最新2020山东省东营市中考数学试卷及答案
- 格式:doc
- 大小:1.31 MB
- 文档页数:15
2020年山东省东营市初中学业水平考试数学答案解析第Ⅰ卷一、 1.【答案】C【解析】16()16-⨯-=,故选C .2.【答案】C【解析】A .326()x x =,故此选项错误,B .222()2x y x xy y -=-+,故此选项错误,C .2323522x y xy x y -⋅=-,故此选项正确,D .(3)3x y x y -+=--,故此选项错误。
答案故选C .3.【答案】B【解析】2=,故选:B . 4.【答案】A【解析】由题意可知:180********AOD AOC =︒-∠=︒-︒=︒,18042BOD AOD ∴∠=︒-∠=︒,又OM 是BOD ∠的角平分线,1212DOM BOD ∴=∠=︒,21138159AOM DOM AOD ∴∠=∠+∠=︒+︒=︒.故选:A .5.【答案】C【解析】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,()21=63P ∴两盏灯泡同时发光,故选C . 6.【答案】B【解析】开口向下,与y 轴交点在正半轴0a ∴<,0c >.A ,C 两点的横坐标分别为1-和1,0a b c ∴-+=,12ba-=,20b a ∴=->,(2)0a a c --+=,30a c ∴+=,0abc <,故A 选项正确,B 选项错误.A ,C 两点的横坐标分别为1-和1,点横坐标为3,∴当4x =时1640y a b c =++<,故C选项正确.当1x >时,y 随x 的增大而减小,∴当2x >时,y 随x 的增大而减小,故D 选项正确.故选:B . 7.【答案】D【解析】根据题意得12332r ππ⋅⋅⋅=,解得1r =.故选:D .8.【答案】B【解析】设第一天的路程为x 里,3782481632x x x x x x ∴+++++=,解得192x =,∴第三天的路程为192==4844x ,故答案选B . 9.【答案】C【解析】由图象可知:点P 在A 上时,13CP AC ==,点P 在AB 上运动时,在图象上有最低点,即AB 边上的高,为12,点P 与点B 重合时,CP 即BC 最长,为13,所以,ABC △是等腰三角形,AB ∴的长22510=⨯=,故选:C .10.【答案】B【解析】四边形ABCD 正方形,AC 、BD 为对角线,45MAE EAP ∴∠=∠=︒,根据题意MP AC ⊥,故90AEP AEM ∠=∠=︒,45AME APE ∴∠=∠=︒,在三角形APE △与AME △中,AEP AEM AE AE EAP EAM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()APE AME ASA ∴△≌△,故①正确;12AE ME EP MP ∴===,同理,可证PBF NBF △≌△,12PF FN NP ==,正方形ABCD 中,AC BD ⊥,又PM AC ⊥,PN BD ⊥,90PEO EOF PFO ∴∠=∠=∠=︒,∴四边形PEOF 为矩形,PF OE ∴=,OE AE PF PE NF ME AO ∴+=+=+=,又12ME PE MP ==,12FP FN NP ==,12OA AC=PM PN AC ∴+=,故②正确;四边形PEOF 为矩形,PE OF ∴=,在直角三角形OPF 中,222OF PF PO +=,222PE PF PO ∴+=,故③正确;BNF △是等腰直角三角形,而P 点是动点,无法保证POF △是等腰直角三角形,故④错误;连接MO 、NO ,在OEM △和OEP △中,OE OE OEM OEP EM EP =⎧⎪∠=∠⎨⎪=⎩OEM OEP ∴△≌△,OM OP =,同理可证OFP OFN △≌△,OP ON =,又90MPN ∠=︒,OM OP ON ==,12OP MO NO =+,根据直角三角形斜边中线等于斜边一半,12OP MN =,MO NO MN ∴+=,点O 在M N 、两点的连线上.故⑤正确.故选择B .第Ⅱ卷二、11.【答案】8210-⨯【解析】因为80.00000002210-=⨯,故答案为:8210-⨯. 12.【答案】()()322a b a b +-【解析】()()()222212334322a b a b a b a b -=-=+-.故答案为:()()322a b a b +-. 13.【答案】14【解析】平均数是指在一组数据中所有数据之和再除以数据的个数,因此,该校女子排球队队员的平均年龄是134147154210==1447415⨯+⨯+⨯++(岁).故答案为:14.14.【答案】< 【解析】A 点横坐标为1,B 点横坐标为1-,根据11-<,1-<3,可知,随着横坐标的增大,纵坐标减小了,0k ∴<.故答案为<. 15.【答案】9m ≤【解析】关于x 的一元二次方程260x x m -+=有实数根,240b ac ∴∆=-≥,1a =,6b =-,c m =,()26410m ∴--⨯⨯≥,436m ∴≤,9m ∴≤.故答案为:9m ≤.16.【答案】18 【解析】3PA PE =,3PD PF =,3PE PDPA PF∴==,且APD EPF ∠=∠,PEF PAD ∴△∽△,根据相似三角形面积比等于相似比的平方,且PEF △的面积为2可知,22()39PDA PFE S PD S PF===△△,2918PDA S ∴=⨯=△,过P 点作平行四边形ABCD 的底AD 上的高PH ,1=182PDA S AD PH ∴⨯=△,36AD PH ∴⨯=,即平行四边形ABCD 的面积为36,12+=361818PAD ABCD S S S S ∴-=-=△平行四边形.故答案为:18.17.【答案】【解析】如图:连接OP 、OQ ,PQ 是O 的一条切线,PQ OQ ∴⊥,222PQ OP OQ ∴=-,∴当OP AB ⊥时,PQ 最短,在Rt ABC △中,OB =30A ∠=︒,2AB OB ∴==cos AO AAB =∠1122AOB S AO OB PO AB ∴⋅=⋅△,11622PO ∴⨯=⋅3OP =,在Rt OPQ △中,3OP =,1OQ =,PQ ∴=18.【答案】2【解析】当12a =时,1B 的横坐标与1A 的横坐标相等为2,()12,3A ,112,2B ⎛⎫- ⎪⎝⎭;2A 的纵坐标和1B 的纵坐标相同为12-,代入1y x =+,得32x =-,可得231,22A ⎛⎫-- ⎪⎝⎭;2B 的横坐标和2A 的横坐标相同为32-,代入1y x =-得,23y =,得232,23B ⎛⎫- ⎪⎝⎭;3A 的纵坐标和2B 的纵坐标相同为23,代入1y x =+,得13x =-,故312,33A ⎛⎫- ⎪⎝⎭;3B 的横坐标和3A 的横坐标相同为13-,代入1y x =-得,3y =,得31,33B ⎛⎫- ⎪⎝⎭;4A 的纵坐标和3B 的纵坐标相同为3,代入1y x =+,得2x =,所以()42,3A ,由上可知,1a ,2a ,3a ,4a ,5a ,…,3个为一组依次循环,202036731÷=……,202012a a ∴==,故答案为:2. 三、19.【答案】(1()22020126032cos -⎛⎫︒--+ ⎪⎝⎭143=---6.(2)22222xy y x y x x x xy ⎛⎫ ⎪⎝⎭---÷+ 222222x xy y x x xyx y=-++-⋅ ()()()2()x y x x y x y x y x-+-⋅+=x y =-.当1x ,y =11=.【解析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可.(2)先将括号内的进行通分,再按同分母分式减法计算,将除法转化为乘法,把分子分母因式分解后进行约分得到最简结果,再把x ,y 的值代入即可.20.【答案】(1)3ME =,4AE =,5AM =,222AE ME AM ∴+=,90AEM ∴∠=︒,MN BC ∥,90ABC AEM ∴∠=∠=︒,AB 为O 的直径,BC ∴是O 的切线.(2)如图,连接BM ,AB 为O 的直径,90AMB ∴∠=︒,又90AEM ∠=︒,cos AM AE BAM AB AM ∴∠==,即545AB =,254AB ∴=,O ∴的直径AB 的长度为254.故答案为:254.【解析】(1)先用勾股定理的逆定理证明AEM △为直角三角形,且=90AEM ∠︒,再根据MN BC ∥即可证明90ABC ∠=︒进而求解.(2)连接BM ,由AB 是直径得到90AMB ∠=︒,再分别在Rt AMB △和Rt AEM △中使用A ∠的余弦即可求解.21.【答案】如图,过点C 作CD AB ⊥于点D ,由题意得:AE CD ∥,BF CD ∥,60ACD CAE ∴∠=∠=︒,45BCD CBF ∠=∠=︒,在Rt ACD △中,AC =,12CD AC ∴==,在Rt CDB △中,CD =(海里),60BC ∴==,601.250∴=(小时),∴从B 到达C 需要1.2小时. 【解析】过点C 作CD AB ⊥于点D ,在Rt ACD △与Rt CDB △中,利用锐角三角函数的定义求出CD 与BC 的长,进而求解.22.【答案】(1)由图形可知:72︒占360︒的百分比为72=20%360,故调查的总的学生人数为4020%200÷=(名),故答案为:200(名). (2)44 0.34 48 0.2(3)“非常好”和“较好”的学生的频率为0.220.34=0.56+,∴该校学生作业情况“非常好”和“较好”的学生一共约18000.561008⨯=(名),故答案为:1008. (4)由题意知,列表如下:由列表可以看出,一共有12种结果,并且它们出现的可能性相等.其中两次抽到的作业本都是“非常好”的有2种,∴两次抽到的作业本都是非常好的概率为21126=,故答案为:16. 【解析】(1)用72︒除360︒得到“不好”的学生人数的占比,然后再用40除以该百分比即可得到总共调查的学生人数.(2)先算出“非常好”的人数,然后再用总分数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,最后分别用求出其人数除总人数得到其频率.“非常好”的学生人数为:0.2220044⨯=(人),总人数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,故一般的人数为20044684048---=,其频率为482000.24÷=,同样可算出“较好”、“不好”的频率为0.34和0.2,补充如下表所示:(3)先算出“非常好”和“较好”的学生的频率,再乘以1800即可求解. (4)采用列表法将所有可能的情况列出,然后再用概率公式求解即可.23.【答案】(1)设甲种型号口罩的产量是x 万只,则乙种型号口罩的产量是()20x -万只,根据题意得:()18620300x x +-=,解得:15x =,则2020155x -=-=,则甲、乙两种型号口罩的产量分别为15万只和5万只.(2)设甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是()20y -万只,根据题意得:()12420216y y +-≤,解得:17y ≤.设所获利润为w 万元,则()()()181********w y y y =-+--=+,由于40>,所以w 随y 的增大而增大,即当17y =时,w 最大,此时41740108w =+=>.从而安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,获得最大利润,最大利润为108万元.