山东省烟台市高一数学第一次月考(集合与函数概念)新人教A版
- 格式:doc
- 大小:518.50 KB
- 文档页数:6
2017~2018学年高一上学期第一次月考试题时间:2021.03.08 创作:欧阳与数学考试时间:120分钟满分:150分第I卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组集合中表示同一集合的是2.集合,,则3.集合的子集个数为4.已知集合若有三个元素,则5.已知集合且则6.下列各图中,不可能表示函数的图像的是7.集合,下列不表示从到的函数的是8.下列各组函数中,表示同一函数的是9.设函数若则-1或32或3-1或2-1或2或310. (2012·安徽)下列函数中,不满足的是11.若函数的定义域、值域都是则12.若函数的定义域为,则函数的定义域为第II卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知集合,则集合的关系为_____________.14.已知则________________________________________.15.已知函数则不等式的解集是__________________________.16.设集合,函数且则的取值范围是________.三、解答题:本大题共6小题,17题10分,其余每小题12分,共70分,解答题应写出适当的文字说明或证明步骤.17.(本小题满分10分)已知集合若试求实数的范围.18.(本小题满分15分)已知集合若(1)求实数的范围;(2)求实数的范围;(3)求实数的范围.19.(本小题满分12分)已知二次函数满足试求:(1)解不等式;(2)若,试求函数的值域.20.(本小题满分20分)已知关于的不等式,(1)若不等式的解集为求的值;(2)若不等式的解集为求的值;(3)若不等式的解集为,求的取值范围;(4)若不等式的解集为,求的取值范围.21.(本小题满分13分)已知函数为二次函数,不等式的解集是,且在区间上的最大值为12.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.参考答案一、选择题1~5 BDDCB 6~10 BCACC 11~12 AB二、填空题13.___A=B____ 14.15.16.三、解答题17.18.(1) (2) (3)不存在19.(1)(2)20.(1)21.(1)(2)时间:2021.03.08 创作:欧阳与。
2022-2023学年上学期第一次月考(9月)A卷 高一数学 (考试时间:120分钟 试卷满分:150分) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己
的姓名、准考证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.测试范围:必修第一册第一章、第二章。 5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(2022·河南安阳·高一期末)命题“xR,0xx”的否定是( ) A.0xR,000xx B.xR,0xx C.0xR,000xx D.xR,
0xx
2.(2022·河南信阳·高一期末)设集合15Mxx,2Nxx,则
MN
( ) A.12xx B.22xx C.15xx D.25xx
3.(2022·青海西宁·高一期末)如果,,,Rabcd,则正确的是( ) A.若a>b,则11ab B.若a>b,则22acbc C.若a>b,c>d,则a+c>b+d D.若a>b,c>d,则ac>bd 4.(2022·湖南·株洲二中高一月考)已知集合
11,,,2442kkAxxkZBxxkZ
,则( ) A.AB B.BA C.AB D.A与B关系不确定 5.(2022·广东·深圳实验学校高一期中)已知集合221,,0Aaa,{1,5,9}Baa,若满
足{9}AB,则a的值为( ) A.3或5 B.3或5 C.3 D.5
高一数学必修1第一次月考试卷(含答案解析)数学试卷(时间:120分钟总分:150分)一.选择题:(本大题共10小题;每小题5分;共50分. 在每小题给出的四个选项中;只有一项是符合题目要求的.)1.集合{1;2;3}的真子集共有()A、5个B、6个C、7个D、8个2.图中的阴影表示的集合中是()A.B.C.D.3.以下五个写法中:①{0}∈{0;1;2};②{1;2};③{0;1;2}={2;0;1};④;⑤;正确的个数有()A.1个B.2个C.3个D.4个4.下列从集合A到集合B的对应f是映射的是()A B A B A B A BA B C D5.函数的定义域为()A.B.C.D.6.若函数;则的值为()A.5 B.-1C.-7D.27.已知函数;;那么集合中元素的个数为………………………………………………………()A.1 B.0 C.1或0 D.1或28.给出函数如下表;则f〔g(x)〕的值域为()A.{4,2}B.{1,3}C. {1,2,3,4}D. 以上情况都有可能9.设集合;若A∩B≠;则a的取值范围是()A.B.C.D.10.设, 与是的子集, 若∩=,则称(,)为一个“理想配集”.那么符合此条件的“理想配集”的个数是(规定(,)与(,)是两个不同的“理想配集”)A. 4B. 8C. 9D. 16二.填空题(本大题共5个小题;每小题4分;共20分)11.已知集合;则=12.若函数;则=_ __ __13.若函数的定义域为[-1;2];则函数的定义域是14.函数在区间上递减;则实数的取值范围是_ __15.对于函数;定义域为;以下命题正确的是(只要求写出命题的序号)①若;则是上的偶函数;②若对于;都有;则是上的奇函数;③若函数在上具有单调性且则是上的递减函数;④若;则是上的递增函数。
三.解答题:(本大题共6小题;共80分;解答应写出文字说明;证明过程或演算步骤)。
16.(本小题13分).全集U=R;若集合;;则(1)求;, ;(2)若集合C=;;求的取值范围;(结果用区间或集合表示)17.(本小题13分).已知函数的定义域为集合;;(1)求;;(2)若;求实数的取值范围。
