三相异步电动机变频调速的特点
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
三相异步电动机的起动与调速实验原理三相异步电动机是工业和家庭使用中最普遍的电动机。
其结构简单、性能稳定、故障率低、使用寿命长、维护成本低等优点,使得其被广泛应用于各种机械设备、压缩机、水泵、风扇等领域。
起动和调速是三相异步电动机运行的两个重要参数。
起动是指当电动机停止工作后重新启动的过程,调速是指根据工况需要改变电动机转速的过程。
本实验旨在探究三相异步电动机的起动和调速原理,并提供相关实验过程和数据分析。
一、起动实验原理三相异步电动机旋转时,电机产生的磁通量与旋转的同步速度不同。
当电动机停止后,转子上的磁通量与定子绕组中的磁通量存在差异。
这种差异会产生感应电动势,从而产生电流,这个过程被称为转子电动势或者诱导电动势。
在起动过程中,需要通过外部直流电源加上励磁电流,与转子电动势产生作用,使转子开始旋转。
起动时,电源的直流电压加到电动机定子绕组上,电动机的转子开始旋转,开始产生诱导电动势。
当转子旋转速度接近同步速度时,电动机称为同步运行。
在起动期间,由于初始转矩低,转子转速较慢,同步速度不易达到。
这时候,为了防止电动机过载,需要启动电动机保护器,保护器中的热继电器会自动切断电源,从而保护电动机。
二、实验过程1. 实验设备准备:三相异步电动机、电源电缆、电池、保护器、电流表、万用表、转速表、电阻箱等。
2. 接线并设定电流值:将电动机与电源电缆接入,接线过程中需要注意接线正确。
设定适当的电流值,并开始记录数据。
3. 启动电动机:通过保护器开关启动电动机,等待电动机开始旋转。
4. 记录数据:记录电动机转速、电流和电压值,同时获得电动机启动时间和转矩。
5. 重复实验:重复上述步骤,多次进行实验并记录数据,以便进行平均数计算和结果验证。
三、数据分析在起动实验中,需要记录的数据包括电动机启动时间、电流、电压和转速值。
在多次实验后,根据数据计算出平均值,并进行结果分析。
启动时间:启动时间是电动机开始运转到转子开始旋转的时间间隔。
YVPEJ变频制动电机一、YVPEJ变频制动电动机简述:YVPEJ系列变频调速三相异步电动电动机机是由YVF2系列变频调速电动机与电磁制动器组合而成,是全封闭自扇冷式鼠笼型,具有附加圆盘型直流制动器的三相异步电动机。
此外制动器还具有人工释放机构,具有无级调速范围广、制动速度快、定位准确等优点,更适用于机械、矿山、冶金、纺织、印染、化工、农机等需要无级变速又需要快速停机,准确定位的设备;可代替机械传动中的无级变速机。
使用条件、电气参数与YVF2系列变频调速三相异步电动机同机座号技术参数一致;制动力矩与YEJ系列制动三相异步电动机同机座号制动力矩相一致。
二、YVPEJ变频制动电机特性:YVPEJ变频刹车电机兼有变频电机和刹车电机的各项性能,既能实现电机失电后快速制动,又具有变频电机的各项优点。
其主要技术性能如下:1.电机额定电压为三相380v,额定频率为50Hz。
也可根据客户要求确定额定点的电压和频率;2.电机调速范围广,5(3)~100Hz为无级调速,5(3)~50Hz为恒转矩调速,50~100Hz为恒功率调速,在矢量控制的条件下,调速范围还可以矿大;3.能实现电机失电后快速制动,快速制动时间YVPEJ-63~100电机小于0.2s,YVPEJ-112~132电机小于0.25s,YVPEJ-160~250电机小于0.5s;4.过载能力强,电机能承受额定转矩的160%过载,历时1分钟;5.低速性能好,低速时转矩平滑,无爬行现象;6.在结构上,YVPEJ系列的安装尺寸与Y2系列相同,以便用户的配套和选用。
电机采用了独特的冷却结构,使用特殊加长的轴流风机,保证了电机在低频恒转矩长期运行时温升不超过允许值;7.电机极数为4、6、8极8.根据客户特殊需要,电机也可以添加编码器,用于对电机的准确测速。
本系列电机可广泛用于机床、包装机械、木工机械、食品机械、化工机械、纺织机械、建筑机械、冶金机械。
三、YVPEJ系列电动机使用条件1、环境温度不超过-15℃~40℃5、工作制:连续S12、海拔不超过1000m 6、电机绝缘等级:F级3、电机防护等级IP54或IP55 7、额定频率50Hz4、额定电压380(220)V±10%四、YVPEJ系列电动机参数:。
