高中数学教学中解题技巧论文
- 格式:doc
- 大小:24.00 KB
- 文档页数:4
高中数学教学研究论文10篇第一篇:高中数学学生发散性思维培养一、高中数学教学中发散性思维的现状一直有人甚至不少老师也在说数学是一个很“死”的学科,学生将公式和定理死记硬背后,再机械地套到题目中,成了完成数学任务的模式。
遇到什么样的题型该套什么样的公式,已经牢牢地扎根在学生心中,至于为什么用这个公式,用其他的公式是否可以解出答案,学生根本不会去想,因为老师在教学中没有培养学生这方面的能力。
缺乏发散性思维表现之一:教师为节约课堂时间、提高讲题效率,多采用填鸭式、样板式教学:老师在黑板上一点一点板书习题的正确步骤,不希望学生有其他的想法,只要求他们按照老师应对高考多年所形成的套路来办,发散性思维几乎不会出现在数学教学的课堂上。
缺乏发散性思维认知之二:表现在教学过程中容易忽视一题多解和一题多问。
数学的逻辑性强,但是如果在逻辑性之上建立发散性思维将会对数学问题的研究产生极大地助力。
教师在教学中往往“就题论题”,忽视此问题可能存在的解法,忽视题干可能发散出的新问题,只是将题目简单一讲,忽视了将每一个要讲的题目进行价值最大化的利用。
这样的就题论题,使得教学课堂死板,教学进度拖沓,学生的积极性得不到提高,发散性思维也没有培养起来。
二、学生发散性思维的培养方法在培养发散性思维之前,我们先来了解一下什么是发散性思维。
发散思维,又称辐射思维、放射思维、扩散思维或求异思维,是指大脑在思维时呈现的一种扩散状态的思维模式,它表现为不依常规,寻找变异,思维视野广阔,思维呈现出多维发散状,也可以理解为一种沿着不同方向去选取信息重组的方法。
“一题多解”用来培养发散思维能力。
不少心理学家认为,发散思维是创造性思维的最主要的特点,是测定创造力的主要标志之一。
如果说逻辑性思维是学习数学应具备的能力,那么发散性思维就是在数学方面有所提高的必要条件。
它能提升学习数学的热情,提高效率,养成良好的学习能力。
因此,在数学教学中培养学生的发散性思维是必不可少的。
高中学生数学教学论文10篇第一篇:高中数学情境教学分析一、情境教学在高中数学教学中的应用1.设置问题情境提问是数学教学中必要的交流方式,也是教师了解学生掌握情况的必要手段。
因此,创造科学的设问情境,可以有效地激发学生的求知欲望,从而提高数学教学的质量。
由于数学本身具有较强的抽象性,因此,教师在设置问题情境的时候,要抓住重点,不要过于宽广,要源自生活,这样的设问情境能让学生较快理解,并且能抓住重点。
例如,教师在讲图形平移时,可以让学生做开窗的活动,然后设置问题情境,问学生刚才开窗时窗户的移动属于什么变化。
这样的问题可以提高学生的思考能力,会在潜意识里增强学生的求知欲,同时也可以增强学生的兴趣。
由此可见,设置问题情境对提高学生的积极性具有重要的意义,教师要不断联系生活实际,让学生不断体会到数学在生活中的应用,进而可以有效地提高学生学习数学的求知欲。
2.设置游戏情境游戏是学生都喜欢的活动,无疑能激发学生的兴趣,让学生积极主动参与进来,在高中数学教学中,教师可以适当地引进游戏来增强学生的兴趣,以便让他们主动投入到学习中来。
另外,安排课堂游戏还可以活跃课堂,让学生带着积极愉快的心情学习数学知识。
例如,教师在讲“数学概率问题”的时候,可以带一些形状相同、颜色不同的小球,让学生蒙住眼睛随机抓取,然后让学生分析抓球的概率。
通过数次的实验,可以加强学生的兴趣,提高学生的积极性,让学生在愉快的氛围中学习到有用的数学知识,并且愉快的氛围可以加深学生对知识的牢记程度,进而有效提升数学成绩。
因此,高中数学教师在进行数学教学时,要适当引进学生感兴趣的活动,以有效提升学生的兴趣,从而提高数学教学质量。
3.设置故事情境高中数学教学中,往往教师的教学形式单一,加上数学本身的枯燥,导致学生缺乏学习数学的兴趣,从而在课堂上很难集中注意力听教师讲课,这就难以提高学生的学习效率,因此,教师要从根本出发,设置能够吸引学生的讲课情境,才能有效提高学生学习数学的兴趣,才能从根本上解决学生注意力不集中的问题。