第三章检测试题时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.设集合A={x|-4<x<3},B={x|x≤2},则A∩B=(B)A.(-4,3) B.(-4,2]C.(-∞,2] D.(-∞,3)解析:∵集合A={x|-4<x<3},B={x|x≤2},∴A∩B={x|-4<x≤2},用区间表示为(-4,2],故选B.2.函数f(x)=|x-1|的图象是(B)解析:代入特殊点,∵f(1)=0,∴排除A,C;又f(-1)=2,∴排除D.3.函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2),则实数a 的取值X围是(D)A.a≤2 B.a≥-2C.-2≤a≤2 D.a≤-2或a≥2解析:∵y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,∴y=f(x)在[0,+∞)上是减函数,由f(a)≤f(2),得f(|a|)≤f(2).∴|a|≥2,得a≤-2,或a≥2.4.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是(B)A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D .f (x )=3x +2或f (x )=-3x -4解析:令3x +2=t ,则3x =t -2,故f (t )=3(t -2)+8=3t +2. 5.已知函数y =f (2x )+2x 是偶函数,且f (2)=1,则f (-2)=( A ) A .5 B .4 C .3D .2解析:设g (x )=y =f (2x )+2x ,∵函数y =f (2x )+2x 是偶函数,∴g (-x )=f (-2x )-2x =g (x )=f (2x )+2x ,即f (-2x )=f (2x )+4x ,当x =1时,f (-2)=f (2)+4=1+4=5,故选A.6.已知函数f (x )的定义域为(0,+∞),且在(0,+∞)上单调递增,则不等式f (x )>f (2x -3)的解集是( D )A .(-∞,3)B .(3,+∞)C .(0,3) D.⎝⎛⎭⎫32 ,3 解析:本题考查函数的单调性.因为函数f (x )在(0,+∞)上单调递增,所以f (x )>f (2x -3)⇔x >2x -3>0,解得32<x <3,故选D.7.甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( C )A .40万元B .60万元C .120万元D .140万元解析:要想获取最大利润,则甲的价格为6元时,全部买入,可以买120÷6=20万份,价格为8元时,全部卖出,此过程获利20×2=40万元;乙的价格为4元时,全部买入,可以买(120+40)÷4=40万份,价格为6元时,全部卖出,此过程获利40×2=80万元,∴共获利40+80=120万元,故选C.8.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( C )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-7解析:结合偶函数图象关于y 轴对称可知,这个函数在[-7,7]上有三个单调递增区间,三个单调递减区间,且定义域内有最大值7,无法判断最小值是多少.9.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( C ) A .0 B .1或2 C .1D .2解析:二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( A )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析:∵f (x )是偶函数,∴f (-2)=f (2).又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,∴f (x )在[0,+∞)上是减函数.又∵1<2<3,∴f (1)>f (2)=f (-2)>f (3),故选A. 11.函数f (x )是定义在R 上的奇函数,下列命题:①f (0)=0;②若f (x )在[0,+∞)上有最小值-1,则f (x )在(-∞,0]上有最大值1;③若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数;④若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x .其中正确命题的个数是( C ) A .1 B .2 C .3D .4解析:f (x )为R 上的奇函数,则f (0)=0,①正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以②正确,③不正确;对于④,x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x ,又f (-x )=-f (x ),所以f (x )=-x 2-2x ,故④正确.12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值X 围是( B )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2)∪[23,+∞)D .(0,2]∪[3,+∞)解析:根据题意,知y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝⎛⎭⎫1m ,+∞上为增函数,函数y =x +m 为增函数.分两种情况讨论:①当0<m ≤1时,有1m ≥1,在区间[0,1]上,y =(mx -1)2为减函数,且其值域为[(m -1)2,1],函数y =x +m 为增函数,其值域为[m,1+m ],此时两个函数的图象有1个交点,符合题意;②当m >1时,有1m <1,y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝ ⎛⎭⎪⎪⎫1m 1上为增函数.函数y =x +m 为增函数,在x ∈[0,1]上,其值域为[m,1+m ],若两个函数的图象有1个交点,则有(m -1)2≥1+m ,解得m ≤0或m ≥3.又m 为正数,故m ≥3.综上所述,m 的取值X 围是(0,1]∪[3,+∞),故选B.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≥2,2x ,x <2,已知f (x 0)=8,则x 0= 6.解析:∵当x ≥2时,f (x )≥f (2)=6, 当x <2时,f (x )<f (2)=4, ∴x 20+2=8(x 0≥2),解得x 0= 6.14.若函数f (x )=x(x +1)(2x -a )为奇函数,则a =2.解析:由题意知x ≠-1且x ≠a2.因为函数f (x )为奇函数,所以其定义域应关于原点对称,故x ≠1,即a2=1,a =2.15.