直流电动机调速系统设计

  • 格式:doc
  • 大小:395.00 KB
  • 文档页数:17

下载文档原格式

  / 17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概述 (2)

1 设计任务与分析 (3)

1.1 任务要求 (3)

1.2 任务分析 (3)

2方案选择及论证 (4)

2.1 三相可控整流电路的选择 (4)

2.2 触发电路的选择 (4)

2.3 电力电子器件的缓冲电路 (5)

2.4 电力电子器件的保护电路 (5)

3主电路设计 (7)

3.1 整流变压器计算 (7)

3.1.1 U2的计算 (7)

3.1.2一次侧和二次侧相电流I1和I2的计算 (8)

3.1.3变压器的容量计算 (8)

3.2 晶闸管元件的参数计算 (9)

3.2.1晶闸管的额定电压 (9)

3.2.2晶闸管的额定电流 (9)

3.3 电力电子电路保护环节 (10)

3.3.1交流侧过电压保护 (10)

3.3.2直流侧过电压保护 (11)

3.3.3晶闸管两端的过电压保护 (11)

3.3.4过电流保护 (11)

4触发电路设计 (11)

4.1 触发电路主电路设计 (11)

4.2 触发电路的直流电源 (13)

5电气原理图 (14)

小结与体会 (15)

参考文献 (16)

附录 (16)

直流电动机具有良好的起动和制动性能,广泛应用于机械、纺织、冶金、化工、轻工等工业系统。随着电力电子技术的发展,晶闸管在直流电动机的调速系统中得到广泛应用。晶闸管直流电动机调速系统,可实现电动机的无级调速,具有调节范围宽,控制精度高,使用寿命长、成本低等优点。正确掌握晶闸管直流电动机调速系统的设计方法,对系统的可靠运行及应用有重大意义。

本设计以晶闸管直流电动机调速装置为主,介绍了系统的各个部件的组成及主要器件的参数计算。调速装置以可控整流电路作为直流电源,把交流电变换成大小可调的单一方向直流电。通过改变触发电路所提供的触发脉冲送出的早晚来改变直流电压的平均值。

关键词:可控整流晶闸管触发电路保护电路

直流电动机调速系统设计

1 设计任务与分析

1.1 任务要求

初始条件:

输入交流电源:三相380V,频率50Hz。

要求完成的主要任务:

设计直流电动机采用调压方式的调速可控整流电源,要求达到:

1、采用晶闸管可控整流电路。

2、直流输出0~100V,直流输出额定电流50A。

3、设计出完整的调压调速电路。

4、完成总电路设计和晶闸管额定电压和电流设计。

1.2 任务分析

无论直流电机还是交流电机,在改变他们的输入电压时,电机的转速将随之改变,调节电机的输入电压控制电机转速,称为调压调速。调压和调速系统的差异就是所控制的对象和目标不一样。

直流电动机调速系统框图如图1所示。由图可知,本系统由给定电压、触发电路、晶闸管整流等环节组成。直流电动机的调速采用开环工作方式,调节给定电压,即可调节触发电路的控制电压,从而调节晶闸管的触发角,实现调相调压,控制电动机的转速。电动机的转速由外部给定的电压决定,实现了电动机的调压调速。

图1 直流电动机调速系统框图

2 方案选择及论证

2.1 三相可控整流电路的选择

当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流,其交流侧由三相电源供电。三相可控整流电路中,最基本的是三相半波可控整流电路。三相半波可控电路结构简单,所用的元器件少,触发电路简单。但整流输出电压脉动大,变压器二次侧电流中含有直流分量,造成变压器铁芯直流磁化。为使变压器铁芯不饱和,需增大铁芯截面积,增大设备的容量。并且要求晶闸管耐压高,需要平波电抗器容量大。而三相桥式整流电路整流输出电压脉动小,对平波电抗器的要求低,变压器二次绕组电流中没有直流分量、利用率高。但需要的整流器件多,触发电路也比较复杂,主要应用于要求较高的场合。

