太赫兹成像技术在肿瘤诊断方面应用
- 格式:doc
- 大小:19.50 KB
- 文档页数:6
太赫兹技术的工作原理太赫兹技术是一种新兴的射频技术,在电子通信、材料科学、医疗影像等领域具有广泛的应用前景。
本文将介绍太赫兹技术的工作原理,包括太赫兹波的产生、检测以及相关设备的原理,以及其在不同领域中的应用。
一、太赫兹波的产生太赫兹波是电磁波谱中频率介于红外光和微波之间的一段区域,其频率范围约为0.1-10太赫兹(1太赫兹=10^12赫兹)。
产生太赫兹波的方法主要有两种:通过非线性光学效应产生和通过自旋极化电流产生。
1. 非线性光学效应产生太赫兹波非线性光学效应是指在高光强作用下,光的电磁场与介质中的电子或原子之间发生相互作用,产生新的频率成分。
其中最常用的方法是使用飞秒激光来激发非线性光学介质,如晶体或者溶液中的介质,通过非线性发射或非线性吸收效应产生太赫兹波。
2. 自旋极化电流产生太赫兹波自旋极化电流是指在适当的材料中,通过激光或电流激发,导致材料中的自旋极化电子发生运动,从而产生太赫兹波。
利用自旋极化电流产生太赫兹波的方法有很多,包括自旋共振和自旋输运等。
二、太赫兹波的检测太赫兹波的检测方法多种多样,常见的方法有光电探测器和太赫兹光谱仪。
以下是两种常用的检测方法的原理介绍。
1. 光电探测器光电探测器是通过感光材料将光信号转化为电信号的装置。
在太赫兹波的检测中,常用的光电探测器有铁电探测器、氘探测器和双光子探测器等。
光电探测器的工作原理是光子的能量可以激发感光材料中的电子从而引起电流产生,通过测量电流大小,可以获得太赫兹波的强度信息。
2. 太赫兹光谱仪太赫兹光谱仪是用于测量太赫兹波频率和幅度的装置。
太赫兹光谱仪一般由光源、样品和探测器三部分组成。
其中光源通常使用飞秒激光、光电导天线或者紧凑型太赫兹源等。
样品可以是材料的薄膜、晶体或者液体等。
通过探测器检测被样品散射或吸收的太赫兹波,进而推导出样品的频率特性和折射率等信息。
三、太赫兹技术的应用太赫兹技术在许多领域中得到广泛的应用,本节将介绍其在电子通信、材料科学和医疗影像等方面的具体应用。
太赫兹能量光波的作用太赫兹能量光波(THz波)是指频率在100GHz至10THz之间的电磁波。
它位于微波和红外线之间的频段。
近年来,随着太赫兹技术的发展,人们对太赫兹光波的研究越来越多,发现太赫兹能量光波具有许多独特的作用和特性。
太赫兹能量光波在不同领域有着广泛的应用。
首先,太赫兹光波在材料特性研究中起到重要作用。
由于太赫兹波的频率特性,它可以穿透绝大多数非金属材料而不损失太多能量,这使得它成为一种非侵入性的测试方法。
太赫兹光波能够实时监测和诊断材料的性质,例如电荷态、晶格振动、介电常数和磁场等特性,对于材料科学研究具有重要意义。
其次,太赫兹能量光波在生物医学领域的应用也备受关注。
太赫兹光波能够穿透生物组织的外部,检测出生物分子结构的信息,这对于研究生物体的内部构造和组分具有重要意义。
太赫兹技术可以用于医学诊断,如肿瘤检测和组织病变的早期诊断。
此外,太赫兹光波还可以应用于医学成像,通过对体内的太赫兹光信号进行处理和分析,以获得生物组织的高分辨率图像。
第三,太赫兹能量光波在物质检测和安全领域也有广泛的应用。
太赫兹光波可以穿透各种非金属材料,如纸张、塑料、木材等,其在材料的厚度和密度检测上具有较高的灵敏度。
太赫兹成像技术可以利用物质对太赫兹波的吸收和散射特性,实现非侵入性的安检功能,可以检测到隐藏在包裹物、纸张、塑料袋等背后的管道、武器、爆炸品等物质。
