勾股定理练习题(含答案)
- 格式:doc
- 大小:467.50 KB
- 文档页数:5
勾股定理经典例题(含参考答案)勾股定理经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=(2)在△ABC中,∠C=90°,a=40,b=9,c=(3)在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13,CD=12∴AC2=AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB=4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,.求BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,如有侵权,请联系网站删除,仅供学习与交流【精品文档】第 3 页.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P.求证:.解析:连结BM ,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC 交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
勾股定理课时练(1)1.在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2BC 2AC 2的值是()A.2B.4C.6D.82.如图 18-2- 4 所示 ,有一个形状为直角梯形的零件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该零件另一腰 AB 的长是 ______ cm(结果不取近似值) .3.直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.4.一根旗杆于离地面12 m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂之前高多少m ?5. 如图,如下图,今年的冰雪灾害中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米 .3m“路”4m第5题图第2题图6. 飞机在空中水平飞行, 某一时刻刚好飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离这个男孩头顶 5000 米, 求飞机每小时飞行多少千米 ?7.如图所示,无盖玻璃容器,高 18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度 .8.一个零件的形状如图所示,已知AC=3cm, AB=4cm,BD=12cm。
求 CD的长 .9.如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋B 第的西7 8km题图北 7km处,第 8题图. 他要完成这件事情所走的最短路程是多少?他想把他的马牵到小河边去饮水,然后回家11 如图,某会展中心在会展期间准备将高5m, 长 13m,宽2m 的楼道上铺地毯 , 已知地毯平方米 18 元,请你帮助计算一下,铺完这个楼第9题图道至少需要多少元钱 ?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻13m5m 找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为 15 千米.早晨 8:00甲先出发,他以 6 千米 / 时的第 11题速度向东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北行进,上午10:00,甲、乙二人相距多远?还第一课时答案:1.A ,提示:根据勾股定理得BC2AC21,所以 AB2BC 2AC 2=1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m ,而 3+4-5=2 m ,所以他们少走了4 步.3.60 ,提示:设斜边的高为 x ,根据勾股定理求斜边为12252169 13 ,再利13用面积法得,15 12 1 13 x, x60 ; 2 2134. 解:依题意, AB=16 m , AC=12 m ,在直角三角形 ABC 中 ,由勾股定理 ,BC 2 AB 2AC 2162 122202,所以 BC=20 m ,20+12=32( m ), 故旗杆在断裂之前有 32 m 高.5.86. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002 400023000 ( 米 ),3所以飞机飞行的速度为540( 千米 / 小时 )2036007. 解:将曲线沿 AB 展开,如图所示,过点 C 作 CE ⊥ AB 于 E.在Rt CEF , CEF 90 , EF=18-1-1=16 ( cm ),1CE= 30(cm) ,2. 60CE2EF230 2 16 234( )由勾股定理,得 CF=8. 解:在直角三角形 ABC 中,根据勾股定理,得22222在直角三角形 CBD 中,根据勾股定理,得 2222CD=BC+BD=25+12 =169,所以 CD=13.9. 解:延长 BC 、AD 交于点 E. (如图所示)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8, 设 AB=x ,则 AE=2x ,由勾股定理。
勾股定理练习题(答案)勾股定理练题1.基础达标:下列说法正确的是:A。
若a、b、c是△ABC的三边,则a²+b²=c²;B。