设奇函数f (x )在(0,+∞)上为增函数且f (1)=0,则不等式f (x )-f (-x )x <0的解集为(-1,0)∪(0,1).解析:因为f (x )为奇函数,所以不等式f (x )-f (-x )x <0化为f (x )x<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,(3-2a )x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X 围为⎣⎡⎭⎫1,32.解析:f (x )=⎩⎪⎨⎪⎧(x -1)2+a -1,x >1,(3-2a )x -1,x ≤1,显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥(3-2a )×1-1,解得1≤a <32.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0为奇函数.(1)求f (-1)以及实数m 的值;(2)在给出的直角坐标系中画出函数y =f (x )的图象并写出f (x )的单调区间.解:(1)由已知得f (1)=1, 又f (x )为奇函数, 所以f (-1)=-f (1)=-1.又由函数表达式可知f (-1)=1-m ,所以1-m =-1,所以m =2. (2)y =f (x )的图象如图所示.y =f (x )的单调递增区间为[-1,1].y =f (x )的单调递减区间为(-∞,-1)和(1,+∞). 18.(12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,某某数a 的取值X 围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值X 围.解:(1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1, 故可设f (x )=a (x -1)2+1, 由f (0)=3,得a =2. 故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1, 则0<a <12.(3)由已知,即2x 2-4x +3>2x +2m +1, 化简得x 2-3x +1-m >0,设g (x )=x 2-3x +1-m ,则只要g (x )min >0,∵x ∈[-1,1],∴g (x )min =g (1)=-1-m >0,得m <-1.19.(12分)已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2xx -1.求:(1)f (x )的解析式;(2)f (x )在[2,6]上的最大值和最小值.解:(1)因为函数f (x )是定义在R 上的奇函数, 则当x >0时,-x <0,f (x )=-f (-x )=--2x -x -1=-2xx +1,所以f (x )的解析式为f (x )=⎩⎪⎨⎪⎧2xx -1,x ≤0,-2xx +1,x >0.(2)任取2≤x 1≤x 2≤6,则f (x 1)-f (x 2)=-2x 1x 1+1-⎝ ⎛⎭⎪⎫-2x 2x 2+1=2x 2x 2+1-2x 1x 1+1=2(x 2-x 1)(x 2+1)(x 1+1), 由2≤x 1<x 2≤6可得2(x 2-x 1)(x 2+1)(x 1+1)>0,即f (x 1)>f (x 2),所以f (x )在[2,6]上单调递减. 故当x =2时,f (x )取得最大值-43;当x =6时,f (x )取得最小值-127.20.(12分)已知函数f (x )=x 2-|x 2-ax -2|,a 为实数. (1)当a =1时,求函数f (x )在[0,3]上的最小值和最大值;(2)若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,某某数a 的取值X 围. 解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧x +2,x <-1或x >2,2x 2-x -2,-1≤x ≤2,结合图象可知f (x )在⎣⎡⎦⎤0,14上单调递减,在⎣⎡⎦⎤14 ,3上单调递增, f (x )在[0,3]上的最小值为f ⎝⎛⎭⎫14=-178, f (x )在[0,3]上的最大值为f (3)=5. (2)令x 2-ax -2=0,∵Δ=a 2+8>0, 必有两根x 1=a -a 2+82,x 2=a +a 2+82, ∴f (x )=⎩⎪⎨⎪⎧ax +2,x <x 1或x >x 2,2x 2-ax -2,x 1≤x ≤x 2,若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,则⎩⎪⎨⎪⎧a >0,a -a 2+82≥-1a 4≤2,即可,解得1≤a ≤8.21.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m 立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m 立方米时,除了付基本费和定额损耗费时,超过部分每立方米付n 元的超额费;③每户每月的定额损耗费a 不超过5元.(1)求每户每月水费y (元)与月用水量x (立方米)的函数关系式; (2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:的值. 解:(1)依题意,得y =⎩⎪⎨⎪⎧9+a0<x ≤m , ①9+n (x -m )+a ,x >m . ②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧ x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②, 得⎩⎪⎨⎪⎧17=9+n (4-m )+a , ③23=9+n (5-m )+a . ④ ③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16.又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13, 这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量. 