此外,太赫兹能量光波还可应用于通信和信息技术当中。
太赫兹波是微波和光波之间一个重要的中间频段,它具有高带宽、低频偏和较强的穿透力等特点,使其在无线通信、无线网络和卫星通信等领域具有潜在应用。
太赫兹通信技术可以支持大数据传输,并且能够穿透大气层的一些障碍物。
此外,太赫兹通信还可以提供安全的通信方式,因为它的传播范围相对较短,难以被窃取或干扰。
总之,太赫兹能量光波具有许多独特的特性和应用领域。
它在材料特性研究、生物医学、物质检测和安全以及通信和信息技术等领域展现出巨大潜力。
太赫兹技术应用的实际应用情况引言太赫兹技术是指在太赫兹频段(0.1-10 THz)进行研究和应用的一种新兴领域。
太赫兹波是介于红外线和微波之间的电磁波,具有高穿透力、非离子性和无辐射危害等特点。
近年来,太赫兹技术在多个领域得到了广泛的应用,包括材料科学、生物医学、安全检测等。
本文将详细描述太赫兹技术在这些领域中的应用背景、应用过程和应用效果。
一、材料科学领域中的太赫兹技术应用1. 应用背景材料科学是太赫兹技术最早被应用的领域之一。
传统的材料性能测试方法往往需要对样品进行破坏性测试或使用昂贵复杂的设备,而太赫兹技术可以通过非接触式测量手段实现对材料内部结构和性能的快速准确分析。
2. 应用过程太赫兹技术在材料科学中的应用过程通常包括以下几个步骤: #### a. 信号发射与接收通过太赫兹源产生太赫兹波,并使用太赫兹探测器接收反射、透射或散射的信号。
这些信号包含了材料的特征信息。
#### b. 数据处理与分析对接收到的信号进行数据处理和分析,提取有用的信息。
常用的方法包括时域分析、频域分析、图像重建等。
#### c. 结果展示与解释将处理和分析得到的数据结果进行展示,并根据结果解释材料的性能和结构。
3. 应用效果太赫兹技术在材料科学中的应用效果主要体现在以下几个方面: #### a. 材料成分分析太赫兹技术可以快速准确地检测材料中不同成分的存在和含量,例如聚合物、金属、陶瓷等。
这对于材料研发和质量控制具有重要意义。
#### b. 材料缺陷检测太赫兹技术可以探测材料中微小缺陷,如裂纹、气泡等。
这对于材料的评估和改进具有重要意义。
#### c. 材料性能表征太赫兹技术可以测量材料的电磁性能,如介电常数、导电率等。
这对于材料的设计和优化具有重要意义。
二、生物医学领域中的太赫兹技术应用1. 应用背景生物医学领域是太赫兹技术应用的另一个重要领域。
太赫兹波在生物组织中具有较好的穿透力,同时对水分子有较强的吸收作用,因此可以用于非侵入式地探测和诊断生物组织。
生物光学成像技术在医学中的应用随着科学技术的不断发展,生物光学成像技术在医学中的应用越来越广泛。
生物光学成像技术是一种在生物领域中使用的非侵入性成像技术,其基本原理是将光学成像技术与生物医学学结合起来,通过观察身体的组织结构和功能,来检测疾病和指导治疗。
本文将重点探讨生物光学成像技术在医学中的应用。
一、太赫兹光波成像技术及其在医学中的应用太赫兹光波成像技术是近年来新兴的一项光学成像技术,其波长为微米至毫米,具有高分辨率、高灵敏度和非侵入性等优点。
太赫兹成像技术的原理是通过太赫兹光波作用于目标物体,来获取物体的信息。
太赫兹光波成像技术在医学中的应用主要体现在医学成像和诊断中。
太赫兹成像技术可以实现对生物体内部分离子、水分子、低分子化合物和蛋白质等成分的探测和成像,从而使医生更好的了解人体的生理和病理情况。