【解析】(1)设甲种型号口罩的产量是x 万只,则乙种型号口罩的产量是()20x -万只,根据该公司三月份的销售收入为300万元列出一元一次方程,从而可以得到甲、乙两种型号的产品分别是多少万只. (2)根据题意,可以得到利润和生产甲种产品数量的函数关系式,再根据公司四月份投入总成本(原料总成本+生产提成总额)不超过216万元,可以得到生产甲种产品数量的取值范围,然后根据一次函数的性质,即可得到应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大,并求出最大利润.24.【答案】(1)把()0,2C 代入334y ax ax a =--,即42a -=,解得12a =-,∴抛物线的解析式为213222y x x =-++,令2132022x x -++=,可得:11x =-,24x =,()1,0A ∴-,()4,0B .(2)存在,如图,由题意,点E 在y 轴的右侧,作EG y ∥轴,交BC 于点GCD EG ∴∥,EF EGDF CD∴=,直线()10y kx k =+>与y 轴交于点D ,()0,1D ∴,211CD =-=∴,EFEG DF∴=,设BC 所在直线的解析式为(0)y mx n m =+≠,将()4,0B ,()0,2C 代入上述解析式得:042m n n =+⎧⎨=⎩,解得:122m n ⎧=-⎪⎨⎪=⎩,BC ∴的解析式为122y x =+-,设213,222E t t t ⎛⎫-++ ⎪⎝⎭,则1,22G t t ⎛⎫-+ ⎪⎝⎭,其中04t <<.()22131122222222EG t t x t ⎛⎫∴=-++-+=--+ ⎪⎝⎭-,21222()EF t DF ∴=--+,102-<,∴抛物线开口方向朝下,∴当2t =时,有最大值,最大值为2.将2t =代入2132232322t t -++=-++=,∴点E 的坐标为()2,3.【解析】(1)直接将()0,2C 代入334y ax ax a =--求出a ,即可确定抛物线解析式;然后令0y =求得x 的值,再结合已知即可确定A 、B 的坐标.(2)作EG y ∥轴,交BC 于点G ,由平行线等分线段定理可得EF EGDF CD=;再根据题意求出D 点坐标和CD 的长,可得EF EG DF =;然后再根据B 、C 的坐标求出直线BC 的解析式;再设213,222E t t t ⎛⎫-++ ⎪⎝⎭,则1,22G t t ⎛⎫-+ ⎪⎝⎭,运用两点间距离公式求得EG ,然后再代入EF EG DF=,根据二次函数的性质即可说明.25.【答案】(1)由题意知:AB AC =,AD AE =,且点M N P 、、分别为DE BE BC 、、的中点,BD CE ∴=,MN BD ∥,NP CE ∥,12MN BD =,12NP EC =,MN NP ∴=,又MN BD ∥,NP CE ∥,120A ∠=︒,AB AC =,MNE DBE ∴∠=∠,NPB C ∠=∠,30ABC C ∠=∠=︒,根据三角形外角和定理,得ENP NBP NPB ∠=∠+∠,MNP MNE ENP ∠=∠+∠,ENP NBP NPB ∠=∠+∠,C NPB ∠=∠,MNE DBE ∠=∠,60MNP DBE NBP C ABC C ∴∠=∠+∠+∠=∠+∠=︒.(2)MNP △是等边三角形.理由如下:如图,由旋转可得BAD CAE ∠=∠,在ABD △和ACE △中AB ACBAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴△≌△,BD CE ∴=,ABD ACE ∠=∠.点M N 、分别为DE BE 、的中点,MN ∴是EBD △的中位线,12MN BD ∴=且MN BD ∥,同理可证12PN CE =且PN CE ∥,MN PN ∴=,MNE DBE ∠=∠,NPB ECB ∠=∠, MNE DBE ABD ABE ACE ABE ∠=∠=∠+∠=∠+∠,ENP EBP NPB EBP ECB ∠=∠+∠=∠+∠,60MNP MNE ENP ACE ABE EBP ECB ABC ACB ∴∠=∠+∠=∠+∠+∠+∠=∠+∠=︒.在MNP △中60MNP ∠=︒,MN PN =,MNP ∴△是等边三角形.(3)根据题意得:BD AB AD +≤,即4BD ≤,从而2MN ≤,MNP △的面积212MN ==. MNP ∴△【解析】(1)根据“120A ∠=︒,AB AC =,,AD AE =点M N P 、、分别为DE BE BC 、、的中点”,可得MN BD ∥,NP CE ∥,根据三角形外角和定理,等量代换求出MNP ∠.(2)先求出ABD ACE △≌△,得出ABD ACE ∠=∠,根据MN BD ∥,NP CE ∥,和三角形外角和定理,可知MN PN =,再等量代换求出MNP ∠,即可求解. (3)具体解题过程见答案.数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前2020年山东省东营市初中学业水平考试数 学(总分120分 考试时间120分钟)注意事项:1.试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题30分;第Ⅱ卷为非选择题90分;本试题共8页.2.数学试题答题卡共8页,答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑,如需改动,先用橡皮擦干净,再改涂其他答案,第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分。
2018年山东省东营市中考数学试卷、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)-二的倒数是()5A. - 5B. 5C.-【D.—5 52.(3.00分)下列运算正确的是()A. —( x - y)2= —x2— 2xy — y2B. a2+a2=a4 5 6C. a2?a3=a3D. (xy2) 2=x2y43.(3.00分)下列图形中,根据AB// CD,能得到Z 1=Z 2的是(4 (3.00分)在平面直角坐标系中,若点P (m- 2, m+1)在第二象限,WJ m的取值范围是()A. m< - 1B. m>2C. - 1<m<2D. m>- 15 (3.00分)为了帮助市内一名患白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10 20 30 50 100人数 2 4 5 3 1A.众数是100B.中位数是30C.极差是20D.平均数是306 (3.00分)小岩打算购买气球装扮学校毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由丁会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为(C7.(3.00分)如图,在四边形 ABCD中,E 是BC 边的中点,连接DE 并延长,交 AB 的延长线丁点F, AB=BF 添加一个条件使四边形 ABCD 是平行四边形,你认 为下面四个条件中可选择的是( )A. AD=BCB. CD=BFC. ZA=Z C D Z F=Z CDF8. (3.00分)如图所示,圆柱的高AB=3,底面直径BC=3现在有一只蚂蚁想要 从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A. ; IL B g3C 』D. - ,-| ■9. (3.00分)如图所示,已知△ ABC 中,BC=12 BC 边上的高h=6, D 为BC 上一 点,EF// BC,交AB 丁点E,交AC 丁点F,设点E 到边BC 的距离为x.则△ DEFA. 19B. 18C. 16D. 15的面积y 关丁 x 的函数图象大致为(①BD=CE ②ZABD+Z ECB=45;③BD±CE ④B 样=2 (AD2+AB 2) - CD2 .其中正 确的是( )A.①②③④B.②④C.①②③D.①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分, 共28分.只要求填写最后结果.11. (3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立 了新旧动能转换项目库,筛选论证项目 377个,计划总投资4147亿元.4147亿 元用科学记数法表示为 元.12. (3.00分)分解因式:x 3- 4xy 2=.13. (3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行10. (3.00分)如图,点 E 在/\ DBC 的边DB 上,点A 在z\DBC 内部,/ DAEW BAC=90, AD=AE AB=AC 给出下列结论:四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是 .14.(3.00分)如图,B (3, - 3), C (5, 0),以OC, CB为边作平行四边形OABC 则经过点A的反比例函数的解析式为.15.(4.00分)如图,在R^AABC 中,Z B=90°,以顶点C 为圆心,适当长为半径 画弧,分别交AC, BC 丁点E, F,再分别以点E, F 为圆心,大丁土EF 的长为半 径画弧,两弧交丁点P,作射线CP 交AB 丁点D.若BD=3, AC=10,则AACD 的16. (4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积817. (4.0 0分)在平面直角坐标系内有两点 A 、B,其坐标为A (- 1 , - 1), B (2,7),点M 为x 轴上的一个动点,若要使 MB- MA 的值最大,则点M 的坐标18. (4.00分)如图,在平■面直角坐标系中,点 A1, A2, A3, ••和 B1, B2, B3, 分别在直线 ygx+b 和x 轴上.△ OA 1B 1, △ B 1A 2B 2, △ B 2A 3B 3, ••都是等腰直角 面积是■ «三角形.如果点A I(1, 1),那么点A2018的纵坐标是三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2-扼|+ (扼+1) 0-3tan30 + (- 1 ) 2018- (£ ) 1;(2)解不等式组:,好并判断-1,匹这两个数是否为该不等式组的解.20.(8.00分)2018年东营市教育局在全市中小学开展了情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5 万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:图书种类频数(本) 频率名人传记175 a科普图书 b 0.30小说110 c其他65 d(1)求该校九年级共捐书多少本;(2)统计表中的a=, b=, c=, d=;(3)若该校共捐书1500本,请估计科普图书”和小说”一共多少本;(4)该社团3名成员各捐书1本,分别是1本名人传记”,1本科普图书”,1 本小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐名人传记”,1人捐科普图书”的概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是4,结果小明比小刚提前4min到达剧院.求两人的速度.22.(8.00分)如图,CD是CDO的切线,点C在直径AB的延长线上.(1)求证:Z CADW BDC(2)若BD=L A D, AC=3,求CD 的长.323.(9.00分)关丁x的方程2x2- 5xsinA+2=0有两个相等的实数根,其中Z锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关丁y的方程y2- 10y+k2- 4k+29=0的两个根恰好是^ ABC的两边长,求△ AB C的周长.24.(10.00分)(1)某学校智慧方园”数学社团遇到这样一个题目:如图1,在z\ABC 中,点O 在线段BC上,Z BAO=30, Z OAC=75, AO^3 , BO:CO=1: 3,求AB 的长.经过社团成员讨论发现,过点B作BD//AC,交AO的延长线丁点D,通过构造△ ABD就可以解决问题(如图2).请回答:/ ADB 。