若a、b、c是Rt△ABC的三边,则a²+b²=c²;C。
若a、b、c是Rt△ABC的三边,∠A=90°,则a²+b²=c²;D。
若a、b、c是Rt△ABC的三边,∠C=90°,则a²+b²=c².2.Rt△ABC的三条边长分别是a、b、c,则下列各式成立的是:A。
a+b=cB。
a+b>cC。
a+b<cD。
a²+b²=c²3.如果Rt△的两直角边长分别为k²-1,2k(k>1),那么它的斜边长是:A。
2kB。
k+1C。
k²-1D。
k²+14.已知a,b,c为△ABC三边,且满足(a²-b²)(a²+b²-c²)=0,则它的形状为:A。
直角三角形B。
等腰三角形C。
等腰直角三角形D。
等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为:A。
121B。
120C。
90D。
不能确定6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为:A。
42B。
32C。
42或32D。
37或337.※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为:A。
d²+S+2dB。
d²-S-dC。
2d²+S+2dD。
2d²+S+d8.在平面直角坐标系中,已知点P的坐标是(3,4),则OP 的长为:A。
3B。
4C。
5D。
79.若△ABC中,AB=25cm,AC=26cm,高AD=24,则BC的长为:A。
17B。
3C。
17或3D。
以上都不对10.已知a、b、c是三角形的三边长,如果满足(a-6)²+b-8+c-10=0,则三角形的形状是:A。
勾股定理测试题及答案一、选择题1. 勾股定理适用于()A. 任意三角形B. 直角三角形C. 钝角三角形D. 锐角三角形答案:B2. 在直角三角形中,如果两直角边的长度分别为3和4,那么斜边的长度是()A. 5B. 6C. 7D. 8答案:A3. 如果一个三角形的三边长分别为a、b、c,且a²+b²=c²,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B二、填空题4. 在直角三角形中,如果一个锐角为30°,那么另一个锐角为______。
答案:60°5. 如果一个直角三角形的斜边长为10,一条直角边长为6,那么另一条直角边长为______。
答案:8三、计算题6. 已知直角三角形的两直角边长分别为5和12,求斜边的长度。
答案:斜边长度为13,因为5² + 12² = 25 + 144 = 169,所以斜边长度为√169 = 13。
7. 一个直角三角形的斜边长为17,一条直角边长为8,求另一条直角边的长度。
答案:另一条直角边的长度为15,因为17² - 8² = 289 - 64 = 225,所以另一条直角边的长度为√225 = 15。
四、应用题8. 一个梯子的顶端靠在垂直的墙上,梯子的底部距离墙3米。
如果梯子与地面和墙形成一个直角三角形,且梯子的长度为5米,那么梯子的顶端距离地面的高度是多少?答案:梯子顶端距离地面的高度为4米。
根据勾股定理,3² +高度² = 5²,即9 + 高度² = 25,所以高度² = 16,高度= √16 = 4米。
9. 一个长方形的长和宽分别为6米和4米,求这个长方形的对角线长度。
答案:对角线长度为√(6² + 4²) = √(36 + 16) = √52 ≈ 7.21米。
五、证明题10. 证明:在一个直角三角形中,直角边的平方和等于斜边的平方。
勾股定理试题及答案一、选择题1. 在直角三角形中,如果两直角边长分别为3和4,则斜边长为()。
A. 5B. 6C. 7D. 8答案:A2. 已知直角三角形的斜边长为5,一条直角边长为3,则另一条直角边长为()。
A. 4B. 2C. 1D. 63. 如果直角三角形的两条直角边长分别为a和b,斜边长为c,则下列等式中正确的是()。
A. a² + b² = c²B. a² - b² = c²C. a² + b² = 2c²D. a² - b² = 2c²答案:A二、填空题4. 直角三角形的两条直角边长分别为6和8,斜边长为______。
答案:105. 已知直角三角形的斜边长为13,一条直角边长为5,则另一条直角边长为______。
6. 勾股定理的公式为:直角三角形的两条直角边的平方和等于______。
答案:斜边的平方三、解答题7. 一个直角三角形的斜边长为17,其中一条直角边长为8,求另一条直角边长。
解:设另一条直角边长为x,则根据勾股定理,有:8² + x² = 17²64 + x² = 289x² = 225x = 15答:另一条直角边长为15。
8. 已知直角三角形的两条直角边长分别为9和12,求斜边长。
解:设斜边长为c,则根据勾股定理,有:9² + 12² = c²81 + 144 = c²225 = c²c = 15答:斜边长为15。
9. 一个直角三角形的斜边长为25,其中一条直角边长为15,求另一条直角边长。
解:设另一条直角边长为x,则根据勾股定理,有:15² + x² = 25²225 + x² = 625x² = 400x = 20答:另一条直角边长为20。
勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。
求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。