将⎩⎪⎨⎪⎧ x =2.5,y =11代入①,得11=9+a , 由⎩⎪⎨⎪⎧ a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧ a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +m x 2+nx +1. (1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a 3对x ∈⎣⎡⎦⎤-13,13恒成立,求a 的取值X 围. 解:(1)因为奇函数f (x )的定义域为R ,所以f (0)=0.故有f (0)=0+m 02+n ×0+1=0, 解得m =0.所以f (x )=x x 2+nx +1. 由f (-1)=-f (1).即-1(-1)2+n ×(-1)+1=-112+n ×1+1, 解得n =0.所以m =n =0.(2)证明:由(1)知f (x )=x x 2+1,任取-1<x 1<x 2<1. 则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1 =x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1). 因为-1<x 1<1,-1<x 2<1, 所以-1<x 1x 2<1.故1-x 1x 2>0,又因为x 1<x 2, 所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在(-1,1)上为增函数.(3)由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎡⎦⎤-13,13上为增函数, 故最大值为f ⎝⎛⎭⎫13=310.由题意可得a 3≥310,解得a ≥910. 故a 的取值X 围为⎣⎡⎭⎫910,+∞.。
【师说】2015-2016学年高中数学第一章集合与函数概念质量评估检测新人教A版必修1时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4 B.2C.0 D.0或4解析:当a=0时,方程化为1=0,无解,集合A为空集,不符合题意;当a≠0时,由Δ=a2-4a=0,解得a=4.答案:A2.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=( )A.{3} B.{4}C.{3,4} D.∅解析:∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.答案:A3.衡水高一检测下列各组中的两个函数是同一函数的为( )(1)y=x+x-x+3,y=x-5.(2)y=x+1x-1,y=x+x-.(3)y=x,y=x2.(4)y=x,y=3x3.(5)y=(2x-5)2,y=2x-5. A.(1),(2) B.(2),(3) C.(3),(5) D.(4)解析:(1)中的y=x+x-x+3与y=x-5定义域不同.(2)中两个函数的定义域不同.(3)中第1个函数的定义域、值域都为R,而第2个函数的定义域是R,但值域是{y|y≥0}.(5)中两个函数的定义域不同,值域也不同.(4)中显然是同一函数.答案:D4.福州高一检测下列函数是偶函数的是( )A.y=2x2-3 B.y=x3C.y=x2,x∈[0,1] D.y=x解析:由函数奇偶性定义可知B、D均为奇函数,C定义域不关于原点对称,为非奇非偶函数,A为偶函数.答案:A5.洛阳高一检测若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是( )A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-4解析:令3x+2=t,则3x=t-2,故f(t)=3(t-2)+8=3t+2.答案:B 6.大庆高一检测设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3解析:∵x ≤0时,f (x )=2x 2-x ,∴f (-1)=2-(-1)=3.又f (x )为R 上的奇函数,故f (-1)=-f (1),所以f (1)=-3.答案:A7.设集合S ={x |x >-2},T ={x |-4≤x ≤1},则S ∩T =( )A .[-4,+∞) B.(-2,+∞)C .[-4,1]D .(-2,1]解析:S ∩T ={x |x >-2}∩{x |-4≤x ≤1}={x |-2<x ≤1}.答案:D8.函数f (x )=1+x +1x的定义域是( ) A .[-1,∞)B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R解析:要使函数有意义,需满足⎩⎪⎨⎪⎧ 1+x ≥0,x ≠0,即x ≥-1且x ≠0,故选C.答案:C9.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .1解析:∵f (x )是奇函数,∴f (-1)=-f (1).又g (x )是偶函数,∴g (-1)=g (1).∵f (-1)+g (1)=2,∴g (1)-f (1)=2.①又f (1)+g (-1)=4,∴f (1)+g (1)=4.②由①②,得g (1)=3.答案:B 10.浏阳高一检测已知偶函数y =f (x )在[0,4]上是增函数,则一定有( )A .f (-3)>f (π)B .f (-3)<f (π)C .f (3)>f (-π)D .f (-3)>f (-π)解析:∵f (x )是偶函数,∴f (-3)=f (3),f (-π)=f (π).又f (x )在[0,4]上是增函数,∴f (3)<f (π).∴f (-3)<f (π).答案:B11.(2014·昆明高一检测)已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=x -x 2,则当x >0时,f (x )=( )A .x -x 2B .-x -x 2C .-x +x 2D .x +x 2解析:当x >0时,-x <0,∴f (-x )=-x -(-x )2=-x -x 2,又f (-x )=-f (x ),故f (x )=x +x 2.答案:D 12.安阳高一检测一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-7解析:结合偶函数图象关于y 轴对称可知,这个函数在[-7,7]上有三个单调递增区间,三个单调递减区间,且定义域内有最大值7,无法判断最小值是多少.答案:C二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数f (x )=x -1.若f (a )=3,则实数a =__________.解析:因为f (a )=a -1=3,所以a -1=9,即a =10.