2020年山东省东营市中考数学试卷解析版一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.﹣6的倒数是()A.﹣6B.6C.D.【解答】解:﹣6的倒数是:﹣.故选:C.2.下列运算正确的是()A.(x3)2=x5B.(x﹣y)2=x2+y2C.﹣x2y3•2xy2=﹣2x3y5D.﹣(3x+y)=﹣3x+y【解答】解:A、原式=x6,不符合题意;B、原式=x2﹣2xy+y2,不符合题意;C、原式=﹣2x3y5,符合题意;D、原式=﹣3x﹣y,不符合题意.故选:C.3.利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A.﹣2B.2C.±2D.4【解答】解:表示“=”即4的算术平方根,∴计算器面板显示的结果为2,故选:B.4.如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM 等于()A.159°B.161°C.169°D.138°【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=42°,∴∠AOD=180°﹣42°=138°,∵射线OM平分∠BOD,∴∠BOM=∠DOM=21°,∴∠AOM=138°+21°=159°.故选:A.5.如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为()A.B.C.D.【解答】解:随机闭合开关K1、K2、K3中的两个有三种情况:闭合K1K2,闭合K1K3,闭合K2K3,能让两盏灯泡L1、L2同时发光的有一种情况:闭合K2K3,则P(能让两盏灯泡L1、L2同时发光)=.故选:D.6.如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是()A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小【解答】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b=0,b>0,抛物线与y轴交于正半轴,于是c>0,∴abc<0,因此选项A不符合题意;由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),∴a﹣b+c=0,9a+3b+c=0,3a+c=0,因此选项B符合题意;当x=4时,y=16a+4b+c<0,因此选项C不符合题意;当x>1时,y随x的增大而减小,因此选项D不符合题意;故选:B.7.用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2D.1【解答】解:根据圆锥侧面展开图是扇形,扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得3πr=3π,∴r=1.所以圆锥的底面半径为1.故选:D.8.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,依题意,得:4x+2x+x+x+x+x=378,解得:x=48.故选:B.9.如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC 的边AB的长度为()A.12B.8C.10D.13【解答】解:根据图2中的抛物线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,得CP=12,所以根据勾股定理,得此时AP==5.所以AB=2AP=10.故选:C.10.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD 相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC 于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤【解答】解:∵四边形ABCD是正方形∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵OA垂直平分线段PM.OB垂直平分线段PN,∴OM=OP,ON=OP,∴OM=OP=ON,∴点O是△PMN的外接圆的圆心,∵∠MPN=90°,∴MN是直径,∴M,O,N共线,故⑤正确.故选:B.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为2×10﹣8.【解答】解:0.00000002=2×10﹣8,则0.00000002用科学记数法表示为2×10﹣8.故答案为:2×10﹣8.12.因式分解:12a2﹣3b2=3(2a+b)(2a﹣b).【解答】解:原式=3(4a2﹣b2)=3(2a+b)(2a﹣b).故答案为:3(2a+b)(2a﹣b).13.东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)131415人数474则该校女子游泳队队员的平均年龄是14岁.【解答】解:该校女子游泳队队员的平均年龄是=14(岁),故答案为:14.14.已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k<0(填“>”或“<”).【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,,解得:k=﹣2,b=1,∴k<0,故答案为:<.15.(4分)如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值范围是m ≤9.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有实数根,∴△=36﹣4m≥0,解得:m≤9,则m的取值范围是m≤9.故答案为:m≤9.16.(4分)如图,P为平行四边形ABCD边BC上一点,E、F分别为P A、PD上的点,且P A=3PE,PD=3PF,△PEF、△PDC、△P AB的面积分别记为S、S1、S2.若S=2,则S1+S2=18.【解答】解:∵P A=3PE,PD=3PF,∴==,∴EF∥AD,∴△PEF∽△P AD,∴=()2,∵S△PEF=2,∴S△P AD=18,∵四边形ABCD是平行四边形,∴S△P AD=S平行四边形ABCD,∴S1+S2=S△P AD=18,故答案为18.17.(4分)如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB 边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为2.【解答】解:连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ==,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,∴OA==6,在Rt△AOP′中,∠A=30°,∴OP′=OA=3,∴线段PQ长度的最小值==2,故答案为:2.18.(4分)如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为a n,若a1=2,则a2020=2.【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,B2的横坐标和A2的横坐标相同为a2═﹣,A3的纵坐标和B2的纵坐标相同为y3=﹣=,B3的横坐标和A3的横坐标相同为a3=﹣,A4的纵坐标和B3的纵坐标相同为y4=﹣=3,B4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673…1,∴a2020=a1=2,故答案为:2.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.【解答】解:(1)原式=3+(2×)2020﹣22﹣(3+2)=3+1﹣4﹣3﹣2=﹣6;(2)原式=•=•=x﹣y.当x=+1,y=时,原式=+1﹣=1.20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【解答】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?【解答】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC=60海里,∴∠CDA=∠CDB=90°,∵在Rt△ACD中,∠CAD=∠MAB﹣∠MAC=90°﹣60°=30°,∴CD=AC=30(海里),在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD﹣∠NBC=90°﹣45°=45°,∴BC=CD=60(海里),∴60÷50=1.2(小时),∴从B处到达C岛处需要1.2小时.22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好440.22较好680.34一般480.24不好400.20请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.【解答】解:(1)根据题意得:40÷=200(名),则本次抽样共调查了200名学生;(2)填表如下:作业情况频数频率非常好440.22较好680.34一般480.24不好400.20故答案为:44;48;0.34;0.24;0.20;(3)根据题意得:1800×(0.22+0.34)=1008(名),则该校学生作业情况“非常好”和“较好”的学生一共约1008名;(4)列表如下:A1A2B C A1﹣﹣﹣(A1,A2)(A1,B)(A1,C)A2(A2,A1)﹣﹣﹣(A2,B)(A2,C)B(B,A1)(B,A2)﹣﹣﹣(B,C)C(C,A1)(C,A2)(C,B)﹣﹣﹣由列表可以看出,一共有12种结果,且它们出现的可能性相等,其中两次抽到的作业本都是“非常好”的有2种,则P(两次抽到的作业本都是“非常好”)==.23.(8分)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本124售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w万元,由题意可得:12a+4(20﹣a)≤216,∴a≤17,∵w=(18﹣12)a+(6﹣4)(20﹣a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.24.(10分)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.【解答】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.解得a=﹣.则该抛物线解析式为y=﹣x2+x+2.由于y=﹣x2+x+2=﹣(x+1)(x﹣4).故A(﹣1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2﹣1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=﹣x+2.设E(t,﹣t2+t+2),则G(t,﹣t+2),其中<t<4.∴EG=(﹣t2+t+2)﹣(﹣t+2)=﹣(t﹣2)2+2.∴=﹣(t﹣2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).25.(12分)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP 的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN=BD,PN=CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴∴MN=BD,PN=CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积==,∴△MNP的面积的最大值为.。