高中数学解题中数形结合思想的应用摘要:数形结合思想在高中数学中应用十分广泛,常见的比如在函数、集合、向量、不等式、立体几何、线性规划等问题中都有应用。
本文通过一些典型例题,列举了数形结合思想的应用方法,避免复杂的数学推理与计算,简化解题过程,加强学生的解题能力。
关键词:数学解题;数形结合;高中数学在高中教学中,数和形是两个最基本的概念,数形结合的思想不仅是高中数学解题中的一种重要思想,也是教学的重点。
在高中数学解题中使用数形结合的方法,研究数和形的对应关系,使抽象问题具体化,复杂问题简单化。
在教学中培养学生数形结合的思想,能够有效的提高学生的解题技巧,做到举一反三,加强学生的解题能力。
数和形是数学研究的两大基本对象,数形结合即是以形助教,以数解形,就是数和形之间的相互转化。
通过数和形的相互转化来解决数学问题,使抽象思维转换为形象思维,有助于理解数学问题的本质。
数形结合可以求解很多问题,在高中数学中主要表现在以下几个方面:(1)通常可以结合数轴和文氏图进行求解集合问题;(2)数形结合可以使用函数的图像性质求解函数问题,可以研究函数的奇偶性、周期性、增减性,以及求函数的定义域、最值和极值、值域等问题。
(3)数形结合可以联系向量的几何意义用于求解向量问题,运用点、线、曲线的性质用于解析几何问题。
(4)数形结合可以构造几何图形和函数特点求解不等式问题,从题目的条件和结论出发,分析几何意义,从图形上寻找解题的思路。
使用数形结合的思想求解问题的关键在于图形的构造,抓住一些重要的量,巧妙地运用式子规律、数学概念符号去思考其内在的关系。
思考途径可以用下图表示:数形结合的解题思路一、利用坐标法解决几何问题坐标法就是将几何问题坐标化。
在解决几何问题中运用坐标法的基本思路是,首先根据几何问题的特点建立合适的坐标系,其次将几何问题转变为代数问题,经过推理和计算,获得相关的代数结论。
最后考虑坐标系,将代数结论转化为几何结论,由此得到原几何问题的答案。
高中数学教学中问题解决教学法的应用探讨摘要:问题解决式教学方法的有效应用是一个全新的尝试,在今天的数学教学中发挥着巨大的作用,为培养具有独立思考、能够独立解决问题的新型高素质人才做出了巨大的贡献。
本文结合具体教学实例从“问题教学法的价值理念;问题教学法在高中数学中运用的分析”论述了问题解决教学法在高中数学教学中的应用关键词:高中数学问题教学法应用二十一世纪的今天,全球最重要的资源已经由能源、矿产转到了人才,伴随着科学技术的不断进步,教育水平的不断提高,预计到本世纪中叶中国将成为世界上最大的制造业中心,相信人才资源紧缺将成为一个不争的事实,因此培养人才将成为一个历史重任。
目前,我国社会处于转型的关键时期,社会对于人才的需求发生着转变,并在制造业为主的产业结构中,以数学教育为基础的创新型人才的培养是最为重要的。
一、问题教学法的价值理念伴随着时代的发展,素质教育不断得到了革新应用,要完成高中数学教育的目标,开发学生的数学思维能力和创新意识,问题解决式教学方法的有效应用就是一个全新的尝试,高中阶段的数学教育最重要的是培养学生的数学能力,它与探索能力,实践能力是相辅相成的。
问题教学法的基本价值理念是在师生共同完成问题的过程中,锻炼学生独立的发现问题,分析并解决问题的能力。
问题教学法在高中数学中的运用主要分为:从数学案例或者数学模型当中发现问题,提出问题,然后在教师的引导下进一步的分析数学模型和问题,再次,在进一步深入研究的基础上,师生共同探讨研究解决问题,最后,但也是最重要的一点就是在解决问题的基础之上,进行的归纳小结,以及结论的推广运用,做到“举一反三”的教学目的。
作为一种新的教育方法,问题解决法在高中数学教学中的应用的价值体现是巨大的,这就要求在数学教学中,我们教师能够做到引导学生发现问题,提出问题,辅助分析问题,锻炼解决问题的能力。
问题教学法的思想基础是学习的过程是一个师生互动,双向交流,相互反馈,共同进步的过程。