由于直流电动机的容量较大,又要求电流的脉动小,故选用三相全控桥式整流电路。电动机额定电压为100V,为保证供电质量,应采用三相降压变压器,将电源电压降低,为避三次谐波电动势的不良影响,主变压器采用Δ/Y接法。2.2 触发电路的选择

晶闸管触发电路以前是由分立元件构成的,它的控制精度差,可靠性低,不便于维修,因此,现在常用集成化的晶闸管触发电路。集成电路具有移相线性好、移相范围宽、温漂小、可靠性高、相位不均衡度小等优点。本系统采用KJ004J 和KJ041组成六路双脉冲移相触发电路,其优点是体积小、性能稳定,移相范围可达170°,广泛应用于各种晶闸管触发电路中。TC787和TC788是采用独有的先进IC工艺技术,并参照国外最新集成移相触发集成电路而设计的单片集成电路。它可单电源工作,亦可双电源工作,主要适用于三相晶闸管移相触发和三相功率晶体管脉宽调制电路,以构成多种交流调速和变流装置。它们是目前国内市场上广泛流行的TCA785及KJ(或KC)系列移相触发集成电路的换代产品,与TCA785及KJ(或KC)系列集成电路相比,具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽、外接元件少等优点,而且装调简便、使用可靠,只需一只这样的集成电路,就可完成3只TCA785与1只KJ041、1只KJ042或5只KJ(3只KJ004、1 只

KJ041、1只KJ042)(或KC)系列器件组合才能具有的三相移相功能。因此本系统采用TC787集成电路,实现六路晶闸管的触发控制。

2.3 电力电子器件的缓冲电路

用于电能变换的电力半导体器件绝大多数工作在开关工作模式,开关损耗是影响其正常运行的重要因素。在硬开关工作方式下,增加缓冲电路是正确使用器件的有效措施,其主要作用是:抑制开关器件的、,改变开关轨迹,减少开关损耗,使之工作在安全工作区内。

由于缓冲电路对自关断器件的安全运行起着至关重要的作用,因此人们研究了多种缓冲电路。开关器件在开通时,缓冲电路电感中储存有磁能,而开关器件关断时,关断缓冲电路中电容储存有电能,这些能量都以热的形式消耗在缓冲电路的电阻上。

在普通晶闸管的应用中,通常选用无极性缓冲电路。在晶闸管回路中串入电感以抑制关断时瞬时过电压,并且防止因过大而引起的误触发。采用GTO、BJT、IGBT等自关断器件时,由于它们的工作频率比SCR高得多,因此有必要采用有极性缓冲电路,以便加快电容或者电感的抑制作用。

应该指出,耗能式缓冲电路能够减小开关器件的开关损耗,是因为把开关损耗从器件本身转移至缓冲器内,然后再消耗在电阻上,也就是说,开关器件的损耗减少了,安全运行得到了保证,但总的开关损耗并不一定减少。

为了回收这部分能量,人们还研究出了各种馈能式缓冲电路,以减少实际的电能损耗。但是由于整机体积的限制和附加元件的成本问题,使馈能式缓冲器推广应用受到了很大的限制。

2.4 电力电子器件的保护电路

电力电子器件均有安全工作区的限制,也就是说都有电流、电压和瞬时功耗的极限值。尽管在设计时会合理选择器件,但一些不可预见的故障会威胁到器件的安全,所以必须采取保护措施,主要包括:

(1)过电流保护:为了防止桥臂中两个开关器件直通,通常对两个开关器件的驱动信号进行互锁并设置死区。由于负载短路、元器件损坏等原因,电力电子装置会出现过电流或短路故障,应该在过载及短路时对装置进行保护。

(2)电流信号的检测:电流检测信号用于反馈控制及保护环节,要求取样可靠、准确。电流信号的检测与传送对电力电子装置是一个很重要的环节。电流信号检测的关键是正确选择和使用检测元件。根据响应速度的快慢,电流检测元