勾股定理测试题及答案一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形答案:B2. 如果直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个直角三角形的斜边长度为13,一条直角边为5,另一条直角边的长度是多少?A. 12B. 10C. 8D. 6答案:A4. 勾股定理的公式是什么?A. a + b = cB. a * b = cC. a^2 + b^2 = c^2D. a^2 - b^2 = c^2答案:C5. 如果一个三角形的三边长分别为7、24和25,那么这个三角形是直角三角形吗?A. 是B. 不是答案:A二、填空题(每题2分,共10分)6. 直角三角形中,如果一条直角边长为x,另一条直角边长为y,斜边长为z,根据勾股定理,我们有________。
答案:x^2 + y^2 = z^27. 如果一个直角三角形的两条直角边长分别为6和8,那么斜边的长度是________。
答案:108. 在一个直角三角形中,如果斜边的长度是20,一条直角边长为15,另一条直角边的长度是________。
答案:5√3 或25√3/39. 勾股定理的发现归功于古希腊数学家________。
答案:毕达哥拉斯10. 勾股定理在数学中也被称为________定理。
答案:毕达哥拉斯定理三、解答题(每题5分,共20分)11. 一个直角三角形的斜边长度为17,一条直角边长为8,求另一条直角边的长度。
答案:根据勾股定理,另一条直角边的长度为√(17^2 - 8^2) =√(289 - 64) = √225 = 15。
12. 如果一个直角三角形的两条直角边长分别为9和12,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(9^2 + 12^2) = √(81 + 144) = √225 = 15。
13. 一个直角三角形的斜边长度为25,一条直角边长为15,求另一条直角边的长度。
C DAB CFDE1、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
2、如图,公路上A,B两点相距25km,C,D为两村庄, DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系3、如图,△ABC中,D是AB的中点,AC=12,BC=5,CD=132。
求证:△ABC为直角三角形4、如图,直角三角形三条边的比是3:4:5.求这个三角形三条边上的高的比.5、如图,P是等边△ABC内一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.(2)若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状,并说明理由.6、已知,△ABC中,AB中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明:△ABC是等腰三角形。
7、已知:如图正方形ABCD中,E是AD的中点,点F在DC上且DF=14DC,判断BE和EF的位置关系?并说明你的理由。
4cm5cm1、已知一个Rt △的两边长分别为3和4,则第三边长是 ;2、左边是一个正方形,则此正方形的面积是 ( )A. 1cm 2B. 3cm 2C. 6cm 2D. 9cm 23、一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程( 取3)是 . 4、在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,∠C=90°, 且c 2=2b 2,则这个三角形有一个锐角为 ;5、如图,已知AB⊥CD,△ABD,△BCE 都是等腰三角形,CD=8,BE=3,则AC 的长等于 ;6、直角三角形两直角边长为6cm 和8cm,7、旗杆顶端的绳子垂到地面还多1米,把绳子的下端拉开绳子下端刚好接触地面,旗杆的高度为 。
勾股定理练习题及答案一、选择题1、直角三角形的两直角边分别为 5 厘米、12 厘米,则斜边长是()A 13 厘米B 14 厘米C 15 厘米D 16 厘米答案:A解析:根据勾股定理,直角三角形的两直角边的平方和等于斜边的平方。
所以斜边的平方= 5²+ 12²= 25 + 144 = 169,斜边长为 13 厘米。
2、以下列各组数为边长,能组成直角三角形的是()A 3,4,6B 5,12,13C 5,11,12D 2,3,4答案:B解析:对于选项 A,3²+ 4²= 9 + 16 = 25,6²= 36,因为25 ≠ 36,所以不能组成直角三角形;对于选项 B,5²+ 12²= 25 + 144 =169,13²= 169,因为 169 = 169,所以能组成直角三角形;对于选项C,5²+ 11²= 25 + 121 = 146,12²= 144,因为146 ≠ 144,所以不能组成直角三角形;对于选项 D,2²+ 3²= 4 + 9 = 13,4²= 16,因为13 ≠ 16,所以不能组成直角三角形。
3、一个直角三角形的三边长分别为 2,3,x,则 x 的值为()A √13B √5C √13 或√5D 无法确定答案:C解析:当 x 为斜边时,x =√(2²+ 3²) =√13;当 3 为斜边时,x =√(3² 2²) =√5。
所以 x 的值为√13 或√5 。
4、已知直角三角形的两条边长分别是 5 和 12,则第三边的长为()A 13B √119C 13 或√119D 不能确定答案:C解析:当 12 为斜边时,第三边的长为√(12² 5²) =√119;当 5 和12 为直角边时,第三边的长为√(5²+ 12²) = 13。
勾股定理练习题
姓名
一、基础达标:
1. 下列说法正确的是( )
A.若 a、b、c是△ABC的三边,则a2+b2=c2;
B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;
C.若 a、b、c是Rt△ABC的三边,90A,则a2+b2=c2;
D.若 a、b、c是Rt△ABC的三边,90C,则a2+b2=c2.