解题思想方法《中学生数理化》(高中版)/2004·12 在上述同学们提出的疑问中,分子C 818表示将18个人分成两组,其中一组8人,另一组10人,属于“分成甲、乙两组”的类型,具有指向性;而C 1020表示将20个人平均分成两组,不具有指向性.(责任编辑 朱 宁)隔板法在排列组合中的应用技巧■湖北 张红兵在排列组合中,对于将不可分辨的球装入到可以分辨的盒子中而求装入方法数的问题,常用隔板法.例1 求方程x +y +z =10的正整数解的个数.将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值(如下图).则隔法与解的个数之间建立了一一对立关系,故解的个数为C 29=36(个).实际运用隔板法解题时,在确定球数、如何插隔板等问题上形成了一些技巧.下面举例说明.技巧一:添加球数用隔板法.例2 求方程x +y +z =10的非负整数解的个数.注意到x 、y 、z 可以为零,故上题解法中的限定“每空至多插一块隔板”就不成立了,怎么办呢?只要添加三个球,给x 、y 、z 各一个球.这样原问题就转化为求x +y +z =13的正整数解的个数了,故解的个数为C 212=66(个).本例通过添加球数,将问题转化为如例1中的典型隔板法问题.技巧二:减少球数用隔板法.例3 将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数.解法1:先在编号1,2,3,4的四个盒子内分别放0,1,2,3个球,剩下14个球,有1种方法;再把剩下的球分成4组,每组至少1个,由例1知方法有C 313=286(种).解法2:第一步先在编号1,2,3,4的四个盒子内分别放1,2,3,4个球,剩下10个球,有1种方法;第二步把剩下的10个相同的球放入编号为1,2,3,4的盒子里,由例2知方法有C 313=286(种).31解题思想方法 《中学生数理化》(高中版)/2004·12两种解法均通过减少球数将问题转化为例1、例2中的典型问题.技巧三:先后插入用隔板法.例4 为宣传党的十六大会议精神,一文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种?记两个小品节目分别为A 、B.先排A 节目.根据A 节目前后的歌舞节目数目考虑方法数,相当于把4个球分成两堆,由例2知有C 15种方法.这一步完成后就有5个节目了.再考虑需加入的B 节目前后的节目数,同理知有C 16种方法.故由分步计数原理知,方法共有C 15·C 16=30(种). 对本题所需插入的两个隔板采取先后依次插入的方法,使问题得到巧妙解决.(责任编辑 朱 宁)文学艺术作品创作大奖赛征稿启事为繁荣文艺创作,培养新秀,贵州人民出版社《少年人生》杂志社在创刊15周年之际,特聘一批创作小记者,给予定点关注指导。
含有函数记号“()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u=- ∴2()2111u u f u u u-=+=-- ∴2()1x f x x -=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++- 又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
[例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则 22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
高中数学反思解题教学分析摘要:高中数学教学质量的提升离不开学生解题反思能力的培养。
笔者结合自身教育工作实践和丰富的教学经验阐述了数学反思解题教学的意义和内涵,然后着重探讨、分析了培养学生反思解题能力的主要方法和措施,希望能对广大数学教育工作者具有重要的参考价值和意义。
关键词:高中数学反思解题能力培养高中数学课程,与语文、政治、历史、艺术等人文性课程不一样,它是一门抽象性高、启蒙性强,同时又与现实连接极为密切的一门课程。
在教学过程中,教学质量的好坏、教学结果的优劣不仅与教师的教学水平和教学能力息息相关,更与学生自身的学习意识和自我反思能力密切相关。