三相电机七种调速方式一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场合。
三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70-90的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。
本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
串入的电阻越大,电动机的转速越低。
此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。
三相异步电动机的机械特性、启动、制动与调速作者:王峰来源:《中国科技博览》2017年第35期[摘要]异步电动机具备许多的特性,其中包括结构简单、价格相对较低、维护方便等。
所以,在电力拖动系统中经常能够看到异步电动机的身影。
电子技术以及交流调速技术的不断发展和逐渐成熟,极大地优化了异步电动机的调速技能。
到现在为止,在许多工业电气自动化领域中,异步电动机的电力拖动都得到了广泛运用。
[关键词]三相异步电动机;机械特性;启动;制动;调速中图分类号:TP325 文献标识码:A 文章编号:1009-914X(2017)35-0038-011 三相异步电动机的机械特性三相异步电动机的机械特性简单概括就是:在电动机的定子电压、频率还有绕组参数不变的情况下,电动机的转速或转差率与电磁转矩之间的关系,即n=f(T)或s=f(T)转速与转差率有某种程度上的对应关系。
机械特性可以用函数来表示,也可以用曲线来表示。
用函数表达机械特性曲线时有三种表达形式,包括物理表达式、参数表达式以及实用表达式。
物理表达式描述的是异步电动机电磁转矩是如何产生的,可知是因为主磁通与转子有功电流互相作用得以产生的电磁转矩。
参数表达式描述的是电动机和电源参数和电磁转矩的关系。
应用这一关系式,能够很便捷地描述参数变化对电磁转矩以及人为特性的影响。
实用表达式简单方便,有利于记忆,常常出现在工程计算中。
三相异步电动机的机械特性包括固有机械特性和人为机械特性。
固有机械特性指的是异步电动机在工作时达到额定电压和额定频率时,电动机按照正确的接线方式,在定子还有转子中没有外接电容电抗电阻时得到的机械特性曲线。
人为机械特性指的是人为改变电源电压、电流频率、定子极对数以及定子与转子电路的电阻与阻抗能够得到的不同机械特性。
用来反映过载能力和启动性能的两个非常主要的指标是电动机的最大转矩和启动转矩。
电动机的过载能力、启动性能和最大转矩、启动转矩有相同的变化趋势。
三相异步电动机的机械特性是以一条非线性曲线表现出来的。
三相交流异步电动机的启动调速及制动一、三相交流异步电动机的启动电动机从接入电网开始转动,逐渐增加转速一直达到正常转速为止,这段过程为启动过程,通常只有几十分之一描到几秒钟。
启动电流与启动转矩是衡量电动机好坏的主要依据。
电动机开始转动时转子电路中感应电动势最大,一般为额定情况下的20倍左右。
但由于此时转子电抗也最大,故转子电流为额定情况下的5-8倍。
由于异步电动机转子电能是由定子绕组供给的,所以定子绕组中的电流亦将为额定时的4-7倍。
起动时虽然转子电流较大,但此时电抗也很大,则使转子功率因数c osΦ2很小,所以启动转矩并不大。
启动电流大,电网电压降大,影响其他电气设备的正常工作;其次对于频繁开、停的设备将使其电动机发热,影响电动机的寿命。
启动转矩小,电动机不能带负载启动或是启动时间过长而使电动机温升过高。
衡量电动机启动性能的好坏,主要有如下三点:1、启动电流尽可能小;2、启动转矩尽可能大些;3、启动设备简单、经济,操作方便二、三相鼠笼式异步电动机的启动1、全压启动把电动机直接接到电压与电动机额定电压相等的电网上则称为全压启动。
这种方法的优点是操作简便,成本低;但启动电流较大。
为了保证电动机启动时不引起电网电压下降太多,电动机的额定容量满足下列经验公式的要求时才允许全压启动:Ist/IR≤3/4+上述表达式中Ist表示电动机起动电流,IR表示电动机额定电流,一般情况下Ist大约为4~7倍,因为电动机的额定容量不超过电源变压器容量的15%~20%时都允许全压启动。
2、降压启动降压起动是用降低电动机端电压的办法来减小启动电流。
当电压降低时起动转矩按电压的平方成正比例下降,故此种方法适用于空载或轻载情况下起动。