山东省东营市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分)(2020·衡阳) 下列各式中,计算正确的是()A .B .C .D .2. (2分)已知a<0,则点P(﹣a2 ,﹣a+1)关于原点的对称点P′在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2015九下·海盐期中) 一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据众数是()A . 91B . 78C . 98D . 854. (2分)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A .B .C .D .5. (2分)下列说法中,正确的是()A . 方程5x2=x有两个不相等的实数根B . 方程x2﹣8=0有两个相等的实数根C . 方程2x2﹣3x+2=0有两个整数根D . 当k>时,方程(k﹣1)x2+2x﹣3=0有两个不相等的实数根6. (2分)(2014·桂林) 如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1个单位长度分别沿B→A→D→C和B→C→D方向运动至相遇时停止.设运动时间为t(秒),△BPQ的面积为S(平方单位),S 与t的函数图象如图2,则下列结论错误的是()A . 当t=4秒时,S=4B . AD=4C . 当4≤t≤8时,S=2 tD . 当t=9秒时,BP平分梯形ABCD的面积7. (2分) (2016七上·宜昌期中) 如图“L”形的图形的面积有如下四种表示方法:①a2﹣b2;②a(a﹣b)+b(a﹣b);③(a+b)(a﹣b);④(a﹣b)2 .其中正确的表示方法有()A . 1种B . 2种C . 3种D . 4种8. (2分)(2019·鄞州模拟) 圆锥的母线长为10,侧面积为60π,则这个圆锥的底面周长为()A . 10πB . 12πC . 16πD . 20π二、填空题 (共8题;共8分)9. (1分)(2017·临沭模拟) 分解因式:ax2﹣4axy+4ay2=________.10. (1分)已知如图数轴上A、B、C三点,AB=2BC,A、B表示的数分别是-2 和1,则C表示的数为________11. (1分) (2020九上·新乡期末) 如图,在半径为的中,的长为,若随意向圆内投掷一个小球,小球落在阴影部分的概率为________.12. (1分) (2019七上·崂山月考) 服装商李勇进了一批每件120元的成衣,心想赚取20%的利润,为了迎合顾客心理使商品早日售完,计划按标价的8折售出,每件成衣应该标价________元.13. (1分) (2016·鸡西模拟) 如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD 折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为________.14. (1分) (2020九下·霍林郭勒月考) 如图,是△ 的中位线,若△ 的面积为1,则四边形的面积为________.15. (1分)(2018·咸宁) 如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为 a2;其中正确的是________.(把你认为正确结论的序号都填上).16. (1分) (2019七上·新兴期中) 从棱长为2cm的正方体毛坯的一角,挖去一个棱长为1cm的小正方体,得到一个如图所示的零件,则这个零件的表面积是________cm2。
二〇二〇年东营市数学中考试题第I 卷 (选择题 共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 6-的倒数是( )A . 6-B .6C .16-D .162. 下列运算正确的是( ) A .()235xx =B .()222x y x y -=+ C .2323522x y xy x y -⋅=-D .()33x y x y -+=-+3. 利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( )A .2-B .2C .2±D .44. 如图,直线AB CD 、相交于点,O 射线OM 平分,BOD ∠若42AOC ∠=︒,则AOM ∠等于( )A .159B .161C .169D .1385. 如图,随机闭合开关123,,,K K K 中的两个,则能让两盏灯泡12,L L 同时发光的概率为( )A .16 B .12 C .23 D .136. 如图,已知抛物线2()0y ax bx c a =++≠的图象与x 轴交于,A B 两点,其对称轴与x 轴交于点,C 其中,A C 两点的横坐标分别为1-和1,下列说法错误的是( )A .0abc <B .40a c +=C .1640a b c ++<D .当2x >时,y 随x 的增大而减小7. 用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为( ) A .π B .2π C .2 D .18. 中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半, 一共走了六天才到达目的地.则此人第三天走的路程为( ) A .96里 B .48里 C .24里 D .12里9. 如图1,点P 从ABC 的顶点A 出发,沿A B C →→匀速运动到点,C 图2是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则ABC 的边AB 的长度为( )A .12B .8C .10D .1310.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A B 、重合) ,对角线AC BD 、相交于点,O 过点P 分别作AC BD 、的垂线,分别交AC BD 、于点,E F 、交AD BC 、于点M N 、.下列结论:APE AME ①≌;PM PN AC +=②;222PE PF PO +=③;POFBNF ④;⑤点O 在M N、两点的连线上.其中正确的是( )A .①②③④B .①②③⑤C .①②③④⑤D .③④⑤第II 卷 (非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果.11. 2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为_ .12. 因式分解:22123a b -= . 13. 东营市某学校女子游泳队队员的年龄分布如下表:则该校女子游泳队队员的平均年龄是 岁.14. 已知一次函数()0y kx b k =+≠的图象经过()()1,11,3A B --、两点,则k _____ 0(填“>”或“<”).15. 如果关于x 的一元二次方程260x x m -+=有实数根,那么m 的取值范围是 . 16.如图,P 为平行四边形ABCD 边BC 上一点,E F 、分别为PA PD 、上的点,且3,3,PA PE PD PF ==,PEF PDC PAB ,的面积分别记为12,S S S 、.若2,S =则12S S += .17.如图,在Rt AOB 中,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的--条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为 .18.如图,在平面直角坐标系中,已知直线1y x =+和双曲线1y x=-,在直线上取一点,记为1A ,过1A 作x 轴的垂线交双曲线于点1B ,过1B 作y 轴的垂线交直线于点2A ,过2A 作x 轴的垂线交双曲线于点2B ,过2B 作y 轴的垂线交直线于点3,A ······,依次进行下去,记点n A 的横坐标为n a ,若12,a =则2020a = .三、解答题 (本大题共7小题,共62分.解答应写出文字说明、证明过程或演算步骤.)19.()1计算()22020126032cos -⎛⎫--+ ⎪⎝⎭;()2先化简,再求值:22222xy y x y x x x xy⎛⎫÷ ⎪⎝⎭---+,其中1,x y ==20. 如图,在ABC 中,以AB 为直径的O 交AC 于点,M 弦//MN BC 交AB 于点,E 且3,ME =4,AE =5AM =.()1求证:BC 是O 的切线;()2求O 的直径AB 的长度.21. 如图,C 处是一钻井平台,位于东营港口A 的北偏东60方向上,与港口A 相距托艇从A 出发,自西向东航行至B 时,改变航向以每小时50海里的速度沿BC 方向行进,此时C 位于B 的北偏西45方向,则从B 到达C 需要多少小时?22. 东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:()1本次抽样共调查了多少名学生?()2将统计表中所缺的数据填在表中横线上;()3若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名? ()4某学习小组4名学生的作业本中,有2本“非常好”(记为12A A 、),1本“较好”(记为B ),1本“一般”(记为C ),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回, 从余下的3本中再抽取一本 ,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.23. 2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:()1若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?()2如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.24. 如图,抛物线234y ax ax a =--的图象经过点()0,2C ,交x 轴于点A B 、(点A 在点B 左侧),连接,BC 直线()10y kx k =+>与y 轴交于点,D 与BC 上方的抛物线交于点,E 与BC 交于点F .()1求抛物线的解析式及点A B 、的坐标;()2EFDF是否存在最大值?若存在,请求出其最大值及此时点E 的坐标;若不存在,请说明理由. 25. 如图1,在等腰三角形ABC 中,120,,A AB AC ∠==点D E 、分别在边AB AC 、上,,AD AE =连接,BE 点M N P 、、分别为DE BE BC 、、的中点.