目前太赫兹成像技术已经被用于测定人体软组织、皮肤内水分等体毛的物理学参数,并成功用于前列腺癌的早期诊断。
二、生物分子荧光成像技术及其在医学中的应用生物分子荧光成像技术是现代医学中结合激光技术与荧光材料的一种非侵入性、高分辨率生物成像技术。
生物分子荧光成像技术通过特定荧光物质标记需要监测的生物分子,通过激光的激发使荧光物质释放出荧光物质并进行图像分析,从而得到相应的成像信息。
生物分子荧光成像技术在医学中的应用主要有两个方面:一是用于药物筛选,二是辅助手术操作。
在药物筛选方面,生物分子荧光成像技术可以通过对药物靶点标记来监测药物的效果,从而快速筛选出对靶点具有良好抑制作用的药物,为临床药物研究提供了强有力的技术支持;在辅助手术操作方面,生物分子荧光成像技术可以使用标记荧光物质在手术操作中定位病变区域,从而实现精准操作,降低手术难度,减少手术风险。
三、多普勒光学成像技术及其在医学中的应用多普勒光学成像技术是近年来新兴的一种成像技术,其结合了多普勒血流检测技术与光学成像技术,可以实现医学领域的高分辨率、无创、实时的血流检测。
太赫兹技术的研究与应用太赫兹波是介于微波和红外线之间的电磁波,频率范围在0.1 THz到10 THz之间。
近年来,随着太赫兹技术的逐渐成熟和应用领域的逐步拓展,太赫兹技术受到了广泛的关注和研究。
本文将从太赫兹技术的基本原理入手,介绍太赫兹技术的研究和应用现状,并探讨太赫兹技术未来的发展前景。
一、太赫兹技术的基本原理太赫兹波的频率介于光子和电子之间,具有独特的物理性质。
太赫兹光谱的信号在物质中的吸收率、折射率、反射率等方面有很强的特异性。
因此,太赫兹技术已成为化学、生物学、医学、犯罪学等领域的热点研究方向。
太赫兹波与物质的相互作用主要包括以下三个方面:1、吸收带太赫兹光的匹配振动频率与大分子的振动频率相应,从而被大分子吸收。
另外,太赫兹光也被固体、气体、液体等物质吸收,可以用来检测各种不同种类的物质。
2、折射率与反射率太赫兹波在物质中传播时的折射率与反射率不同,可以用来确定物质的结构、含量和形态等信息。
3、透射特性太赫兹光能够透过生物组织和医疗设备,对人体进行不同层次的探测和诊断。
同时,也可以用来探测物体的内部结构和特性。
二、太赫兹技术的应用领域(一)生物医学领域太赫兹技术在生物医学领域的应用如潮水般涌现。
研究太赫兹谱成为一种新的生物技术手段,实现了对生物分子的无损分析。
太赫兹光也提示作为肿瘤早期诊断的一种新的可能性。
近期研究表明,太赫兹技术有望开发出适用于人体组织的照射系统,从而实现更深层次的诊断。
(二)材料科学领域太赫兹技术的另一个细分领域是材料科学。
太赫兹光谱可以在无需对试样进行处理的情况下,检测激光材料和纳米材料的特性。
太赫兹技术也可用于无损检测,检测并且修补不可见的材料损伤。
(三)安全检测领域太赫兹技术的应用还涉及到安全检测领域。
太赫兹波可用于扫描行李、车辆和人员,对于能量低并且不危及人身安全的物品可以实现安全快输的扫描。
另外,太赫兹技术也可以用于炸药探测。
三、太赫兹技术的未来发展前景太赫兹技术的未来发展受限于许多因素。
太赫兹技术应用太赫兹技术是一种在电磁波谱中介于微波和红外光之间的频段,其频率介于300 GHz至3 THz之间。
近年来,太赫兹技术在各个领域的应用得到了广泛关注和研究。
本文将着重介绍太赫兹技术的应用,并分析其在医疗、安全、通信和材料科学等领域的重要作用。
一、医疗领域太赫兹技术在医疗领域中有广阔的前景。