2. Rt△ABC的三条边长分别是a、b、c,则下列各式成立的是( )
A.cba B. cba C. cba D. 222cba
3. 如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜
边长是( )
A、2k B、k+1 C、k2-1 D、k2+1
4. 已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则
它的形状为( )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等腰三角形或直角三角形
5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角
三角形的周长为( )
A.121 B.120 C.90 D.不能确定
6. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )
A.42 B.32 C.42 或 32 D.37 或 33
7.※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周
长为( )
(A)22dSd (B)2dSd
(C)222dSd (D)22dSd
8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( )
A:3 B:4 C:5 D:7
9.若△ABC中,AB=25cm,AC=26cm高AD=24,则BC的长为( )
A.17 B.3 C.17或3 D.以上都不对
10.已知a、b、c是三角形的三边长,如果满足
2
(6)8100abc
则三角形的形状是( )
A:底与边不相等的等腰三角形 B:等边三角形
C:钝角三角形 D:直角三角形
11.斜边的边长为cm17,一条直角边长为cm8的直角三角形的面积
是 .
12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.
13. 一个直角三角形的三边长的平方和为200,则斜边长为
14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.
15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面
积是___.
16. 在Rt△ABC中,斜边AB=4,则AB2+BC2+AC2=_____.
17.若三角形的三个内角的比是3:2:1,最短边长为cm1,最长边长为
cm2
,则这个三角形三个角度数分别是 ,另外一边的平方
是 .
18.如图,已知ABC中,90C,15BA,
12AC,以直角边BC
为直径作半圆,则
这个半圆的面积是 .
19. 一长方形的一边长为cm3,面积为
2
12cm
,那么它的一条对角线长
是 .
二、综合发展:
1.如图,一个高4m、宽3m的大门,需要在对角线的顶点间加固一个
木条,求木条的长.
A
C
B
2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC
沿∠CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,
你能求出CD的长吗?
3.一个三角形三条边的长分别为cm15,cm20,cm25,这个三角形最
长边上的高是多少?
4.如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,
现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?
A
E
C
D
B
5.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴
在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻
以2m/s的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几
秒才可能到达小树和伙伴在一起?
6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行
驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道
行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了
2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了
吗?
A
小汽车
小汽车
B
C
观测点
一、基础达标
1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.
答案: D.
2. 解析:本题考察三角形的三边关系和勾股定理.
答案:B.
3. 解析:设另一条直角边为x,则斜边为(x+1)利用勾股定理可得方程,可以求出x.然
后再求它的周长.
答案:C.
4.解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角
形的外部,有两种情况,分别求解.
答案:C.
5. 解析: 勾股定理得到:22215817,另一条直角边是15,
所求直角三角形面积为21158602cm.答案: 260cm.
6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.
答案:222cba,c,直角,斜,直角.
7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.
8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:30、60、
90
,3.
9. 解析:由勾股定理知道:22222291215ACABBC,所以以直角边
9BC
为直径的半圆面积为10.125π.答案:10.125π.
10. 解析:长方形面积长×宽,即12长×3,长4,所以一条对角线长为5.
答案:cm5.
二、综合发展
11. 解析:木条长的平方=门高长的平方+门宽长的平方.
答案:5m.
12解析:因为222252015,所以这三角形是直角三角形,设最长边(斜边)上的高为
xcm
,由直角三角形面积关系,可得1115202522x,∴12x.答案:12cm
13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助
勾股定理求出.
答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,
所以矩形塑料薄膜的面积是:5×20=100(m2) .
14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树
梢之间的距离是13m,两再利用时间关系式求解.
答案:6.5s.
15.解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间后比较.BC=40
米,时间是2s,可得速度是20m/s=72km/h>70km/h.
答案:这辆小汽车超速了.