调整天线的匹配电路来优化天线的阻抗匹配性能。
4.天线辐射图案测试:通过测量天线辐射图案来评估天线的方向性和覆盖范围。
可以使用天线测试仪器或天线测向仪等设备进行测量,通过调整天线的指向性来优化天线的覆盖范围和信号质量。
二、室外测试方法:1.参考信号接收强度测试:通过测量天线接收到的参考信号强度来评估天线的接收性能和覆盖范围。
可以使用功率计或天线测试仪器进行测量,通过调整天线的方向和位置来优化天线的接收性能。
2.通信质量测试:通过测量天线传输的数据质量、误码率等指标来评估天线的传输性能。
可以使用通信测试仪器和信号发生器进行测量,通过调整天线的参数来优化天线的传输性能。
3.电磁兼容性测试:通过测量天线的电磁辐射和电磁敏感度来评估天线的抗干扰能力和电磁兼容性。
可以使用电磁辐射测试仪器和电磁兼容性测试设备进行测量,通过调整天线的设计和布局来优化天线的抗干扰能力。
总结:天线测试是确保通信系统中天线正常工作和满足设计要求的重要环节。
通过室内测试和室外测试方法,可以评估天线的性能、阻抗匹配性能、多路径衰落性能、辐射图案等指标,优化天线的设计和布局,提高通信系统的性能和可靠性。
太赫兹反射面天线测试方法综述
秦顺友
【期刊名称】《无线电工程》
【年(卷),期】2018(48)12
【摘要】随着太赫兹科学技术的发展,太赫兹反射面天线在空间遥感辐射计和射电天文领域获得了应用,太赫兹天线测量对传统的天线测量技术提出了严峻的挑战.系统总结了反射面天线性能的传统测试方法:远场测试方法、近场测试方法和紧缩场测试方法.针对太赫兹反射面天线的测量问题,论述了远场测量技术、近场测量技术和紧缩场测量技术的可行性,分析了各自的特点及其局限性,指出了全息紧缩场在太赫兹反射面天线测量中,具有广阔的应用前景.
【总页数】8页(P1013-1020)
【作者】秦顺友
【作者单位】中国电子科技集团公司第五十四研究所, 河北石家庄050081
【正文语种】中文
【中图分类】TN820
【相关文献】
1.热电型太赫兹探测器的快速测试方法研究 [J], 张鹏;韩顺利;韩强;董杰;吴寅初;吴斌
2.《太赫兹科学与电子信息学报》编委会、中国兵工学会太赫兹应用技术专委会工作会与“太赫兹中的微纳科学技术”专题研讨会成功召开 [J],
3.太赫兹天线无相测试方法 [J], 刘灵鸽;赵兵;陈波
4.星载大口径太赫兹反射面天线设计与实现 [J], 施锦文;周卫来;禹旭敏;马凤军
5.星载大口径太赫兹反射面天线设计与实现 [J], 施锦文; 周卫来; 禹旭敏; 马凤军因版权原因,仅展示原文概要,查看原文内容请购买。
天线近场测量技术综述
天线测量技术天线工程一问世,天线侧量就是人们一直关注的重要课题之一,方法的精确与否直接关系到与之配套系统的实用与否.随着通讯设备不断更新,对天线的要求愈来愈高,常规远场测量天线的方法由于实施中存在着许多困难,有时甚至无能为力,于是人们就渴望通过测量天线的源场而计算出其辐射场的方法.然而由于探头不够理想和计算公式的过多近似,致使这种方法未能赋于实用.为了减小探头与被测天线间的相互影响,Barrett等人在50年代采用
于离开天线口面几个波长来测量其波前的幅相特性,实验结果令人大为振奋,由此掀开了近场侧量研究的序幕,这一技术的出现,解决了天线工程急待解决而未能解决的许多问题,从而使天线测量手段以新的面目出现在世人的面前.四十多年过去了,近场测量技术已由理论研究进人了应用研究阶段,并由频域延拓到了时域,它不仅能够测量天线的辐射特性,而且能够诊断天线口径分布,为设计提供可靠、准确设计依据;与此同时,人们利用它进行了目标散射特性的研究,即隐身技术和反隐身技术的研究,从而使该技术的研究有了新的研究手段,进而使此项研究进人了用近场测量的方法对目标成像技术的探索阶段.
近场测量技术在离开被测体3一5人(入为工作波长)距离上,用一个电特性
已知的探头在被测体近区某一平面或曲面上扫描抽样(按照取样定理进行抽样) 电磁场的幅度和相位数据,再经过严格的数学变换(快速傅立叶变换,FastFourierTransform,简写为FFT)计算出被测体远区场的电特性,这一技术称
之为近场测量技术。
若被测体是辐射体(通常是天线),则称之为辐射近场测量(RadiationNearFieldMeasurement):当被测体是散射体时,则称之为散射近场测量(NearFieldSeatteringMeasurement)。
对辐射近场测量而言,根据取样表面的不同,。