其高分辨率、非破坏性、无辐射的特点使其成为医学图像处理和诊断领域中的有效工具。
太赫兹波能够穿透血肉,检测人体内部组织结构和细胞层次的变化,实现早期肿瘤等疾病的精确诊断。
同时,太赫兹技术还可以用于药物分析和药物输送系统的研究,为医学科学的进一步发展提供了新的方法和手段。
二、安全领域太赫兹技术在安全领域中有着广泛应用。
其具有高强度透射性和较强的物质识别能力,使其成为安全防范和探测领域的重要工具。
通过太赫兹技术可以实现对物体隐藏在衣物、纸张等物体中的非金属和低密度物质的探测。
这对于防止潜在的安全威胁和恶意行为具有重要意义,例如在机场、边境安全检查和大型活动中的应用。
三、通信领域太赫兹技术在通信领域中具有巨大的潜力。
由于其频率较高且受大气吸收较少的限制,太赫兹波成为实现高速、远距离无线通信的理想选择。
太赫兹通信技术可以有效解决微波通信和光纤通信之间的传输短板,实现更高的数据传输速度和更远的传输距离。
此外,太赫兹通信还可以应用于对隐蔽物体的探测和定位,具有潜在的军事和安全领域的应用前景。
四、材料科学领域太赫兹技术在材料科学领域中被广泛运用。
太赫兹波能够对物质的晶格结构、热力学性质和光学特性等进行精确测量和分析,为材料的设计、制备和性能研究提供了重要手段。
太赫兹技术对于金属、绝缘体、半导体等各种材料的研究都具有重要意义,并在材料加工、电子元器件等领域中有着广泛的应用。
总结:太赫兹技术作为一种新兴的前沿技术,具有广阔的应用前景。
在医疗、安全、通信和材料科学等领域,太赫兹技术已经取得了显著的成果,并被广泛应用于实际生产和科学研究中。
太赫兹科学技术的综述太赫兹科学技术是一门新兴的跨学科领域,涵盖了电子、物理学、化学、材料学等多个学科,主要研究太赫兹频段(约为0.1~10 THz)的电磁波在生物、材料、化学等领域的应用。
太赫兹波的特点是穿透力强、分辨率高、能量低等,因此在医疗、食品安全检测、无损材料检测等方面具有广阔的应用前景。
近年来,太赫兹技术已经日益成为研究热点和应用热点。
在医疗方面,太赫兹技术可以通过对组织中的分子振动进行分析,实现肿瘤、癌症等疾病的早期检测,同时也可以用于糖尿病等疾病的治疗跟踪。
在食品安全检测方面,太赫兹技术可以实现快速、准确地检测食品中的化学成分、污染物等,对维护人民身体健康具有重要作用。
在材料检测方面,太赫兹技术可以检测材料的内部结构和缺陷,对改善材料的质量、提高生产效率具有重要意义。
目前,太赫兹技术的研究主要围绕着以下几个方面展开:1. 太赫兹光源的研究:太赫兹技术的成功应用的一个重要先决条件是开发出高效、高亮度、可调谐的太赫兹光源,目前研究人员主要探索了其中基于超快激光脉冲产生的太赫兹光源、基于电子枪加速产生的太赫兹光源等不同的方法。
2. 太赫兹波的调制和控制:太赫兹波的频段虽然广阔,但是在可控制和调制太赫兹波属于难题,目前的研究主要集中在太赫兹波的调制和控制技术上,涉及到各种太赫兹工具(如太赫兹三角、太赫兹反射器等)的设计制作。
3. 太赫兹波与生物、材料等领域的交叉研究:太赫兹波的应用研究必须结合物理、化学、材料等多个领域的知识,研究人员们正面临着很多有趣的、具有挑战性的课题,例如太赫兹波与纳米材料的相互作用、太赫兹光生物学等。
4. 太赫兹技术应用的探索和开发:太赫兹技术的应用开发和商业化也是研究人员们共同关注的方向。
例如太赫兹成像、太赫兹光谱等技术可作为新型的生物诊断工具,太赫兹波用于媒体通信,太赫兹光谱用于药物品质控制等等。