()1观察猜想图1中,线段NM NP 、的数量关系是______________,MNP ∠的大小为__________;()2探究证明把ADE 绕点A 顺时针方向旋转到如图2所示的位置,连接,MP BD CE 、、判断MNP 的形状,并说明理由;()3拓展延伸把ADE 绕点A 在平面内自由旋转,若1,3AD AB ==,请求出MNP 面积的最大值参考答案一、选择题:本大题共10小题. 在每小题给出的四个选项中,只有一项是正确的.请把正确的选项选出来每小题选对得3分,共30分.选错、不选或选出的答案超过一个均记零分二、填空题11.8210-⨯12.()()322a b a b +- 13.14 14.1415.9;m ≤16.1817. 18.2三、解答题19. 解:()1原式143=---6=;()2原式222222x xy y x x xyx y =⋅-++- ()()()2()x y x x y y x y xx -+-=+⋅x y =-.当1,x y ==原式11==.20.()1证明:3,4,5ME AE AM ===,222AE ME AM ∴+=,90,AEM ∴∠=︒//,MN BC90,ABC AEM ∴∠=∠=︒AB 为O 的直径, BC ∴是O 的切线.()2如图,连接,BMAB 为O 的直径,90,AMB ∴∠=︒又90,AEM ∠=AM AEcos BAM AB AM∴∠==即545AB = 254AB ∴= 从而O 的直径AB 的长度为25421. 解:如图,过点C 作CD AB ⊥于点,D由题意得://,//AE CD BF CD ,60,45ACD CAE BCD CBF ∴∠=∠=∠=∠=︒在Rt ACD 中,AC =12CD AC ∴==在Rt CDB 中,CD =60BC ∴==.601.250∴=(小时), ∴从B 到达C 需要1.2小时.22.解:()72140200360÷=(名),本次抽样共调查了200名学生; ()2()()318000.220.341008⨯+=(名),所以该校学生作业情况“非常好”和“较好”的学生一共约1008名;()4列表如下:(树状图略)由列表可以看出,一共有12种结果,并且它们出现的可能性相等. 其中两次抽到的作业本都是“非常好”的有2种, 所以“"()21126P ==两次抽到的作业本都是非常好23. 解:()1设甲种型号口罩的产量是x 万只,则乙种型号口罩的产量是()20x -万只,根据题意得:()18620300,x x +-=解得:15,x =则2020155,x -=-=则甲、乙两种型号口罩的产量分别为15万只和5万只;()2设甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是()20y -万只,根据题意得:()12420216,y y +-≤解得:17y ≤.设所获利润为w 万元,则()()()181********,w y y y =-+--=+由于40>,所以w 随y 的增大而增大,即当17y =时,w 最大,此时41740108w =>+=.从而安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,获得最大利润,最大利润为108万元.24. 解:()1把()0,2C 代入334y ax ax a =-- 得:42,a -= 解得12a =- ∴抛物线的解析式为213222y x =-++ 令2132022x -++= 可得:121,4,x x =-=()()1,0,4,0A B ∴-()2存在.如图,由题意,点E 在y 轴的右侧,作//EG y 轴,交BC 于点G .//,CD EG ∴EF EG DF CD∴= 直线()10y kx k =+>与y 轴交于点D .则()0,1D ,211,CD =-=∴EF EG DF∴= 设BC 所在直线的解析式为()0y mx n m =+≠,将()()4,0,0,2B C 代入上述解析式得:042m n n=+=⎧⎨⎩解得:122m n ⎧=-⎪⎨⎪=⎩BC ∴的解析式为122y x =+- 设213,222E t t t ⎛⎫-++ ⎪⎝⎭则1,22G t t ⎛⎫-+ ⎪⎝⎭,其中04t <<. ()22131122222222EG t t x t ⎛⎫∴=-++-+=--+ ⎪⎝⎭- 2(22,2)1EF t DF ∴=--+ 10,2-< 当2t =时,有最大值,最大值为2.此时点E 的坐标为()2,3.25. 解:()1相等,60()2MNP 是等边三角形.理由如下:如图,由旋转可得,BAD CAE ∠=∠又,,AB AC AD AE ==()ABD ACE SAS ∴≌,,BD CE ABD ACE =∠=∠∴点M N 、分别为DE BE 、的中点,MN ∴是EBD 的中位线,122MN BD ∴=且//MN BD . 同理可证12PN CE =且//PN CE . ,,MN PN MNE DBE NPB ECB ∴=∠=∠∠=∠.,MNE DBE ABD ABE ACE ABE ∴∠=∠=∠+∠=∠+∠ ,ENP EBP NPB EBP ECB ∠=∠+∠=∠+∠MNP MNE ENP ACE ABE EBP ECB ∴∠=∠+∠=∠+∠+∠+∠ 60ABC ACB =∠+∠=︒.MNP ∴是等边三角形.()3根据题意得:BD AB AD ≤+.即4BD ≤,从而2,MN ≤MNP 的面积21224MN MN MN =⋅=所以MNP。
山东省东营市2020年中考数学试卷一、单选题(共10题;共20分)1.-6的倒数是( ). A. 6 B. 16 C. −16 D. -6 【答案】 C【考点】有理数的倒数【解析】【解答】解: −6×(−16)=1故答案为:C .【分析】两数之积等于1的数被叫做倒数.2.下列运算正确的是( )A. (x 3)2=x 5B. (x −y)2=x 2+y 2C. −x 2y 3⋅2xy 2=−2x 3y 5D. −(3x +y)=−3x +y【答案】 C【考点】单项式乘单项式,完全平方公式及运用,去括号法则及应用,幂的乘方【解析】【解答】A : (x 3)2=x 6 ,故此选项不符合题意B : (x −y)2=x 2−2xy+y 2 ,故此选项不符合题意C : −x 2y 3⋅2xy 2=−2x 3y 5 ,故此选项符合题意D : −(3x+y)=−3x −y ,故此选项不符合题意故答案为:C【分析】根据幂的乘方,完全平方,同底数幂的乘法法则逐一判断即可.3.利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( ) A. -2 B. 2 C. ±2 D. 4【答案】 B【考点】计算器在数的开方中的应用【解析】【解答】4的算术平方根 √4=2 ,故答案为:B .【分析】根据算术平方根的求解方法进行计算即可得解.4.如图,直线 AB 、CD 相交于点O,射线 OM 平分 ∠BOD, 若 ∠AOC =42° ,则 ∠AOM 等于( )A. 159∘B. 161∘C. 169∘D. 138∘【答案】A【考点】邻补角,角平分线的定义【解析】【解答】解:由题意可知:∠AOD=180°-∠AOC=180°-42°=138°,∴∠BOD=180°-∠AOD=42°,又OM是∠BOD的角平分线,∴∠DOM= 12∠BOD=21°,∴∠AOM=∠DOM+∠AOD=21°+138°=159°.故答案为:A.【分析】先求出∠AOD=180°-∠AOC,再求出∠BOD=180°-∠AOD,最后根据角平分线平分角即可求解.5.如图,随机闭合开关S1,S2,S3中的两个,则能让两盏灯泡同时发光的概率为()A. 23B. 12C. 13D. 16【答案】C【考点】列表法与树状图法【解析】【解答】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴P(两盏灯泡同时发光)26=13,故答案为:C.【分析】画出树状图,找出所有等可能的结果,计算即可.6.如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,其对称轴与x轴交于点C其中A,C两点的横坐标分别为-1和1下列说法错误的是()A. abc<0B. 4a+c=0C. 16a+4b+c<0D. 当x>2时,y随x的增大而减小【答案】B【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【解答】∵开口向下,与y轴交点在正半轴∴a<0,c>0∵A,C两点的横坐标分别为-1和1∴a−b+c=0,−b2a=1∴b=−2a>0,a−(−2a)+c=0∴3a+c=0,abc<0,故A选项不符合题意,B选项符合题意∵A,C两点的横坐标分别为-1和1∴B点横坐标为3∴当x=4时y=16a+4b+c<0,故C选项不符合题意∵当x>1时,y随x的增大而减小∴当x>2时,y随x的增大而减小,故D选项不符合题意故答案为:B.【分析】根据开口方向、对称轴、与y轴交点即可分别判断a、b、c符号,进而判断A选项;由A,C两点的横坐标分别为-1和1可得两个方程,判断B选项;由当x=4时y=16a+4b+c<0判断C选项;由二次函数对称轴及增减性判断D选项.7.用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A. πB. 2πC. 2D. 1【答案】 D【考点】圆锥的计算【解析】【解答】解:根据题意得12•2π•r•3=3π,解得r=1.故答案为:D.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•r•3=3π,然后解方程即可.8.中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A. 96里 B. 48里 C. 24里 D. 12里【答案】B【考点】一元一次方程的实际应用-行程问题【解析】【解答】解:设第一天的路程为x里∴x+x2+x4+x8+x16+x32=378解得x=192∴第三天的路程为x4=1924=48故答案选B【分析】根据题意可设第一天所走的路程为x,用含x的式子分别把这六天的路程表示出来,相加等于总路程378,解此方程即可.9.如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A. 12B. 8C. 10D. 13【答案】C【考点】动点问题的函数图象【解析】【解答】由图象可知:点P在A上时,CP=AC=13,点P在AB上运动时,在图象上有最低点,即AB边上的高,为12,点P与点B重合时,CP即BC最长,为13,所以,△ABC是等腰三角形,∴AB的长=2× √132−122=2×5=10故答案为:C【分析】根据图象可知点P沿A→B→C匀速运动到点C,此时AC最长,CP在AB边上先变小后变大,从而可求出AB上的高,从图象可以看出点P运动到点B时CP=CB=13,可知△ABC是等腰三角形,进而得出结论.10.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合) ,对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:① △APE≌△AME;② PM+PN=AC;③ PE2+PF2=PO2;④ △POF∼△BNF;⑤点O在M、N两点的连线上.