答案:1014.用列举法表示集合:A ={x |2x +1∈Z ,x ∈Z }=__________. 解析:因为x ∈Z ,所以当x =-3时,有-1∈Z ;当x =-2时,有-2∈Z ;当x =0时,有2∈Z ;当x =1时,有1∈Z ,所以A ={-3,-2,0,1}.答案:{-3,-2,0,1}15.函数f (x )=-x 2+b 在[-3,-1]上的最大值是4,则它的最小值是__________.解析:函数f (x )=-x 2+b 在[-3,-1]上是增函数,当x =-1时取最大值,所以b=5,当x =-3时,取最小值f (-3)=-9+5=-4.答案:-416.已知函数y =f (x )在(-∞,0)∪(0,+∞)上为奇函数,且在(0,+∞)上为增函数,f (-2)=0,则不等式x ·f (x )<0的解集为________.解析:根据题意画出f (x )由图象可知-2<x <0或0<x 答案:(-2,0)∪(0,2)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.2014·武昌高一检测,10分已知函数f (x )=x +m x ,且f (1)=3.(1)求m ;(2)判断函数f (x )的奇偶性.解析:(1)∵f (1)=3,即1+m =3,∴m =2.4分(2)由(1)知,f (x )=x +2x,其定义域是{x |x ≠0},关于原点对称,7分 又f (-x )=-x +2-x =-⎝ ⎛⎭⎪⎫x +2x =-f (x ),所以此函数是奇函数.10分 18.杭州高一检测,12分已知集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.解析:(1)∵A ∩B ={x |3≤x <6},∴∁R (A ∩B )={x |x <3或x ≥6},∵∁R B ={x |x ≤2或x ≥9},∴(∁R B )∪A ={x |x ≤2或3≤x <6或x ≥9}.6分(2)∵C ⊆B ,∴⎩⎪⎨⎪⎧ a ≥2,a +1≤9,∴2≤a ≤8.∴实数a 的取值范围为:2≤a ≤8.12分 19.郑州高一检测,12分已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.解析:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1.∵x ∈[-5,5],故当x =1时,f (x )的最小值为1,当x =-5时,f (x )的最大值为37.6分(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为x =-a .∵f (x )在[-5,5]上是单调的,∴-a ≤-5或-a ≥5.即实数a 的取值范围是a ≤-5或a ≥5.12分 20.德州高一检测,12分设函数f (x )=x 2-2|x |-1(-3≤x ≤3), (1)证明:f (x )是偶函数;(2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数;(4)求函数的值域.解析:(1)∵f (-x )=(-x )2-2|-x |-1=x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数.3分(2)当x ≥0时,f (x )=x 2-2x -1=(x -1)2-2,当x <0时,f (x )=x 2+2x -1=(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧x -2-2,0≤x ≤3,x +2-2,-3≤x <0. 根据二次函数的作图方法,可得函数图象如图.6分(3)函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1),[0,1)上为减函数,在区间[-1,0),[1,3]上为增函数.9分(4)当x ≥0时,函数f (x )=(x -1)2-2的最小值为-2,最大值f (3)=2;当x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值f (-3)=2.故函数f (x )的值域为[-2,2].12分 21.临沂高一检测,12分已知函数f (x )=mx 2+23x +n 是奇函数,且f (2)=53. (1)求实数m 和n 的值;(2)判断函数f (x )在(-∞,-1]上的单调性,并加以证明.解析:(1)∵f (x )是奇函数,∴f (-x )=-f (x ).即mx 2+2-3x +n =-mx 2+23x +n =mx 2+2-3x -n, 比较得n =-n ,n =0,又f (2)=53,∴4m +26=53,m =2, 即实数m 和n 的值分别是2和0.6分(2)函数f (x )在(-∞,-1]上为增函数.证明如下:由(1)知f (x )=2x 2+23x =2x 3+23x, 设x 1<x 2≤-1,则f (x 1)-f (x 2)=23(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2 =23(x 1-x 2)·x 1x 2-1x 1x 2, 23(x 1-x 2)<0,x 1x 2>0,x 1x 2-1>0, ∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2),即函数f (x )在(-∞,-1]上为增函数.12分 22.济宁高一检测,12分函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)用定义证明:f (x )在(-1,1)上是增函数;(3)解不等式f (t -1)+f (t )<0.解析:(1)∵f (x )是定义在(-1,1)上的奇函数,∴f (-x )=-f (x ),即-ax +b 1+x 2=-ax -b 1+x 2. ∴b =-b ,b =0.∵f ⎝ ⎛⎭⎪⎫12=25,∴12a 1+14=25, ∴a =1.3分∴函数解析式为f (x )=x1+x 2(-1<x <1). (2)证明:任取x 1,x 2∈(-1,1),且x 1<x 2, f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1-x 2-x 1x 2+x 21+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,(1+x 21)(1+x 22)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在(-1,1)上为增函数.6分(3)∵f (t -1)+f (t )<0,∴f (t -1)<-f (t ).∵f (-t )=-f (t ),∴f (t -1)<f (-t ).∴f (x )为(-1,1)上的增函数. ∴⎩⎪⎨⎪⎧ -1<t -1<1,-1<-t <1,t -1<-t .解得0<t <12.∴不等式的解集为{t |0<t <12}.12分。