由此可见,太赫兹科学技术是一项充满前沿性和潜力的研究工作,未来展望可以预期。
太赫兹技术应用随着科技的不断发展,以太赫兹技术在各个领域的应用也越来越广泛。
以太赫兹波段的频率位于红外光和微波之间,具有穿透力强、分辨率高、非接触性等特点,因此在无线通信、医疗诊断、安全检测等方面有着巨大的潜力。
在无线通信领域,以太赫兹技术可以实现高速数据传输和远距离通信。
相比于传统的无线通信技术,以太赫兹波段的频率更高,能够实现更大的带宽和更快的传输速度。
此外,以太赫兹波能够穿透雾霾、烟尘等环境,不受电磁波穿透性差的限制,因此在恶劣环境下的通信也更加可靠稳定。
这使得以太赫兹技术在无线通信领域的应用得到越来越多的关注和研究。
在医疗诊断方面,以太赫兹技术具有非侵入性和高分辨率的优势,可以用于肿瘤检测、皮肤病诊断等。
传统的医学诊断方法往往需要进行切片、放射线检测等侵入性操作,而以太赫兹技术可以通过扫描人体表面的信息来获取内部组织的映像,从而实现非侵入性的诊断。
这不仅提高了医疗诊断的准确性和安全性,还减轻了患者的痛苦和压力。
以太赫兹技术在安全检测领域也有广泛的应用。
以太赫兹波能够穿透一些常见材料,例如纸张、塑料、织物等,因此可以用于检测隐藏在包裹、行李等物品中的危险物质。
与传统的安检设备相比,以太赫兹技术不仅能够提供更高的检测精度,还能够实现非接触式检测,避免了安检人员与危险物质接触的风险。
除了以上几个领域,以太赫兹技术还有许多其他的应用。
例如,在材料科学领域,以太赫兹技术可以用于研究材料的电磁性质和结构特征,帮助科学家们开发新的材料。
在农业领域,以太赫兹技术可以用于检测作物的水分含量和营养状况,提高农作物的产量和质量。
总的来说,以太赫兹技术在无线通信、医疗诊断、安全检测等方面的应用前景广阔。
随着科技的不断进步和发展,相信以太赫兹技术在未来会有更多的创新和突破,为人类带来更多的便利和福祉。
太赫兹医学影像及诊断系统中的关键数学问题及应用项目太赫兹医学影像及诊断系统,这名字一听就让人觉得有点高大上,仿佛是某种科幻电影里的神秘技术。
你有没有想过,医疗诊断其实也需要这么“高大上”的工具?太赫兹技术,就是让医学影像不再停留在传统的X光、CT扫描等常规方法上,它要带我们进入一个全新的世界,让我们从一个不同的角度来看待健康和疾病。
别看这名字一听很复杂,太赫兹其实就是一种电磁波,它的频率在微波和红外线之间,也就是比可见光频率低,比微波频率高。
对于人类来说,它可是既不会伤害我们的身体,又能穿透很多物质,能够给我们带来一些意想不到的惊喜。
想象一下,如果医生能通过太赫兹波去查看我们体内的“隐藏情报”,不仅能看到表面,还能看到更深层的结构,甚至是细胞级别的变化,那岂不是一举两得?不过,说到这里,大家可能会有点疑问:这跟我们常见的X光或者CT扫描有什么不同?其实差别可大了,太赫兹技术不像X光那样有辐射,对身体更友好。
也不像CT 那样需要在机器里待很久,摆个复杂的姿势。
说实话,要是能通过太赫兹扫描快速就能得到诊断结果,那真是“风火轮”般的效率。
太赫兹能提供更高分辨率的图像,这意味着它能帮助医生捕捉到一些非常微小的变化,这对早期疾病的发现可是有着举足轻重的意义。
譬如,癌症这种“头疼”的疾病,越早发现,治愈的几率就越高,太赫兹技术在这方面的应用潜力可是不可小觑的。
可是,虽然太赫兹技术听起来光鲜亮丽,但它的实现并不是那么容易的。
这就涉及到一个数学问题了。
你想想看,要做到精准的太赫兹影像,就得有强大的数学支持。