其中正确的是()A. ①②③④B. ①②③⑤C. ①②③④⑤D. ③④⑤【答案】 B【考点】三角形全等及其性质,矩形的判定与性质,正方形的性质,三角形全等的判定(ASA ),直角三角形斜边上的中线【解析】【解答】∵四边形ABCD 正方形,AC 、BD 为对角线,∴∠MAE=∠EAP=45°,根据题意MP ⊥AC ,故∠AEP=∠AEM=90°, ∴∠AME=∠APE=45°,在三角形 △APE 与 △AME 中,{∠AEP =∠AEMAE =AE ∠EAP =∠EAM∴ △APE ≌△AME ASA ,故①符合题意;∴AE=ME=EP= 12 MP ,同理,可证△PBF ≌△NBF ,PF=FN= 12 NP ,∵正方形ABCD 中,AC ⊥BD ,又∵PM ⊥AC ,PN ⊥BD ,∴∠PEO=∠EOF=∠PFO=90°,∴四边形PEOF 为矩形,∴PF=OE ,∴OE+AE=PF+PE=NF+ME=AO ,又∵ME=PE= 12 MP ,FP=FN= 12 NP ,OA= 12 AC ,∴ PM+PN=AC ,故②符合题意;∵四边形PEOF 为矩形,∴PE=OF ,在直角三角形OPF 中, OF 2+PF 2=PO 2 ,∴ PE 2+PF 2=PO 2 ,故③符合题意;∵△BNF 是等腰直角三角形,而P 点是动点,无法保证△POF 是等腰直角三角形,故④不符合题意;连接MO 、NO ,在△OEM 和△OEP 中,{OE =OE∠OEM =∠OEP EM =EP∴△OEM ≌△OEP ,OM=OP ,同理可证△OFP≌△OFN,OP=ON,又∵∠MPN=90°,OM=OP=ON,OP=12MO+NO,根据直角三角形斜边中线等于斜边一半,OP= 12MN,∴MO+NO=MN,点O在M、N两点的连线上.故⑤符合题意.故答案为:B.【分析】①根据题意及正方形的性质,即可判断△APE≌△AME;②根据△APE≌△AME及正方形的性质,得ME=EP=AE=12MP,同理可证PF=NF= 12NP,根据题意可证四边形OEPF为矩形,则OE=PF,则OE+AE=PF+PE=NF+ME=AO,AO= 12AC,故证明PM+PN=AC;③根据四边形PEOF为矩形的性质,在直角三角形OPF中,使用勾股定理,即可判断;④△BNF是等腰直角三角形,而P点是动点,无法保证△POF是等腰直角三角形,故④可判断;⑤连接MO、NO,证明OP=OM=ON,根据直角三角形斜边中线等于斜边一半,即可证明.二、填空题(共8题;共8分)11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为________.【答案】2×10−8【考点】科学记数法—表示绝对值较小的数【解析】【解答】因为0.00000002=2×10−8,故答案为:2×10−8.【分析】根据科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,进而求解.12.因式分解:12a2−3b2=________.【答案】3(2a+b)(2a-b)【考点】提公因式法与公式法的综合运用【解析】【解答】解:12a2−3b2=3(4a2−b2)=3(2a+b)(2a−b).故答案为:3(2a+b)(2a−b).【分析】先提公因式,再按照平方差公式分解即可.13.某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是________岁.【答案】14【考点】加权平均数及其计算【解析】【解答】解:根据题意得:(13×4+14×7+15×4)÷15=14(岁),故答案为:14.【分析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.14.已知一次函数y=kx+b的图象经过A(1,﹣1),B(﹣1,3)两点,则k________0(填“>”或“<”)【答案】<【考点】一次函数的性质【解析】【解答】∵A点横坐标为1,B点横坐标为-1,根据-1<1,3>-1,可知,随着横坐标的增大,纵坐标减小了,∴k<0.故答案为<.【分析】根据A(1,-1),B(-1,3),利用横坐标和纵坐标的增减性判断出k的符号.15.如果关于x的一元二次方程x2−6x+m=0有实数根,那么m的取值范围是________.【答案】m≤9【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵关于x的一元二次方程x2−6x+m=0有实数根,∴△=b2−4ac≥0,∵a=1,b=−6,c=m,∴(−6)2−4×1×m≥0,∴4m≤36,∴m≤9.故答案为:m≤9.【分析】由一元二次方程根与系数的关键可得:△≥0,从而列不等式可得答案.16.如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD= 3PF,△PEF,△PDC,△PAB的面积分别记为S、S1,S2.若S=2,则S1+S2=________.【答案】18【考点】平行四边形的性质,相似三角形的判定与性质【解析】【解答】解:∵PA=3PE,PD=3PF,∴PEPA =PDPF=3,且∠APD=∠EPF,∴△PEF∽△PAD,根据相似三角形面积比等于相似比的平方,且△PEF的面积为2可知,SΔPDA SΔPFE =(PDPF)2=32=9,∴SΔPDA=2×9=18,过P点作平行四边形ABCD的底AD上的高PH,∴SΔPDA=1AD×PH=18,2∴AD×PH=36,即平行四边形ABCD的面积为36,∴S1+S2=S平行四边形ABCD−SΔPAD=36−18=18.故答案为:18.【分析】证明△PEF∽△PAD,再结合△PEF的面积为2可求出△PAD的面积,进而求出平行四边形ABCD 的面积,再用平行四边形ABCD的面积减去△PAD的面积即可求解.17.如图,在Rt△AOB中,OB=2√3,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为________.【答案】2√2【考点】垂线段最短,含30°角的直角三角形,勾股定理,切线的性质【解析】【解答】解:如图:连接OP、OQ,∵PQ是⊙O的一条切线∴PQ⊥OQ∴PQ2=OP2−OQ2∴当OP⊥AB时,如图OP′,PQ最短在Rt△ABC中,OB=2√3,∠A=30°∴AB=2OB= 4√3,AO=cos∠A·AB= √32×4√3∵S△AOB= 12AO⋅OB=12PO⋅AB∴12×2√3×6=12PO⋅4√3,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ= √OP2−OQ2=√32−12=2√2.故答案为2√2.【分析】如图:连接OP、OQ,根据PQ2=OP2−OQ2,可得当OP⊥AB时,PQ最短;在Rt△AOB中运用含30°的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可.18.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=−1x,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,······,依次进行下去,记点A n的横坐标为a n,若a1=2,则a2020=________.【答案】2【考点】反比例函数图象上点的坐标特征,与一次函数相关的规律问题【解析】【解答】解:当a1=2时,B1的横坐标与A1的横坐标相等为2,A1(2,3),B1(2,−12) ;A2的纵坐标和B1的纵坐标相同为−12,代入y=x+1,得x= −32,可得A2(−32,−12);B2的横坐标和A2的横坐标相同为−32,代入y=−1x得,y= 23,得B2( −32,23) ;A3的纵坐标和B2的纵坐标相同为23,代入y=x+1,得x= −13,故A3(−13,23)B3的横坐标和A3的横坐标相同为−13,代入y=−1x得,y=3,得B3( −13,3)A4的纵坐标和B3的纵坐标相同为3,代入y=x+1,得x=2,所以A4(2,3)…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673⋯⋯1,∴a2020=a1=2,故答案为:2.【分析】根据反比例函数与一次函数图象上点的坐标特征分别求出A1、B1、A2、B2、A3、B3…,从而得到每3次变化为一个循环组依次循环,用2020除以3,根据商的情况确定出a2020即可三、解答题(共7题;共76分)19.(1)计算:√27+(2cos60∘)2020−(12)−2−|3+2√3|;(2)先化简,再求值:(x−2xy−y 2x )÷x2−y2x2+xy,其中x=√2+1,y=√2.【答案】(1)解:√27+(2cos60∘)2020−(12)−2−|3+2√3| =3√3+1−4−3−2√3=√3−6;(2)解:(x−2xy−y 2x )÷x2−y2x2+xy=x2−2xy+y2x ⋅x2+xy x2−y2=(x−y)2x ⋅x(x+y) (x−y)(x+y)=x−y.当x=√2+1,y=√2时,原式=√2+1−√2=1.【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;(2)先将括号内的进行通分,再按同分母分式减法计算,将除法转化为乘法,把分子分母因式分解后进行约分得到最简结果,再把x,y的值代入即可.20.如图,在△ABC中,以AB为直径的⊙O交AC于点M弦MN//BC交AB于点E,且ME=3, AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【答案】(1)解:∵ME=3,AE=4,AM=5,∴AE2+ME2=AM2,∴∠AEM=90°,∵MN//BC,∴∠ABC=∠AEM=90°,∵AB为⊙O的直径,∴BC是⊙O的切线.(2)解:如图,连接BM,∵AB为⊙O的直径,∴∠AMB=90°,又∵∠AEM=90∘,∴cos∠BAM=AMAB =AEAM,即5AB =45,∴AB=254,∴⊙O的直径AB的长度为254.故答案为:254.【考点】勾股定理的逆定理,圆周角定理,切线的判定,锐角三角函数的定义【解析】【分析】(1)先用勾股定理的逆定理证明△AEM为直角三角形,且∠AEM=90°,再根据MN∥BC即可证明∠ABC=90°进而求解;(2)连接BM,由AB是直径得到∠AMB=90°,再分别在Rt△AMB和Rt△AEM中使用∠A的余弦即可求解.21.如图,C处是一钻井平台,位于东营港口A的北偏东60∘方向上,与港口A相距60√2海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45∘方向,则从B到达C需要多少小时?【答案】解:如图,过点C作CD⊥AB于点D,由题意得:AE//CD,BF//CD,∴∠ACD=∠CAE=60∘,∠BCD=∠CBF=45°,在Rt△ACD中,AC=60√2(海里),∴CD=1AC=30√2(海里),2在Rt△CDB中,CD=30√2(海里),∴BC=√2CD=60,∴60=1.2(小时),50∴从B到达C需要1.2小时.【考点】解直角三角形的应用﹣方向角问题【解析】【分析】过点C作CD⊥AB于点D,在Rt△ACD与Rt△CDB中,利用锐角三角函数的定义求出CD与BC的长,进而求解.22.东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.20%,【答案】(1)解:由图形可知:72°占360°的百分比为72360=故调查的总的学生人数为40÷20%=200(名),故答案为:200(名) .(2)解:“非常好”的学生人数为:0.22×200=44(人),总人数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,故一般的人数为200-44-68-40=48,其频率为48÷200=0.24,同样可算出“较好”、“不好”的频率为0.34和0.2,补充如下表所示:(3)解:“非常好”和“较好”的学生的频率为0.22+0.34=0.56,∴该校学生作业情况“非常好”和“较好”的学生一共约1800×0.56=1008(名),故答案为:1008;(4)解:由题意知,列表如下:由列表可以看出,一共有12种结果,并且它们出现的可能性相等.