第2课时集合的表示一、A组1.已知集合A={x|x(x+4)=0},则下列结论正确的是()A.0∈AB.-4∉AC.4∈AD.0∉A解析:∵A={x|x(x+4)=0}={0,-4},∴0∈A.答案:A2.(2016·某某某某高一期中)设集合M={a2-a,0}.若a∈M,则实数a的值为()A.0B.2C.2或0D.2或-2解析:因为集合M={a2-a,0},a∈M,所以a=a2-a或a=0(舍去),所以a=2.故选B.答案:B3.(2016·某某双鸭山高一月考)已知集合A={-2,2},B={m|m=x+y,x∈A,y∈A},则集合B等于()A.{-4,4}B.{-4,0,4}C.{-4,0}D.{0}解析:∵集合A={-2,2},B={m|m=x+y,x∈A,y∈A},∴集合B={-4,0,4},故选B.答案:B4.已知集合M={y|y=x2},用自然语言描述M应为()A.满足y=x2的所有函数值y组成的集合B.满足y=x2的所有自变量x的取值组成的集合C.函数y=x2图象上的所有点组成的集合D.满足y=x的所有函数值y组成的集合解析:由于集合M={y|y=x2}的代表元素是y,而y为函数y=x2的函数值,故选A.答案:A5.(2016·某某文登高一月考)已知集合M=错误!未找到引用源。
,则M等于()A.{2,3}B.{1,2,3,4}C.{1,2,3,6}D.{-1,2,3,4}解析:因为集合M=错误!未找到引用源。
,所以5-a可能为1,2,3,6,即a可能为4,3,2,-1.所以M={-1,2,3,4},故选D.答案:D6.若集合A={1,2,3,4},集合B={y|y=x-1,x∈A},将集合B用列举法表示为.解析:当x=1时,y=0;当x=2时,y=1;当x=3时,y=2;当x=4时,y=3.故B={0,1,2,3}.答案:{0,1,2,3}7.设集合A={x|x2-3x+a=0},若4∈A,则集合A用列举法表示为.解析:∵4∈A,∴16-12+a=0,∴a=-4,∴A={x|x2-3x-4=0}={-1,4}.答案:{-1,4}8.一次函数y=2x与y=3x-2的图象的交点组成的集合用列举法表示为.解析:={(2,4)}.答案:{(2,4)}9.选择适当的方法表示下列集合:(1)被5除余1的正整数组成的集合;(2)24的所有正因数组成的集合;(3)在平面直角坐标系中,两坐标轴上的点组成的集合;(4)三角形的全体组成的集合.解:(1){x|x=5k+1,k∈N};(2{1,2,3,4,6,8,12,24};(3){(x,y)|xy=0};(4){x|x是三角形}或{三角形}.10.导学号29900007用描述法表示如图所示的阴影(含边界)中的点组成的集合.解:题图阴影中的点P(x,y)的横坐标x的取值X围为-1≤x≤3,纵坐标y的取值X围为0≤y≤3.故阴影(含边界)中的点组成的集合为{(x,y)|-1≤x≤3,0≤y≤3}.二、B组1.集合A={(x,y)|x+y≤1,x∈N,y∈N}中元素的个数是()A.1B.2C.3D.4解析:∵x∈N,y∈N,且x+y≤1,∴当x=0时,y=0或y=1;当x=1时,y=0.故A={(0,0),(0,1),(1,0)}.答案:C2.已知集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P,Q,R中的任意一个解析:设a=2m(m∈Z),b=2n+1(n∈Z),所以a+b=2m+2n+1=2(m+n)+1.又m+n∈Z,与集合Q中的元素特征x=2k+1(k∈Z)相符合,所以a+b∈Q,故选B.答案:B3.设a,b都是非零实数,则y=错误!未找到引用源。
1:集合的概念与集合的表示 集合 概 念 把研究对象的总体称为集合,把研究对象统称为元素。
元素的性质(1)确定性;(2)互异性;(3)无序性表 示 方 法 列 举 法 ①元素不重复 ②元素无顺序 ③元素间用“,”隔开 描 述 法 ①写清楚集合中元素的代号,如{x ∈R|x>0},不能写成{x>2}; ②说明该集合中元素的性质; ③所有描述的内容都写在大括号内。
元素与集合的关系 一般地,用大写拉丁字母如A 、B 、C 表示集合,用小写拉丁字母a 、b 、c 表示集合中的元素,如果a 是集合A 中的元素就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A 。
常用数集及其记法 N 为零和正整数组成的集合,即自然数集,N *或N +为正整数组成的集合;Z 为整数组成的集合;Q 为有理数组成的集合,R 为实数组成的集合。
【典例精析】例题1 判断下列命题是否正确,并说明理由。
(1){R}=R ;(2)方程组⎩⎨⎧+==12x y x y 的解集为{x=1,y=2}; (3){x|y=x 2-1}={y|y=x 2-1}={(x ,y )|y=x 2-1};(4)平面内线段MN 的垂直平分线可表示为{P|PM=PN}。
思路导航:以上几种命题都是同学们在初学过程中极易出错的几种典型类型。
处理此类问题的关键在于要正确而深刻地理解集合的表示方法。
答案:(1){R}=R 是不正确的,R 通常为R={x|x 为实数},即R 本身可表示为全体实数的集合,而{R}则表示含有一个字母R 的集合,它不能为实数的集合。
(2)方程组⎩⎨⎧+==12x y x y 的解集为{x=1,y=2}是不对的,因为解集的元素是有序实数对(x ,y ),正确答案应为{(x ,y )|⎩⎨⎧==21y x }={(1,2)}。
(3){x|y=x 2-1}={y|y=x 2-1}={(x ,y )|y=x 2-1}是不正确的。