毕竟,任何一张影像都是由数字化的信号构成的,要解读这些信号、处理这些数据,简直就是一场“智商对决”。
数据的获取本身就需要精密的仪器,而如何准确地从这些数据中“拼凑”出一张清晰的影像呢?这其中的数学计算和算法可是至关重要的。
你可能会想,数学怎么能跟“影像”这么“酷”的事物扯上关系?其实它们并不是两个世界,反而是密不可分的。
.....................最新资料整理推荐..................... 1 太赫兹成像技术在肿瘤诊断方面应用 太赫兹波(teraliertz wave)通常是指频率为0. 1一10. 0TH的电磁波。该波段介于微波和红外线之间,因此低频太赫兹波也称作亚毫米波,而高频部分则称作远红外线。太赫兹波具有微波和红外线的优点,实现了二者功能的互补。首先,太赫兹波信号具有良好的时间分辨率,但同时与微波相比还具有很好的空间分辨率,很多生物大分子的振动和转动能级都位于该波段,因此太赫兹波具有在生物医学领域应用的基础。其次,太赫兹波具有定的穿透性,能穿透陶瓷和塑料等物质,因此能够探测定深度的生物组织信息。最为重要的是,太赫兹波的光子能量极小会像x射线样产生电离效应,小会对生物组织和机体造成破坏。太赫兹波的这些特点使其在生物医学领域的应用逐渐得到重视,并取得了定的进展。 在众多生物医学领域的研究中,肿瘤的诊断治疗无疑是研究的重点之。2011年《CA:临床医师癌症杂志》两次更新了全球及美国癌症统计数据:癌症患者人数明显上升,癌症己成为发达国家的首位死亡原囚,发展中国家的第2位死亡原囚。癌症的早期诊断及早期治疗是提高肿瘤治愈率和降低肿瘤患者死亡率的关键所在。尽管影像学检查是肿瘤早期诊断的重要手段之一,但病理学检查H.以来是肿瘤诊断的金标准,该方法在定程度上受病理医生诊断经验的影}}向,并有定的创伤性,小能作为肿瘤筛查或者常规检查项目。囚此,寻找相对安全、便捷、特异度和敏感度均佳的肿瘤诊断方法,H.是肿瘤预防、诊断和治疗领域的难题。 .....................最新资料整理推荐..................... 2 本文总结了太赫兹成像技术在肿瘤检测领域的诸多进展,以期提供个新的视角和方向,对临床肿瘤检测方法进行有益的探索。 1 太赫兹光谱成像的原理 根据太赫兹源的不同,太赫兹系统分为连续波形和脉冲波形。连续波使用的是固定频率,需要的太赫兹波能量相对较大,对太赫兹源和探测都有定的要求。脉冲波形系统频碧范围较宽,较容易实现,应用也较为广泛,其中太赫兹时域光谱技术(teraliertz time-domain spectroscopy,Thz-TDS)是发展最早、应用较为成熟的技术。连续型和脉冲型波的探测原理基本相同,即己知波形的太赫兹波透过样品或从样品反射后包含了样品复介电常数的空间分布,采集并处理透射或反射过来的太赫兹波的强度和相位信息,就能得到样品的空间分布和组成特性,再进一步进步通过数字处理就叫得到图像。 根据样品探测方式不同,太赫兹系统分为透射式和反射式两种。图1 所示为透射式系统,反射式系统结构与此类似,只是其探测的是从样品反射的信号。两种系统的工作原理相同,即山锁模飞秒激光器发射的激光脉冲被分束器分成两束:束为抽运光,用来激发发射元件而产生太赫兹波;另束为探测光,用来探测太赫兹脉冲的电场振幅。延迟线(delay line)的作用在于保持两束光的光程差相等,而斩波器(chopper)和锁相放大器(lock-in amplifier)的作用是消除环境噪声对信号进行放大。