降压起动有三种方法:a. 串电阻降压起动:这种方法是在三相定子绕组中串接相同电阻(或变阻器)。
分手动与自动控制两种。
b. 星形-三角形降压起动:这种起动方法适用于工作时定子绕组为三角形接法的电动机。
交流异步电动机变频调速原理及特点摘要:在交流异步电动机的各种调速方法中,变频调速因其调速性能好、效率高被公认为是异步电动机的一种比较理想调速方法,也是交流调速系统的主要发展方向。
下面就变频调速的基本原理与基本控制方式,分类与特点谈谈自己的理解.关键词:功率因数;恒转矩负载;恒功率负载;脉冲幅度调制方式;脉冲宽度调制方式一变频调速的基本原理与基本控制方式1.变频调速的基本原理根据异步电动机的转速表达式n=(1-s)60f/p可知,改变异步电动机的供电频率f,可以改变异步电动机的转速n,这就是变频调速的基本原理.由电机理论可知,三相异步电动机定子每相电动势E为:E=4.44fNQ.从该式可知,磁通Q是由E和f共同决定的.在电动机定子供电电压保持不变情况下,只改变频率f,将引起磁通Q的变化,可能出现励磁不足或励磁过强的现象.当频率f降低时,磁通将增加,这会引起磁路饱和,定子励磁电流上升,铁耗急剧增加,造成电动机功率因数和效率下降,这种情况是电机实际运行所不允许的;反之,当频率升高时,则磁通将减小,同样的转子电流下将使电机输出转矩下降,电动机的负载能力下降.因此,在变频调速时,应尽可能使电动机的磁通保持额定值不变,从而得到恒转矩的调速特性.而对于恒功率负载,因为P=Mn=定值,也就是说,对恒功率负载采用变频调速时,若满足电压与频率平方根的比值等定值,则电机的过载能力不变,但气隙磁通将发生变化;若满足电压与频率的比值等定值,则气隙磁通维持不变,但过载能力将发生变化.这说明变频调速特别适用恒转矩负载.2.变频调速的基本控制方式异步电动机的变频调速分为以下两种情况.即额定频率以下的恒磁通变频调速和额定频率以上的弱磁通变频调速.首先额定频率以下的恒磁通变频调速,这是从电机额定频率向下调速的情况.由于磁通与E/f成正比,故调节定子的供电频率f时,按比例调节定子的感应电动势E,即保持E/f=常数,可以实现恒磁通变频调速,这相当于直流电动机调压调速的情况,属于恒转矩调速方式.但是,由于定子感应电动势是无法直接测量和直接控制的,因此,只能直接调节的是外加的定子供电电压U.若忽略定子绕组阻抗压降,则U=E,因此可以采用U/f=常数的恒压比控制方式进行变频调速.在进行恒压比的变频调速时,当f较小时,由于U也较小,因而定子绕组阻抗压降相对较大,故不能保持磁通不变.因此,这种恒压比的变频调速只能保持磁通近似不变,实现近似的恒磁通变频调速,在这种情况下,可以采用专门电路,在低速时人为地适当提高定子电压,以补偿定子阻抗压降的影响,使磁通基本保持不变,实现恒磁通、恒转矩的变频调速。
单片机控制的交流异步电机变频调速摘要:单片机控制的变频调速系统设计思想是用转差频率进行控制。
通过改变程序来达到控制转速的目的。
本文用MCS-51系列的8051单片微型计算机和SA4828三相SPWM 产生器及少量的扩展外围芯片构成,充分发挥其控制电路简单、控制方式灵活、输出波形优点多的特点,实现三相异步电机变频调速的目的。
关键词:单片机;三相异步电机;变频调速1、交流三相异步电动机和变频调速技术介绍1.1 三相异步电动机 交流电动机,尤其是感应异步电动机,具有结构简单、价格低廉、坚固耐用、维护方便,可工作在恶劣的环境中等优点,在伺服驱动系统中越来越受到人们的关注。
1.2 变频调速技术 三相异步电动机的调速方法有三种:变极调速、改变转差率调速、变频调速。
其中变频调速具有很大优势,效率最高、性能最好、应用最广泛的是变频调速,它可以构成高动态性能的交流调速系统来取代直流调速系统,并且是交流调速的主要发展方向。
它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节能效果明显,而且易于实现自动化控制,所以交流电动机的变频调速刚反应用于工业行业。
目前变频器不但在传统的电力拖动系统中得到了广泛的应用,而且已扩展到了工业生产的所有领域,以及空调器、洗衣机、电冰箱等家电中。