其中两次抽到的作业本都是“非常好”的有2种,∴两次抽到的作业本都是非常好的概率为212=16,故答案为:16.【考点】用样本估计总体,频数(率)分布表,扇形统计图,列表法与树状图法【解析】【分析】(1)用72°除360°得到“不好”的学生人数的占比,然后再用40除以该百分比即可得到总共调查的学生人数;(2)先算出“非常好”的人数,然后再用总分数减去“非常好”、“较好”、“不好”的人数即得到“一般”的人数,最后分别用求出其人数除总人数得到其频率;(3)先算出“非常好”和“较好”的学生的频率,再乘以1800即可求解;(4)采用列表法将所有可能的情况列出,然后再用概率公式求解即可.23.2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【答案】(1)解:设甲种型号口罩的产量是x万只,则乙种型号口罩的产量是(20−x)万只,根据题意得:18x+6(20−x)=300,解得:x=15,则20−x=20−15=5,则甲、乙两种型号口罩的产量分别为15万只和5万只(2)解:设甲种型号口罩的产量是y万只,则乙种型号口罩的产量是(20−y)万只,根据题意得:12y+4(20−y)≤216,解得: y≤17.设所获利润为w万元,则w=(18−12)y+(6−4)(20−y)=4y+40,由于4>0,所以w随y的增大而增大,即当y=17时,w最大,此时w=4>17+40=108.从而安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,获得最大利润,最大利润为108万元【考点】一次函数的实际应用,一元一次方程的实际应用-销售问题【解析】【分析】(1)设甲种型号口罩的产量是x万只,则乙种型号口罩的产量是(20−x)万只,根据该公司三月份的销售收入为300万元列出一元一次方程,从而可以得到甲、乙两种型号的产品分别是多少万只;(2)根据题意,可以得到利润和生产甲种产品数量的函数关系式,再根据公司四月份投入总成本(原料总成本+生产提成总额)不超过216万元,可以得到生产甲种产品数量的取值范围,然后根据一次函数的性质,即可得到应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大,并求出最大利润.24.如图,抛物线y=ax2−3ax−4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)EFDF是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.【答案】(1)解:把C(0,2)代入y=ax3−3ax−4a,即−4a=2,解得a=−12∴抛物线的解析式为y=−12x2+32x+2令−12x2+32x+2=0可得: x1=−1,x2=4,∴A(−1,0),B(4,0);(2)解:存在,如图,由题意,点E在y轴的右侧,作EG//y轴,交BC于点G∴CD//EG∴EF DF=EG CD∵ 直线 y =kx +1(k >0) 与 y 轴交于点 D ∴ D(0,1) , ∴CD =2−1=1, ∴EFDF =EG设 BC 所在直线的解析式为 y =mx +n(m ≠0) , 将 B(4,0),C(0,2) 代入上述解析式得: {0=4m +n2=n 解得: {m =−12n =2∴BC 的解析式为 y =−12x +2 设 E(t,−12t 2+32t +2)则 G(t,−12t +2) ,其中 0<t <4 .∴EG =−12t 2+32t +2−(−12x +2)=−12(t −2)2+2∴EF DF =−12(t −2)2+2, ∵−12<0,∴抛物线开口方向朝下∴当 t =2 时,有最大值,最大值为 2 . 将t=2代入 −12t 2+32t +2 =-2+3+2=3 ∴点 E 的坐标为 (2,3) .【考点】待定系数法求二次函数解析式,平行线分线段成比例,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c 的性质【解析】【分析】(1)直接将 C(0,2) 代入 y =ax 3−3ax −4a 求出a ,即可确定抛物线解析式;然后令y=0求得x 的值,再结合已知即可确定A 、B 的坐标;(2)作 EG//y 轴,交 BC 于点 G ,由平行线等分线段定理可得 EFDF =EGCD ;再根据题意求出D 点坐标和CD 的长,可得 EFDF =EG ;然后再根据B 、C 的坐标求出直线BC 的解析式;再设 E(t,−12t 2+32t +2) ,则 G(t,−12t +2) ,运用两点间距离公式求得EG ,然后再代入 EFDF =EG ,根据二次函数的性质即可说明25.如图1,在等腰三角形 ABC 中, ∠A =120∘,AB =AC, 点 D 、E 分别在边 AB 、AC 上, AD =AE, 连接 BE, 点 M 、N 、P 分别为 DE 、BE 、BC 的中点.(1)观察猜想图1中,线段NM、NP的数量关系是________,∠MNP的大小为________;(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【答案】(1)相等;60°(2)解:△MNP是等边三角形.理由如下:如图,由旋转可得∠BAD=∠CAE在△ABD和△ACE中{AB=AC∠BAD=∠CAEAD=AE∴△ABD≌△ACE(SAS)∴BD=CE,∠ABD=∠ACE.∵点M、N分别为DE、BE的中点,∴MN是△EBD的中位线,∴MN=12BD且MN//BD同理可证PN=12CE且PN//CE∴MN=PN,∠MNE=∠DBE,∠NPB=∠ECB∵∠MNE=∠DBE=∠ABD+∠ABE=∠ACE+∠ABE∠ENP=∠EBP+∠NPB=∠EBP+∠ECB∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBP+∠ECB =∠ABC+∠ACB=60°.在△MNP中∵∠MNP= 60°,MN=PN∴△MNP是等边三角形.(3)解:根据题意得: BD≤AB+AD即BD≤4,从而MN≤2△MNP的面积=12MN⋅√32MN=√34MN2.∴△MNP面积的最大值为√3.【考点】三角形的外角性质,等腰三角形的性质,等边三角形的判定,旋转的性质,三角形的中位线定理【解析】【解答】解:(1)由题意知:AB=AC,AD=AE,且点M、N、P分别为DE、BE、BC的中点,∴BD=CE,MN //BD,NP //CE,MN= 12BD,NP= 12EC∴MN=NP又∵MN //BD,NP //CE,∠A= 120°,AB=AC,∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C= 30°根据三角形外角和定理,得∠ENP=∠NBP+∠NPB∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,∠NPB=∠C,∠MNE=∠DBE,∴∠MNP=∠DBE+∠NBP+∠C=∠ABC+∠C = 60∘.【分析】(1)根据"∠A=120∘,AB=AC,AD=AE,点M、N、P分别为DE、BE、BC的中点",可得MN //BD,NP //CE ,根据三角形外角和定理,等量代换求出∠MNP.(2)先求出△ABD≌△ACE,得出∠ABD=∠ACE,根据MN //BD,NP //CE ,和三角形外角和定理,可知MN=PN,再等量代换求出∠MNP,即可求解.(3)根据BD≤AB+AD,可知BD最大值,继而求出△MNP面积的最大值。
2020年东营市初中学业水平考试数学试题(总分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.﹣6的倒数是()A.﹣6 B.6 C.D.2.下列运算正确的是()A.(x3)2=x5B.(x﹣y)2=x2+y2C.﹣x2y3•2xy2=﹣2x3y5D.﹣(3x+y)=﹣3x+y3.利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A.﹣2 B.2 C.±2 D.44.如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM等于()A.159°B.161°C.169°D.138°5.如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为()A.B.C.D.6.如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是()A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小7.用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.π B.2π C.2 D.18.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里9.如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12 B.8 C.10 D.1310.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为.12.因式分解:12a2﹣3b2=.13.东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)13 14 15人数 4 7 4 则该校女子游泳队队员的平均年龄是岁.14.已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k0(填“>”或“<”).15.如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值范围是.16.如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2=.17.如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为.18.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为a n,若a1=2,则a2020=.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.请根据图表中提供的信息,解答下列问题: (1)本次抽样共调查了多少名学生? (2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名? (4)某学习小组4名学生的作业本中,有2本“非常好”(记为A 1、A 2),1本“较好”(记为B ),1本“一般”(记为C ),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.23.(8分)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号 价格(元/只)项目 甲乙成本 12 4 售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润. 24.(10分)如图,抛物线y =ax 2﹣3ax ﹣4a 的图象经过点C (0,2),交x 轴于点A 、B (点A 在点B 左侧),连接BC ,直线y =kx+1(k >0)与y 轴交于点D ,与BC 上方的抛物线交于点E ,与BC 交于点F . (1)求抛物线的解析式及点A 、B 的坐标; (2)是否存在最大值?若存在,请求出其最大值及此时点E 的坐标;若不存在,请说明理由.25.