控制装置控制整个系统的机械运行,最终将采集的数据传至计算机(computer)。实验得到的数据分为时域和频域两种形式,相应地对应时域成像和频域成像。反射式检测相对耗时少,操.....................最新资料整理推荐..................... 3 作方便,同时山于太赫兹光谱在1 THz以上,叫以实现更高分辨率的成像,囚此在医学临床应用和快速检测方而更具有潜力。 太赫兹光谱成像技术的优势体现在其具有指纹识别的特点,主要应用在毒品、危险品及生物大分子等的检测方而川。许多分子之间弱的相匀作用力、生物分子的骨架振动以及品体中品格的低频振动吸收止好位于太赫兹波频段范围,而I I_太赫兹波对探测物质结构存在的微小差异和变化非常敏感,即特异性较强。汪帆等困总结了太赫兹在生物大分子研究中的应用,运用该技术叫以研究蛋自质、糖类和核酸等的结构和动力学特性。太赫兹波应用于癌变成像的特异性应体现在数据分析中,即分析小同癌变组织叫能具有小同的生物大分子结构,这也是口前研究者止在努力探寻的方向。虽然现有技术的敏感度还小能达到显微镜水平(20一200微米),但随着该技术均理论和实验日渐成熟,相信其检测的特异度和敏感度都会有所提高。 太赫兹成像技术用于肿瘤检测的医学依据,方而也是基于肿瘤细胞新陈代谢田盛,核酸等大分子的含量较止常组织多。Li等fu7通过分子动力学模开」证实了nNA双链中存在着大量的活跃低频声子模式。囚此,太赫兹波对肿瘤组织中nNA的频繁结构变化非常敏感,这也是太赫兹波用于检测肿瘤具有特异性的原囚之。另方而,细胞癌变的病囚在于细胞的异常增殖,该过程需要物质基础,囚此细胞中细胞器含量增加,山此带来的细胞中水含量和 水状态的变化能被太赫兹波敏感地捕捉到。 2太赫兹成像技术在肿瘤研究领域的应用 .....................最新资料整理推荐..................... 4 2.1皮肤基底细胞癌(basal cell carcinoma BCC) BCC是皮肤癌最常见的类刑之,多见于头皮和而部等部位。囚为BCC位置表浅,叫以避开太赫兹波传播的景深限制,所以是太赫兹成像技术应用较早的领域之。2002年,Woodward等cc }}首次报道了太赫兹脉冲成像技术在皮肤及相关癌症检测中的应用,研究结果显示山于太赫兹波对极性分子如水分子等敏感,囚此通过该技术研究皮肤中的水化程度,以及术前精确检测肿瘤边缘,叫以很好地}x_分肿瘤、炎性反应以及止常组织。这研究成果小仅为太赫兹波医学检测首开先河,同时也为以后的研究奠定了基石出。 为I史好地从理论上解释所得}iJ IYJ i线和ICI像,2004年Wallace等叫又做了进步的验证实验,口的之是验证太赫兹成像技术对肿瘤组织和止常组织的Ix_别能力,口的之二是探索该方法能否简化术前对肿瘤边缘的鉴定工作。研究者对18个体外和5个活体BCC样本进行了成像实验,结果表明肿瘤组织和健康组织反射出的太赫兹波特性小同,肿瘤组织的脉宽较宽,而I I_太赫兹波成像中的肿瘤Ix_域与病理诊断的结果吻介性较好。 相对于脉冲式太赫兹成像系统,连续式太赫兹成像系统操作简单,成本较低。2011年Josepli等Uo7探讨了连续刑透射式太赫兹波用于皮肤BCC检测的叫行性。在实验中,所使用的频率为1. 39和1. 63 THz,采用新鲜的肿瘤组织,并在24 li内完成实验。实验中,将样本置于pH平衡的0. 9%氯化钠溶液中以防比组织脱水,成像分辨率在1. 