2、三相异步电机的变频调速原理异步电动机的转速是取决于同步转速的:)1(0s n n -=式中: n ——电动机的转速,m/min0n ——电动机的同步转速,r/mins ——电动机的转差率 s=(n 1-n/)=△n/ n 1而同步转速则主要取决于频率p fn 60=式中:f——输入频率,Hzp——电动机的磁极对数由以上两式可知变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:p sf n) 1(60-=由上式可知,在电动机磁极对数不变的情况下,通过改变电动机工作电源频率达到改变电机转速的目的。
当改变电动机定子电源的频率时,电动机的同步转速将随频率正比变化,于是转子转速将随之而变化,这种通过改变电源频率实现的速度调节称为变频调速。
三相异步电动机分类特点以及调速方法三相异步电动机分类:1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。
不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。
不改变同步转速的调速方法在生产机械中广泛使用。
2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。
3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。
有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。
一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。
我们清楚三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。
一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
特点如下:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
三项异步电动机变频调速控制及其节能改造本文主要从三项异步电动机概述、三相笼型转子异步电动机的传统起动方式、三相异步电动机调速策略探讨、电动机节能注意事项等方面进行了阐述。
标签:三相异步电动机;调速;节能一、前言三项异步电动机在我国电网中应用非常广泛,技术也相对成熟,但是如何使其变频调速进行控制以及节能问题,都是需要进一步探讨与总结的重点问题。
二、三项异步电动机概述全国年总发电量的一半以上,耗能非常之高。
因此,加强和提高三相异步电动机的节能控制对我国电能的节约将会起到巨大的作用。
当电流在满负荷的情况下时,三相异步电动机的功效一般比较的高,可以达到85%左右。
但是,如果电流的负荷量下降的话,三相异步电动机的功效就会明显的降低。
因此,总的来说,三相异步电动机的功效还是比较低的。
如果我们通过对三相异步电动机节能控制,我们就会在这方面有所提高,从而提升电动机的运行效率,将会产生巨大的经济效益。
进行三相异步电动机的节能控制主要是从两方面的工作着手,首先就是要提升三相异步电动机的制造技术,而这方面如今已经取得了巨大的发展,另外一方面就是要做好电动机的运行控制技术,这才是我们进行电动机节能控制技术的关键。
三相异步电动机的功效是指三相异步电动机的输出功效同输入功效的比例,因此供电机的一部分电能是用来使电动机驱动的,即输入的功效,而另外一部分电能就会发生在三相异步电动机的自身损耗上,这就是我们所说的输出功效。
三相异步电动机的电能损耗主要是指电动机的铁和铜,而电动机的铜耗则是在电流通过电动机的铜线绕组时而产生的,相比之下,电动机的铁耗则是指电动机在运转的过程中,其定子和转子铁芯中产生的电流而发生的损耗,这主要是与电压有关。
电动机的损耗除了这两部分损耗外,还存在其他的损耗,但是这些损耗都比较小,可以忽略。
而三相异步电动机的节能原理就是在电压的负荷下降的时候,可以通过适当降低电源的电压的方法,从而减少电动机中铁耗,当电压下降的时候,相应的电流也会随之下降,这样也就降低了电动机中的铜耗,只有这样电动机的功效才会得到提高。
三相笼型异步电动机的调速方法
三相笼型异步电动机的调速方法主要有以下几种:
1. 变频调速:通过改变电源频率来控制电动机的转速。
通过变频器将电源频率转换为可调的高频输出,控制电机的速度。
2. 软起动调速:通过在电动机起动过程中逐步增加电源电压,使电机实现平稳启动和调速。
3. 电阻调速:在电动机的转子电路中串入可调的电阻,改变转子电阻来控制电机的转速。