但是,毋庸置疑的是,应试教育下的高中数学课程重视的是数量庞大的题海战术,教师和学生把数学成绩的提高放在大量的练习题和考试上,在这种不健康的学习环境中,学生解题之后的反思过程被阻断,反思能力被压制,学习负担和升学压力却是与日俱增。
高投入、低回报的题海战术和应试教育理念严重制约了数学教学质量和成果。
事实已经证明,题海战术不符合素质教育的理念要求,不利于学生综合能力的稳步提升,必须提高学生的解题反思能力,提高学生自己的数学学习意识。
重视教师的积极引导教师是课堂教学的指挥者、引导者,是教学过程的组织者和设计者,重视教师在学生反思解题能力培育过程中作用的发挥有着重要的作用和意义。
在传统教学理论和教学观念的束缚、制约下,很多学生反思能力和反思意识非常薄弱,甚至可以说是极度匮乏,在数学学习过程中,他们通常满足于最终答案的获得和考试分数的提高,而不会回过头来进行反思和自省。
因此,教师有责任和义务采取各种行之有效的方式引导学生自主进行解题反思,帮助学生养成反思的习惯和能力,提高学生的解题反思能力。
以身作则教师树立反思意识教师作为教学过程中的引导者,首先自身应该以身作则,树立反思和自省意识,在教学过程中将自身的反思意识传递到每个学生当中去,在潜移默化的教学环境中,循序渐进的影响学生的学习态度,让学生接受来自教师的积极影响和熏陶、感染,从而主动地养成反思、自省的习惯和能力。
高中数学解题策略分析摘要:高中学生在学习数学知识的过程中,最主要的就是能够掌握科学有效的解题策略,所以相关的数学老师应该尽可能培养学生掌握一定的解题策略。
与此同时,相关的教育部门对于立体几何的学习内容非常关注以及重视,所以立体几何的相关教育教学是高中数学的教学内容中的一个重点或者难点,并且立体几何也是高中考试的主要内容以及重点内容。
所以本文利用高中立体几何作为具体的例子进行说明。
关键词:高中数学立体几何解题策略1 我国的大部分高中学校在进行高中数学教学工作过程中,尤其是对于高中立体几何教学过程中,应该进行的解题策略教学的改变高中学生在学习数学知识以及数学原理的过程中,感觉最难的就是几何学,其中几何学本质上研究现实生活中存在的各种物体的形状、物体大小、相关的位置关系以及其他相关的问题的一门学科。
随着我国对于学生能力以及综合素质的要求越来越高,这就使得相关的教育部门的工作者需要对学生的学习重点进行调整或者改善,其中对于新课程的标准来说,对于学生的数学能力的要求,就是能够非常熟练的认识以及了解空间图形,数学老师在平时的教学工作能够在一定程度上培养或者提升学生的空间想象力,以及对相关理论的推理以及验证的综合能力,与此同时要求学生经过几何的学习能够利用相关的图形语言进行相应的沟通或者交流。
我国的经济以及科学技术在很大程度上有了发展和进步,这就使得我国的教育需要进行一定的更新或者改善,所以相关的教育部门或者工作人员需要将我国的应试性教育,更新为培养学生良好的综合素质为目标的素质性教育。
由于学生在以后的工作以及生活过程中,需要面对如此高的要求或者标准,这就使得相应的学校应该适当的改善学生的学习方法以及教学方法。
要想提升学生的这种能力或者素质,就需要学生在平时的学习过程中,学习正确的解题策略,只有这样才能够真正提升学生的能力以及素质。
本文的主要内容就是对高中数学的解题策略进行了相应的分析或者研究,其中主要是通过高中的立体几何作为具体的实际例子进行说明。
浅谈高中数学课堂教学的有效性的论文•相关推荐浅谈高中数学课堂教学的有效性的论文(精选7篇)在学习和工作中,大家总免不了要接触或使用论文吧,论文是对某些学术问题进行研究的手段。
你所见过的论文是什么样的呢?下面是小编帮大家整理的浅谈高中数学课堂教学的有效性的论文,仅供参考,欢迎大家阅读。
浅谈高中数学课堂教学的有效性的论文篇1摘要:寻求教学效率,提高教学质量是每个中学教师教学活动中的根本目标,有效教学是解决这一问题的重要途径,而让学生有兴趣是课堂有效性的前提,有收获是课堂有效性的体现。
关键词:有效性教学目标有效教学互动兴趣效率老师的抱怨:“这类问题明明已经讲过许多遍,还是很多人不懂,更谈不上运用。
略加条件改变,就束手无策,真让人难以理解。