4 THz时为0. 39 uuu,在1. 6 THz时为0. 49 .....................最新资料整理推荐..................... 5 uuu o为了进行进步的评估,样品均经苏木精一伊红染色处理。实验结果表明,在所有测量样本中,太赫兹波透过率下降的Ix_域均对应着组织病理学上的肿瘤Ix.域,其中止常组织和肿瘤组织的透过率差异达60%,囚此认为该方法用于术前确定肿瘤界限是叫行的。 2.2乳腺癌生物组织中的应用。 水分对太赫兹波的吸收较大,如果止常和病变组织含水分过多,则太赫兹成像的差别并小明显。山于乳腺中多为脂肪组织,含水量较少,太赫兹成像的差别较大,囚此乳腺癌的检测也是THz成像的应用领域之一。 2006年Fitzgerald等fizz对22例经37%甲醛溶液固定的乳腺癌组织标本进行太赫兹波检测实验。实验装置为脉冲刑反射式,频率范围为0. 1一3 THz,平均功率为100 nW,单个标本大小为20 uuu X 20 uuu,实验时间<5 minx在实验中,分别根据太赫兹波反射信号的时域最小值和峰值进行成像。结果显示,所检测乳腺癌标本中太赫兹波检测成像所定义的肿瘤Ix_域与病理学检测所确定的肿瘤Ix_域的相关系数达0. 82,囚此作者认为太赫兹成像技术有望成为乳腺癌检测的新方法。随后,Asliwortli等fis7的研究进步证实了上述研究结果,他们对20例新鲜乳腺癌标本开展了光碧和成像研究,所用频率宽度为0. 15一2. 0 THz实验前先用组织病理学方法将标本分为止常脂肪组织常纤维乳腺组织和乳腺癌组织。太赫兹波检测的结果表明,0. 32 THz时肿瘤组织的复折射率和吸收系数均高于另外两种组织,太赫兹光碧技术和成像技术均叫用来区别以上3种组织。 .....................最新资料整理推荐..................... 6 近期,Clien等fm7利用小鼠模刑开展了早期乳腺癌的活体研究。实验对象为基囚突变致胸腺受损或缺失的小鼠,在小鼠麻醉状态下向体内注射乳腺癌细胞。通过透射式太赫兹光纤扫描系统,连续观察到乳腺癌在小鼠体内的生长。实验结果表明,太赫兹透射式成像系统小仅能够将肿瘤及其周边脂肪组织Ix_别开来,而II_具有定的敏感度。 2.3肝脏转移性恶性肿瘤的应用。 2005年Nisliizawa等开展了川脏转移性结肠癌的太赫兹波成像研究,标本经过37%的甲醛溶液固定和乙醇脱水后,十燥24 li;然后分成镜像的两份:份用来做太赫兹成像,另份经过苏木精一伊红染色后用于病理学检查;测量时间约为20 min,成像所用的频率分别为0. 835和1. 465 THz。研究结果显示,太赫兹成像鉴别肿瘤组织和止常川组织的依据在于两种组织对太赫兹波的吸收小同,肿瘤组织对太赫兹波的吸收较多而透过率低,止常的川组织对太赫兹波的吸收较小而透过率。研}L结果还提>}:, 0. 835 THz IYJ成像能够提n诊断的准确性。2011年Miura等利用GaP太赫兹源(频碧范围为1一6 THz对转移性川癌进行成像研究,证实了上述研究结果。 太赫兹成像技术在肿瘤检测方而的研究也扩展到了日腔肿瘤。2012年Sim等mo开展了用反射式太赫兹成像技术诊断日腔恶性黑索瘤的临床试验。该实验中所用的标本为新鲜的恶性肿瘤组织。太赫兹成像检测结果显示,肿瘤区域与周边区域区别明显,并与病理学检查结果吻合较好。因此,提示该技术在对止常薪膜组织和恶性黑索瘤组织进行界限分中,也有广阔的应用前景。