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知全集U=Z,集合A={−1,2,3},B={3,4},则(∁U A)∩B=( )A. {4}B. {3}C. {1,2}D. ⌀2. 已知a,b,c,d∈R,则下列不等式中恒成立的是( )A. 若a>b,c>d,则ac>bdB. 若a>b,则ac2>bc2C. 若a>b>0,则(a−b)c>0D. 若a>b,则a−c>b−c3. 已知集合A={x|(x−2)(x+1)≤0},B={−2,0,1},则A∩B中元素的个数为( )A. 0B. 1C. 2D. 34. 已知p:0<x<2,q:−1<x<3,则p是q的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题正确的是( )A. 若数列{a n}、{b n}的极限都存在,且c n=a n bn (b n≠0),则数列{cn}的极限存在B. 若数列{a n}、{b n}的极限都不存在,则数列{a n+b n}的极限也不存在C. 若数列{a n+b n}、{a n−b n}的极限都存在,则数列{a n}、{b n}的极限也都存在D. 设S n=a1+a2+⋯+a n,若数列{a n}的极限存在,则数列{S n}的极限也存在6. 设全集U=R,集合A={x|x2−2x−3<0},B={x|x−2≥0},则图中阴影部分所表示的集合为( )A. {x|x≤−1或x≥3}B. {x|x<2或x≥3}C. {x|x≤2}D. {x|x≤−1}7. 设集合A={1,2,3,4},B={3,4,5},全集U=A∪B,则集合∁U(A∩B)的元素个数为( )A. 1个B. 2个C. 3个D. 4个8. 若集合A={−1,1},B={x|mx=2},且B⊆A,则实数m的值( )A. −2B. 2C. 2或−2D. 2或−2或09. 若P=√a+√a+7,Q=√a+3+√a+4(a≥0),则P,Q的大小关系是( )A. P>QB. P=QC. P<QD. 由a的取值确定10. 已知正实数a,b,满足a+2b=1,则1a +2b的最小值为( )A. 8B. 9C. 10D. 1111. 已知实数a,b,c,若a>b,则下列不等式成立的是( )A. 1a >1bB. a2>b2C. ac2+1>bc2+1D. a|c|>b|c|12. 若集合A={−1,1},B={x|x+m=0},且A∪B=A,则m的值为( )A. 1B. −1C. 1或−1D. 1或−1或0第II卷(非选择题)二、填空题(本大题共8小题,共32.0分)13. 已知集合A={x|0<x<4},集合B={x|x<a},若A⊆B,则实数a的取值范围是______.14. 已知x>1,函数y=x+4x−1的最小值为______.15. 已知集合A={−1,2,4},B={0,2,6},则A∩B=______ .16. 已知集合A={m+2,2m2+m},若3∈A,则m的值为______.17. 若集合{a,ba,1}={a2,a+b,0},则a2021+b2021=______.18. 不等式的解集为。
高一上学期第一次月考数学试卷(时间:120分钟 总分:150分)一.选择题:(本大题共10小题;每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.集合{1,2,3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个 2.图中的阴影表示的集合中是( )A .BC A u ⋂ B .A C B u ⋂ C .)(B A C u ⋂D .)(B A C u ⋃ 3. 以下五个写法中:①{0}∈{0,1,2};②⊆∅{1,2};③{0,1,2}={2,0,1};④∅∈0;⑤A A =∅⋂,正确的个数有( )A .1个B .2个C .3个D .4个 4.下列从集合A 到集合B 的对应f 是映射的是( )AA B C D 5.函数5||4--=x x y 的定义域为( )A .}5|{±≠x xB .}4|{≥x xC .}54|{<<x xD .}554|{><≤x x x 或6.若函数()1,(0)()(2),0x x f x f x x +≥⎧=⎨+<⎩,则)3(-f 的值为( )A .5B .-1C .-7D .27.已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数为………………………………………………………( ) A . 1 B .0 C .1或0 D . 1或2 8.给出函数)(),(x g x f 如下表,则f 〔g (x )〕的值域为( )A.{4,2}B.{1,3}C. {1,2,3,4}D. 以上情况都有可能9.设集合}|{,}21|{a x x B x x A <=<≤-=,若A ∩B ≠∅,则a 的取值范围是( )A .1-≥aB .2>aC .1->aD .21≤<-a10.设}4,3,2,1{=I , A 与B 是I 的子集, 若A ∩B =}3,1{,则称(A ,B )为一个“理想配集”.那么符合此条件的“理想配集”的个数是 (规定(A ,B )与(B ,A )是两个不同的“理想配集”) A. 4 B. 8 C. 9 D. 16 二.填空题(本大题共5个小题,每小题4分,共20分)11.已知集合{}12|),(-==x y y x A ,}3|),{(+==x y y x B 则A B =12.若函数1)1(2-=+x x f ,则)2(f =_____ __ _____13.若函数)(x f 的定义域为[-1,2],则函数)23(x f -的定义域是 14.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数a 的取值范围是____ __15.对于函数()y f x =,定义域为]2,2[-=D ,以下命题正确的是(只要求写出命题的序号) ①若(1)(1),(2)(2)f f f f -=-=,则()y f x =是D 上的偶函数;②若对于]2,2[-∈x ,都有0)()(=+-x f x f ,则()y f x =是D 上的奇函数; ③若函数)(x f y =在D 上具有单调性且)1()0(f f >则()y f x =是D 上的递减函数; ④若(1)(0)(1)(2)f f f f -<<<,则()y f x =是D 上的递增函数。
用心 爱心 专心 - 1 - 数学必修一第一章检测试题(含答案) (集合与函数概念) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合}8,5,2{M,}10,9,8,5{N,则NM(A)
A.}10,9,8,5,2{ B.}8,5{ C.}10,9{ D.}2{ 2.B 3.集合{1,2,3}的真子集共有(C) A.5个 B.6个 C.7个 D.8个 4.答案:A,奇函数关于原点对称,左右两边有相同的单调性
5.已知}19,2,1{2aA,B={1,3},AB}3,1{,则a(C) A.32 B.23 C.32 D.23 6.函数xxxy的图象是(D)
7.如果集合A={x|ax2+2x+1=0}中只有一个元素,那么a的值是(B) A.0 B.0 或1 C.1 D.不能确定