”学生的抱怨:“老师讲的时候听得明白,上课也认真做了笔记,但到自己做题时还是不会正确分析,找不到突破口,该怎么办?”常规的课堂教学在目前的教学中存在严重的效率不高的问题。
因此对于在一线教学的我们来说,如何改变课堂教学激情不高、课堂教学气氛不浓的局面,是我们在平时的教学中应该思考并在实践的层面上必须解决的问题。
而首先要解决的是:向课堂教学要效益、要成效。
现代教学论认为,教学就是教师有效地组织学生学习的学习活动。
所谓“有效教学”是指在有限时间和空间内,采取恰当的教学方式,激发学生学习的积极性、主动性,让学生参与学习过程,获取较大容量的有效知识,同时,充分培养和锻炼学生的创新精神和实践能力,形成良好的情感、正确的态度和价值观,从而促进学生全面发展的教学。
因此,在教学活动中,教师必须关注课堂,采用各种方式和手段,用有限的时间、最小的精力投入,取得尽可能大的教学效果,努力构建有效的课堂教学。
本文结合自己的教学实践谈谈如何提高课堂教学的有效性。
一、确立有效的教学目标一堂课、一道题到底能教给学生一些什么东西,什么才是这堂课、这道题的真正重心所在。
比如在教学中,我们看到学生的运算能力很差,其原因就在于学生以前和平时的练习较少。
浅谈解析几何题的解题策略解析几何题是同学们最害怕的题型,不仅计算量大,而且有时不知从何算起,找不到问题的切入点。
在高考中这类题得分率较低。
作为教者,我们要在平时鼓励大家动笔,争取获得步骤分;引导学生进行总结,加快问题的切入,争取时间有目的地去计算。
在二轮复习中,我想这样搭建本节的解题体系:一、与一些特殊条件有关的问题可优先特殊解法,减少运算提高准确率。
与定义中的量有关的问题可用几何法解题,与线段乘积有关的问题可用直线的参数方程,与过原点有关的长及角度问题可用极坐标方程。
今年高江苏高考题就出现了与焦点有关的线段的求值、证明题,用通法去解运算量就较大。
例1、(江苏省16分)如图,在平面直角坐标系xoy 中,椭圆22221(0)x ya b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和32e ⎛⎫⎪ ⎪⎝⎭,都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i )若1262AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.解:(1)由题设知,222==ca b c e a+,,由点(1)e ,在椭圆上,得 2222222222222222111=1===1e c b c a b a a b b a b a a b+=⇒+⇒+⇒⇒,∴22=1c a -。
由点3e ⎛ ⎝⎭,在椭圆上,得 222224222244331311144=0=214e c a a a a a b a a-⎝⎭⎝⎭+=⇒+=⇒+=⇒-+⇒ ∴椭圆的方程为2212x y +=。
(2)由(1)得1(10)F -,,2(10)F ,,又∵1AF ∥2BF , ∴设1AF 、2BF 的方程分别为=1=1my x my x +-,,()()11221200A x y B x y y >y >,,,,,。
关于高中数学教学中解题技巧的思考在数学学习中,其问题总是千变万化,而若想又快又准地解决数学难题,运用固定的方式则是难以行通的.这需要思维变通,能够依据所给题目的已知条件,展开灵活设想,找出正确的解题方法.因此,在高中数学教学中,教师应注重知识与方法的的有机融合,让学生不再机械地进行知识学习,不搞题海战术,而是注重数学思维的训练,发挥学生思维作用,重视数学语言,让学生掌握一定的
数学解题方法,形成科学思维习惯.
一、注重学生的思维训练,启发学生数学解题思维
1.培养学生发散性思维
在高中数学学习过程中,可以发现各式各样的数学公式与几何图形复杂多变、交错相接,这要求学生在认识过程中应有选择性与目的性,应具备一定的发散性思维,能够全面考虑问题,把握主要思维角度与数学特征,从而又快又准地解决问题.
例如,x,y为实数,且x2-2xy+2y2-2=0,求x+y的取值范围.对于该题有不同思考方法.
