非晶晶化对Nd2Fe14B/α-Fe纳米复合材料磁性能的影响
- 格式:pdf
- 大小:154.13 KB
- 文档页数:3
影响烧结Nd-Fe-B磁体退磁曲线方形度的因素王占勇1,谷南驹1,王宝奇1,刘金芳2,赵金伶3,张志清3,张巧格3(1.河北工业大学金属材料研究所,天津300132;2.美国宾夕法尼亚洲电子能公司,宾夕法尼亚州17538,美国;3.河北省冶金科技股份有限公司磁材部,河北石家庄050000)摘要:通过分析具有不同退磁曲线方形度的磁体发现,烧结体的显微组织对磁体的方形度有很大影响。
磁体中晶粒的异常长大会严重恶化磁体的方形度;晶粒的形状及晶界相等影响到退磁场的大小,进而影响到磁体的方形度;添加元素影响到磁体中的相结构和相分布,对反磁化场的均匀性有所影响。
关键词:Nd-Fe-B磁体;方形度;晶粒;显微组织;添加元素1引言Nd-Fe-B是当代磁能积最高的永磁材料,被称为“磁王”。
目前,对这种高性能磁体的研究主要朝两个方向进行,一是高磁能积磁体,日本实验室水平已达444kJ/m3,工业批量生产水平为N50[1](磁能积400kJ/m3);一是高矫顽力和低温度系数磁体,这一类磁体主要用在电机等领域,前景很好。
然而,在实际应用中,仅仅考虑磁能积和矫顽力这两个指标是不够的,还必须考察磁体的退磁曲线方形度(以下简称方形度)是否合乎要求。
图1为典型的永磁体的退磁曲线[2],从J~H曲线上我们看出,在反向(退)磁场比较小时,J的下降很小;反向磁场大到一定程度后,J开始急剧下降。
通常把J=0.9B r或0.8B r的退磁场称为弯曲点磁场H k。
H k/H cj在一定程度上反映了J~H退磁曲线的形状,其比值越接近于1,J~H退磁曲线越接近于方形,所以,生产中经常通过比较H k/H cj的大小来衡量方形度的好坏,这种衡量方法在许多文献[3,4]中都被采用。
通常认为方形度HH cj>0.9,产品就算合格。
k/在生产中经常发现方形度不合格的产品,我们对这些情况出现的原因进行了分析,总结出了影响方形度的一些因素,以供大家参考。
本文中涉及到的H k 都是指J=0.9B r所对应的磁场。
非晶态合金的磁性能研究随着工业技术的不断进步,非晶态合金越来越受到人们的重视。
非晶态合金可以用于制造各种元器件,如传感器、电感器、变压器、电容器等。
同时,非晶态合金也是磁性材料的一种,其磁性能也受到了广泛的关注。
磁性材料是指能够产生磁场或受到磁场影响的材料。
非晶态合金具有较强的磁性能,因此被广泛应用于电子行业。
非晶态合金具有比普通钢更高的饱和磁感应强度和更低的磁滞损耗,因此可以用于制造电感器、传感器等。
非晶态合金的磁性能与其结构密切相关。
非晶态合金的结构特点是其原子排列不规则,没有明确的晶格结构。
这种结构与晶态材料的结构不同,导致非晶态合金具有一些特殊的物理和化学性质。
非晶态合金的高饱和磁感应强度与其独特的结构有关,其结构导致了非晶态合金中存在大量的浦曼效应。
浦曼效应是指介电质或金属中离子的自旋在磁场作用下产生塞曼分裂,从而增强磁特性的现象。
因此,非晶态合金在外加磁场的作用下具有较强的磁响应能力。
为了更好地研究非晶态合金的磁性能,需要使用一些实验方法来进行定量分析。
其中,磁化曲线测量是非常常用的分析方法之一。
通过磁化曲线的测量,可以了解非晶态合金在不同外磁场下的磁化程度,从而得到它的磁滞回线、饱和磁感应强度、剩磁、矫顽力等参数。
除了磁化曲线测量外,磁光法也是用来研究非晶态合金磁性能的常用实验方法之一。
磁光效应是指磁场对磁化材料中的光传播速度和直线偏振方向的影响。
利用这种方法可以获得非晶态合金在不同磁场下的磁滞回线,进一步了解非晶态合金的磁特性。
研究表明,非晶态合金的磁性能受到制备条件和成分的影响。
不同的成分和制备条件可以导致非晶态合金结构的改变,从而影响其磁性能的表现。
因此,研究非晶态合金的磁性能需要考虑这些因素,并且找到最适合制备高性能磁性非晶态合金的工艺条件。
总之,非晶态合金具有一定的特殊性质,其中的磁性能受到了广泛的关注。
通过使用磁化曲线测量、磁光法等实验方法可以量化地研究非晶态合金的磁特性。
钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律糜晓磊;胡亮;武博文;龙强;魏炳波【期刊名称】《物理学报》【年(卷),期】2024(73)9【摘要】研究了Gd含量对(Fe_(73)B_(22)Nb_(5))_(100–x)Gd_(x)(x=0,0.5,1.0,1.5,2.0)合金非晶形成能力、热稳定性和磁学性能的影响规律,并对比分析了非晶氧化机制.通过添加Gd元素,合金的原子尺寸差超过13%,构型熵增大了30%,提升了合金的非晶形成能力.随着Gd含量的增大,过冷液相区范围达到73 K,热稳定性得到明显增强.Gd元素导致合金局部各向异性受到限制,准位错偶极子型缺陷密度降低.这有效减少了阻碍磁畴壁旋转的钉扎位点,提高合金软磁性能.此外,Gd元素使得非晶在氧化过程中对温度的变化更为敏感,达到最大氧化速率的温度降低了15 K,但是并未恶化其抗氧化性能.Gd原子受结合能影响向表层迁移,形成的富Gd氧化物填充了表层缺陷,占据了大量顶部空间,合金表面附近的结构更加致密.这种结构减少了氧原子通过微观组织界面进行扩散的通道,有助于增强抗氧化性能.【总页数】9页(P254-262)【作者】糜晓磊;胡亮;武博文;龙强;魏炳波【作者单位】西北工业大学物理科学与技术学院【正文语种】中文【中图分类】TG1【相关文献】1.熔炼气氛中的氧含量对锆基非晶合金非晶形成能力及力学性能的影响2.Nd含量对快淬纳米晶和非晶(Mg24Ni10Cu2)100-xNdx(x=0~20)合金电化学性能的影响3.硼含量对Fe-Zr-B-Nb非晶合金的晶化、形成能力和磁性能的影响4.Nb 含量对FeSiBCuNb系铁基纳米晶合金结构和磁学性能的影响因版权原因,仅展示原文概要,查看原文内容请购买。
钕铁硼磁铁Nd2Fe14B
特性:钕铁硼永磁材料是以金属间化合物Nd2Fe14B为基础的永磁材料。
钕铁硼具有极高的磁能积和矫力,同时高能量密度的优点使钕铁硼永磁材料在现代工业和电子技术中获得了广泛应用,从而使仪器仪表、电声电机、磁选磁化等设备的小型化、轻量化、薄型化成为可能。
材质特点:钕铁硼的优点是性价比高,具良好的机械特性;不足之处在于居里温度点低,温度特性差,且易于粉化腐蚀,必须通过调整其化学成分和采取表面处理方法使之得以改进,才能达到实际应用的要求。
制造工艺:钕铁硼的制造采用粉末冶金工艺。
工艺流程:配料→ 熔炼制锭→ 制粉→ 压型→ 烧结回火→ 磁性检测→ 磨加工→ 销切加工→ 电镀→ 成品。
如下图所示:
磁铁形状性能:园片、圆环、方片、方条、瓦形、特殊形状可根据加工(见下图)。
纳米复合磁体的界面结构、交换耦合和反磁化的研究进展李柱柏;张雪峰;李永峰;刘艳丽;赵倩【摘要】纳米复合磁体的磁能积能得到大幅度提高,前提是晶粒之间存在良好的交换耦合作用,而交换耦合作用与软、硬磁相之间的界面密切相关.对Nd2Fe14B、Sm-Co、FePt基纳米复合磁体界面交换耦合和反磁化的研究展开论述.在不同的条件下,界面结构的匹配性、界面原子扩散、晶间的非晶相、界面非磁性层、界面晶格弛豫等可能有利于改善界面的结构、增强交换耦合作用,进而对反磁化过程产生影响.反磁化的不可逆过程主要发生在硬磁相内,但与软、硬磁相界面特性密切相关.不可逆反磁化在一定程度上决定了磁体的矫顽力,它可通过改善界面结构进行调控.本文旨在对纳米复合磁体界面的作用深入理解并期望能对磁体磁性能的优化提供参考.【期刊名称】《功能材料》【年(卷),期】2016(047)002【总页数】8页(P2024-2030,2035)【关键词】纳米复合磁体;界面结构;交换耦合;原子扩散;反磁化【作者】李柱柏;张雪峰;李永峰;刘艳丽;赵倩【作者单位】内蒙古科技大学白云鄂博矿多金属资源综合利用重点实验室,内蒙古包头014010;内蒙古科技大学白云鄂博矿多金属资源综合利用重点实验室,内蒙古包头014010;内蒙古科技大学数理与生物工程学院,内蒙古包头014010;内蒙古科技大学白云鄂博矿多金属资源综合利用重点实验室,内蒙古包头014010;内蒙古科技大学数理与生物工程学院,内蒙古包头014010;内蒙古科技大学白云鄂博矿多金属资源综合利用重点实验室,内蒙古包头014010;内蒙古科技大学数理与生物工程学院,内蒙古包头014010;内蒙古科技大学白云鄂博矿多金属资源综合利用重点实验室,内蒙古包头014010;内蒙古科技大学数理与生物工程学院,内蒙古包头014010【正文语种】中文【中图分类】TM273;O763纳米复合磁体可将软、硬磁相的磁性通过晶间交换耦合作用结合在一起[1-6],其中硬磁相具有高磁晶各向异性,软磁相提供高饱和磁化强度。