4. 转子电流分解调速:通过将电动机转子电流分解成主磁通分量和励磁分量,通过调节励磁分量来控制电机的转速。
5. 增加机械负载:通过增加机械负载来降低电动机的转速。
以上是常见的几种三相笼型异步电动机的调速方法,具体选择哪种方法需要根据实际需要和具体情况进行判断和选择。
机电传动控制复习题及参考答案第一章1.机电传动控制系统要完成什么任务?答:从广义狭义两个方面解释。
P1,第三段第一句(前四行)。
2.机电传动的目的是什么?答:机电传动是指以电动机为原动机驱动生产机械的系统之总称。
它的目的是将电能转换成机械能,实现生产机械的启动、停止及速度调节,满足各种生产工艺过程要求,保证生产过程正常进行。
第二章1.电动机静态稳态的判断,输出转矩T M与负载转矩T L方向的判断。
提示:根据电动机输出转矩和负载转矩的关系,参考教材P5~P7内容。
2.机电传动系统负载可以分为几类?答:参考教材P10~P12内容。
能够举例说明。
3.课后习题2.3第三章2.按照励磁方式,直流电机基本上可以分为几类?答:他励、并励、串励、复励。
各自什么特点,适用于什么场合,参考教材内容。
3.试用公式解释直流他励电动机的机械特性。
明白公式的推导过程,理解公式中各符号的含义,参考教材P23图3.15上面内容电枢回路中的电压平衡方程:以式代入得到:再以代入,得到直流电动机机械特性的一般表达式:4.电机机械特性硬度的含义是什么?怎么确定?不同硬度的电机适合哪些场合?参考教材P23最后一段、P24前面部分相关内容。
机械特性硬度:电动机的机械特性分为三类:(1)绝对硬特性()(2)硬特性()(3)软特性()5.直流电机能不能直接启动?若不能,应该怎样启动?答:若直接在电枢中加上额定直流启动,则启动电流很大,可达额定电流的10~20倍。
这样大的启动电流,会使电刷下产生强烈的火花,对电刷与换向器有较大的损坏。
另一方面,过大的启动电流会产生过大的启动转矩。
给电动机及其轴上所带的工作机械带来很大的冲击,对齿轮等传动机构带来不利,因此不能直接启动。
应把启动电流限制在额定电流的2倍。
一般采用降压启动、电枢串电阻启动。
具体参考P28相关内容。
6.改变电气参数时,直流他励电动机人为机械特性有什么变化?提示:可改变的电气参数有电枢回路的电阻、电枢的电压、励磁的磁通。
YSG系列辊道用变频调速三相异步电动机(H112~225mm)一、概述为适应冶金行业技术更新和设备改造,对交流调速技术应用的要求,开发了YSG系列辊道用变频调速三相异步电动机。
它具有体积小、调速范围广、运行可靠、维修方便等优点。
电动机采用耐高温润滑脂,并有再补给装置。
电动机具有加强的机械结构强度,能够在频繁起制动、正反转、反接制动等冲击性负载和高温、多粉尘环境的恶劣条件下连续或断续工作,并具有较高的过载能力。
电机技术条件符合IEC24-1和GB755国际和国家标准的规定,综合技术指标达到国内先进水平。
可与国内外各类变频装置配套使用,有助于节能和实现自控制。
YSG系列辊道用变频调速三相异步电动机按其机械特性可以分为YSGa型和YSGb型两种。
YSGa型电动机的机械特性较软,具有堵转转矩大、堵转电流小、动态常数高的特点,可以在30~80Hz的范围内调速运行。
主要用于驱动以S5工作制运行的工作辊道辊子。
YSGb型电动机具有较硬的机械特性,变频调速性能好,可以实现5~80Hz恒功率这样一个宽广的调速范围。
主要用于以S1工作制运行的输送辊道辊子,当采用变频控制时,利用变频品质低频起动功能和制动功能,还可以实现频繁起、制动和正、反转,用于以S5工作制运行的工作辊道辊子。
型号含义YSGa型电动机为周期工作制S5,负载持续率分为15%、25%、40%和60%四种,电动机可满压起动。
YSGb型电动机为连续工作制S1,当采用变频调速时,也可以周期工作制S5运行。
电动机的接法为Y/△联结,额定电压为380/22V,额定频率为50Hz。
电动机的绝缘等级为H级。
电动机的调速范围,YSGa型电动机为30~80Hz,YSGb型为5~80Hz。
电动机的过载能力强,能承受最大转矩15S。
电动机低速性能好,低速运行时转速平稳,无爬行现象。
二、结构简介YSG系列电动机的外壳防护等级为IP54,全封闭结构;电动机制冷却方式为IC410(全封闭自然冷却);电动机的结构及安装型式为IMB3、IMB5和IMB35三种。