思考1:将其视为关于x的二次方程,y为参数,可得到变形:x2-(2y)x+(2y2-2)=0,因而δ=(2y)2-4(2y2-2)
≥0.
思考2:视为x为参数,y的二次方程,其变形:2y2-(2x)y+(x 2-2)=0,因而δ=(2x)2-4×2(x2-2)≥0.
思考3:把原式变成:(x-y)2+y2=2,有y2≤2并且(xy)
2≤2.
这样,引导学生全方位、多角度地来思考数学问题,以发散性
思维想出不同方法来解决问题,从而促进学生思维的灵活多变.
2.引导学生以数学语言解决问题
在数学中也有着自己的语言对其理论知识进行阐述,并有语言特殊性,即想象语言、空间语言、数量语言.与其他学科相比,数学则更抽象.因此,教师在教学中应注意培养与训练学生的数学语言.而若想对学生进行数学语言的培养,则应改善教学方法,打破传统教学模式,让学生自主学习与探究,使其形成自己的数学语言思维,并转为思维能力.因此,教师在数学教学中应给学生留出更多的探究时间,以学生思维为主来设计课题思考问题,逐步启发学
生,让学生构建知识结构,探寻有效解题方法.
3.注重直观法教学,提高学生思维能力
尽管数学知识较为抽象,但教师可以灵活地采用直观教学法,
增加学生的直观感受,提高学生的思维能力.
如习题:幂函数y=x3,x4,x5,x1[]4及y=x1[]5,.教师可通过多媒体向学生展示这些图像,引导学生进行观察,可获得怎样的结论?
有图像,在第ⅱ与第ⅲ象限中可能会存在图像,在第ⅳ象限中则无图像.其原因让学生展开思考.如果第ⅰ与第ⅱ象限中有图像,其图像则关于y轴对称;如果第ⅰ与第ⅲ象限中存在图像,其图像则关于原点对称.
观察二:由图像特点进行观察,其均过点(1,1),(0,0),同时在第ⅰ象限中均为上升曲线.
观察三:由图像变化趋势展开观察,可观察到随着幂指数n加
大,第ⅰ象限中曲线逐步趋向y轴而偏离x轴.
二、教会学生常见解题方法,帮助学生掌握数学解题技巧
当学生具有一定的数学思维能力后,教师可教授学生常见的数学解题方法,让学生多加练习与巩固,使其将所学方法融会贯通,
达到事半功倍的学习效果.
1.反证法
反证法是一种间接的证明法,其思路是利用反面设论,进而获
得矛盾而证明命题.例如,若-12.配方法
配方法是常见的数学解题方法,是对数学表达式展开的适当技巧,把不熟知的数学表达式变为较熟悉的数学公式或某特殊数学图形的表达式.如x2+y2-8ky+18kx-9=0为一圆,求k值范围.该题可使用配方法进行解决,把上述的表达式转为熟知的圆的表达式,其变形可得:(x+3k)2+y-4k)2=-25k2+9,依据这一表达式可得到关于k的不等式,即9-25k2>0,那么k值
的范围是:-0.6<k<0.6.
3.换元法
元也就是变量,将数学表达式的某一复杂模块通过变化或直接视为一变量,转为易理解的数学形式,对变化之后的表达式的各参数性质都能够容易理解把握,从而使复杂问题简单化.这一方法是
数学解题中常遇到的.
4.参数法
即在解决数学问题中,可适当引入某些和所探究的数学对象有关的变量,该变量即参数.通过参数为媒介,然后展开综合分析,
进而解决问题.
5.待定系数法
也就是明确函数之间的直接关系,同时设未知系数,再依据条件取确定未知系数,这一理论依据则为多项式恒等.如若
f(x)=3x+m,其反函数为f-1(x)=nx-5,求n与m的值.通过待定系数法可知:把上述的任意函数表达式展开变形,如把f(x)变为其反函数的形式,把已知反函数与转换之后的反函数加以比对,获得对应项系数等式,则可获得n与m的值.
总之,在高中数学教学中,教师不但要传授给学生数学知识,更重要的是要培养与训练学生的各种数学思维,使其掌握科学的数学解题技巧与方法,学会触类旁通,学会举一反三,真正体会到数学的真谛与魅力.。