8.已知22(1)()(12)2(2)xxfxxxxx,若()3fx,则x的值是(D)
A.1 B.1或32 C.1,32或3 D.3 9.若2)2()1()(22aaxaxaxf是偶函数,则a(B) A.1 B.2 C.3 D.4 10.若)(xf是R上的奇函数,且当),0[x时,)1()(xxxf,则当)0,(x时,
)(xf(D)
A.)1(xx B.)1(xx C.)1(xx D.)1(xx 用心 爱心 专心 - 2 -
11.给定集合AB、,定义 {|,,}ABxxmnmAnB※.若 {4,5,6},{1,2,3}AB, 则集合 AB※ 中的所有元素之和为 (A) A.15 B.14 C.27 D.-14
12.若f(x)=-x2+2ax与1)(xaxg在区间[1,2]上都是减函数,则a的值范围是 (D)
A.)1,0()0,1( B.]1,0()0,1( C.(0,1) D.]1,0( 二、填空题:本题共4小题,每小题4分,共16分.把答案填在题中的横线上. 13.函数bxay)1(在R上是减函数,则a的取值范围是1a; 14.(2,0)2,5 奇函数关于原点对称,补足左边的图象 15. 已知集合}41|{xxA,}|{axxB, 若AB,则实数a的取值范围为
4a 16. 给出下列四个命题: ①函数是定义域到值域的映射; ②xxxf12)(是函数; ③函数)(3Nxxy的图像是一条直线;
④已知函数)(xf的定义域为R,对任意实数1x,2x,且1x2x,都有0)()(2121xfxfxx,则)(xf在R上是减函数. 其中正确命题的序号是①④.(写出你认为正确的所有命题序号) 三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明、证明过程及演算步骤. 17.(本题满分12分)已知全集UR,集合{|14}Axx,{|315}Bxxx, 求:(Ⅰ)AB; (Ⅱ)()UCAB; 解:(Ⅰ)由已知得: )3,1[)4,1[)3,(BAAB (Ⅱ)由已知得: ),4[)1,(ACU
),4[)3,()(BACU
18.(本题满分12分)求下列函数的定义域: (Ⅰ)2134yxx; (Ⅱ)121yx. 用心 爱心 专心 - 3 -
解:(Ⅰ)由已知得4304321012xxxx 函数的定义域为]43,21[
(Ⅱ)由已知得: 12012xx
函数的定义域
),1()1,3()3,(
1 4)12(-01)1(2x4-04}.-{0BBA(1).AB4}-{0A222aaaaa解得由韦达定理得的两根,是方程,由此知:,时,当,于是可分类讨论,,解:
.1,1(2)(1)1,0)1(4)14((b)B {0}B1,0)1(41)4({-4}B{0}BB (a) AB)2(2222aaaaaaaaa或的值知,所求实数、综合解得时,满足条件;解得,,或时,即时,又可分为:当 19.(本题满分12分)(Ⅰ)集合}019|{22aaxxxA,}065|{2xxxB.若BABA,求a的值.
(Ⅱ)若集合5|{xxM或}7x,}121|{mxmxN,且RNM,求实数m的取值范围. 解:(Ⅰ)BABA BA 61952aa 5a (Ⅱ)5|{xxM或}7x, }121|{mxmxN,且RNM
4712451mmmm
4m 20.(本题满分12分)已知函数)(xfy是二次函数,且8)0(f,12)()1(xxfxf.
(Ⅰ)求)(xf的解析式; (Ⅱ)求证)(xf在区间 ),1[上是减函数. 用心 爱心 专心 - 4 -
解:(Ⅰ)设cbxaxxf2)( 8)0(,)0(fcf又 8c 又cxbxaxf)1()1()1(2
)(2)(])1()1([)()1(22baaxcbxaxcxbxaxfxf
结合已知得12)(2xbaax 122baa
2,1ba 82)(2xxxf
(Ⅱ)证明:设任意的),1[,21xx且21xx 则
)2)(()(2)()82()82()()(121221212222212121xxxxxxxxxxxxxfxf
又由假设知012xx 而112xx 0212xx 0)2)((1212xxxx 0)()(21xfxf )()(21xfxf )(xf在区间),1[
上是减函数.
21.(本题满分12分)已知函数)()1(1)1()(2Raxaxaxaxf. (Ⅰ)讨论)(xf的奇偶性; (Ⅱ)当)(xf为奇函数时,判断)(xf在区间),0(上的单调性,并用单调性的定义证明你的结论. 解:(Ⅰ)①当1a时, xxxf22)(,其定义域为),0()0,( 关于原点对称。 又)()22()(22)(xfxxxxxf )(xf为奇函数 ②当1a时, 22)(xxf,其定义域为),0()0,( 关于原点对称。 又)(2)(2)(22xfxxxf )(xf为偶函数 ③当1a时 21125)2(af 25211)2(af 又1a )2()2(ff )(xf既不是奇函数也不是偶函数 Ⅱ)证明:由(Ⅰ)知)(xf为奇函数时,1a
xxxf22)(在区间),0(上是减
函数 设任意的),0(,21xx且21xx,则
)]1)([(2)]()[(2)]1()1[(2)()(212112122112221121xxxxxxxxxxxxxxxxxfxf
又),0(,21xx且21xx 012xx
,012121xxxx
0)()(21xfxf
)()(21xfxf )(xf在区间),0(
上是减函数. 用心 爱心 专心 - 5 -
.解:(1)依题意得(0)012()25ffì=ïïïíï=ïïî 即2010221514babìïï=ïï+ïïïí+ïï=ïïï+ïïïî 得10abì=ïïíï=ïî ∴2()1xfxx\=+ 4分 (2)证明:任取1211xx-<<<,则12122212()()11xxfxfxxx-=-++12122212()(1)(1)(1)xxxxxx--=++ 121211,0xxxx-<<<\-<,221210,10xx+>+>
又121211,10xxxx-<<\->12()()0fxfx\-< ∴ ()fx在(1,1)-上是增函数。 9分 (3)(1)()()ftftft-<-=- ()fx在(1,1)-上是增函数,∴111tt-<-<-<,解得102t<<。 14分
22.(本题满分14分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足ttg280)((件),价格近
似满足于)2010(2125)100(2115)(tt tt tf(元). (Ⅰ)试写出该种商品的日销售量y与时间)200(tt的函数表达式; (Ⅱ)求该种商品的日销售额y的最大值与最小值.