(12分)如图1,在等腰三角形ABC 中,∠A =120°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE ,连接BE ,点M 、N 、P 分别为DE 、BE 、BC 的中点.作业情况 频数 频率 非常好0.22 较好 68一般不好40(1)观察猜想.图1中,线段NM、NP的数量关系是,∠MNP的大小为.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.答案与解析第Ⅰ卷(选择题共30分)一、选择题:本大题共10题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.﹣6的倒数是()A.﹣6 B.6 C.D.【知识考点】倒数.【思路分析】根据倒数的定义,a的倒数是(a≠0),据此即可求解.【解题过程】解:﹣6的倒数是:﹣.故选:C.【总结归纳】本题考查了倒数的定义,理解定义是关键.2.下列运算正确的是()A.(x3)2=x5B.(x﹣y)2=x2+y2C.﹣x2y3•2xy2=﹣2x3y5D.﹣(3x+y)=﹣3x+y 【知识考点】整式的混合运算.【思路分析】各项计算得到结果,即可作出判断.【解题过程】解:A、原式=x6,不符合题意;B、原式=x2﹣2xy+y2,不符合题意;C、原式=﹣2x3y5,符合题意;D、原式=﹣3x﹣y,不符合题意.故选:C.【总结归纳】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A.﹣2 B.2 C.±2 D.4【知识考点】计算器—基础知识.【思路分析】根据科学计算器的使用及算术平方根的定义求解可得.【解题过程】解:表示“=”即4的算术平方根,∴计算器面板显示的结果为2,故选:B.【总结归纳】本题主要考查计算器﹣基础知识,解题的关键是掌握科学计算器的基本功能的使用.4.如图,直线AB、CD相交于点O,射线OM平分∠BOD,若∠AOC=42°,则∠AOM等于()A.159°B.161°C.169°D.138°【知识考点】角平分线的定义;对顶角、邻补角.【思路分析】直接利用邻补角、邻补角的定义以及角平分线的定义得出∠BOM=∠DOM,进而得出答案.【解题过程】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=42°,∴∠AOD=180°﹣42°=138°,∵射线OM平分∠BOD,∴∠BOM=∠DOM=21°,∴∠AOM=138°+21°=159°.故选:A.【总结归纳】此题主要考查了对顶角、邻补角以及角平分线的定义,正确得出∠BOM=∠DOM 是解题关键.5.如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】找出随机闭合开关K1、K2、K3中的两个有的情况数以及能让两盏灯泡L1、L2同时发光的情况数,即可求出所求概率.【解题过程】解:随机闭合开关K1、K2、K3中的两个有三种情况:闭合K1K2,闭合K1K3,闭合K2K3,能让两盏灯泡L1、L2同时发光的有一种情况:闭合K2K3,则P(能让两盏灯泡L1、L2同时发光)=.故选:D.【总结归纳】此题考查了列表法与树状图法,弄清题中的数据是解本题的关键.6.如图,已知抛物线y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其对称轴与x轴交于点C,其中A、C两点的横坐标分别为﹣1和1,下列说法错误的是()A.abc<0B.4a+c=0C.16a+4b+c<0D.当x>2时,y随x的增大而减小【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c 满足的关系综合进行判断即可.【解题过程】解:抛物线开口向下,因此a<0,对称轴为x=1,即﹣=1,也就是2a+b=0,b>0,抛物线与y轴交于正半轴,于是c>0,∴abc<0,因此选项A不符合题意;由A(﹣1,0)、C(1,0)对称轴为x=1,可得抛物线与x轴的另一个交点B(3,0),∴a﹣b+c=0,9a+3b+c=0,3a+c=0,因此选项B符合题意;当x=4时,y=16a+4b+c<0,因此选项C不符合题意;当x>1时,y随x的增大而减小,因此选项D不符合题意;故选:B.【总结归纳】本题考查二次函数的图象和性质,理解抛物线的位置与系数a、b、c之间的关系是正确解答的关键.7.用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2 D.1【知识考点】扇形面积的计算;圆锥的计算.【思路分析】根据扇形的面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径)即可求出圆锥的底面半径.【解题过程】解:根据圆锥侧面展开图是扇形,扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得3πr=3π,∴r=1.所以圆锥的底面半径为1.故选:D.【总结归纳】本题考查了圆锥的计算、扇形面积的计算,解决本题的关键是掌握扇形面积公式.8.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里【知识考点】数学常识;一元一次方程的应用.【思路分析】设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,根据六天共走了378里,即可得出关于x的一元一次方程,解之即可得出结论.【解题过程】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,依题意,得:4x+2x+x+x+x+x=378,解得:x=48.故选:B.【总结归纳】本题考查了一元一次方程的应用以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.9.如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12 B.8 C.10 D.13【知识考点】动点问题的函数图象.【思路分析】根据图2中的曲线可得,当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,可得CP=12,根据勾股定理可得AP=5,再根据等腰三角形三线合一可得AB的长.【解题过程】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP⊥AB,根据图2点Q为曲线部分的最低点,得CP=12,所以根据勾股定理,得此时AP==5.所以AB=2AP=10.故选:C.【总结归纳】本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.10.如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤点O在M、N两点的连线上.其中正确的是()A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤【知识考点】全等三角形的判定;正方形的性质;相似三角形的判定与性质.【思路分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【解题过程】解:∵四边形ABCD是正方形∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵OA垂直平分线段PM.OB垂直平分线段PN,∴OM=OP,ON=OP,∴OM=OP=ON,∴点O是△PMN的外接圆的圆心,∵∠MPN=90°,∴MN是直径,∴M,O,N共线,故⑤正确.故选:B.【总结归纳】本题考查正方形的性质、矩形的判定、勾股定理等知识,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为.【知识考点】科学记数法—表示较小的数.【思路分析】由原数左边起第一个不为零的数字前面的0的个数所决定10的负指数,把较小的数表示成科学记数法即可.【解题过程】解:0.00000002=2×10﹣8,则0.00000002用科学记数法表示为2×10﹣8.故答案为:2×10﹣8.【总结归纳】此题考查了科学记数法﹣表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.因式分解:12a2﹣3b2=.【知识考点】提公因式法与公式法的综合运用.【思路分析】原式提取公因式,再利用平方差公式分解即可.【解题过程】解:原式=3(4a2﹣b2)=3(2a+b)(2a﹣b).故答案为:3(2a+b)(2a﹣b).【总结归纳】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)13 14 15人数 4 7 4 则该校女子游泳队队员的平均年龄是岁.【知识考点】加权平均数.【思路分析】直接利用加权平均数的定义列式计算可得.【解题过程】解:该校女子游泳队队员的平均年龄是=14(岁),故答案为:14.【总结归纳】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k0(填“>”或“<”).【知识考点】一次函数图象与系数的关系;一次函数图象上点的坐标特征.【思路分析】设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入代入,得到k和b值,即可得到结论.【解题过程】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,,解得:k=﹣2,b=1,∴k<0,故答案为:<.【总结归纳】本题考查了一次函数图象与系数的关系,利用待定系数法正确的求出k,b的值是解题的关键.15.如果关于x的一元二次方程x2﹣6x+m=0有实数根,那么m的取值范围是.【知识考点】根的判别式.【思路分析】根据一元二次方程有实数根,得到根的判别式大于等于0,求出m的范围即可.【解题过程】解:∵关于x的一元二次方程x2﹣6x+m=0有实数根,∴△=36﹣4m≥0,解得:m≤9,则m的取值范围是m≤9.故答案为:m≤9.【总结归纳】此题考查了根的判别式,弄清一元二次方程解的情况与根的判别式的关系是解本题的关键.16.如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD =3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2=.【知识考点】平行四边形的性质;相似三角形的判定与性质.【思路分析】利用相似三角形的性质求出△PAD的面积即可解决问题.【解题过程】解:∵PA=3PE,PD=3PF,∴==,∴EF∥AD,∴△PEF∽△PAD,∴=()2,∵S△PEF=2,∴S△PAD=18,∵四边形ABCD是平行四边形,∴S△PAD=S平行四边形ABCD,∴S1+S2=S△PAD=18,故答案为18.【总结归纳】本题考查相似三角形的判定和性质,平行四边形的性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为.【知识考点】含30度角的直角三角形;切线的性质.【思路分析】连接OP、OQ,作OP′⊥AB于P′,根据切线的性质得到OQ⊥PQ,根据勾股定理得到PQ=,根据垂线段最短得到当OP⊥AB时,OP最小,根据直角三角形的性质、勾股定理计算即可.【解题过程】解:连接OP、OQ,作OP′⊥AB于P′,∵PQ是⊙O的切线,∴OQ⊥PQ,∴PQ==,当OP最小时,线段PQ的长度最小,当OP⊥AB时,OP最小,在Rt△AOB中,∠A=30°,∴OA==6,在Rt△AOP′中,∠A=30°,∴OP′=OA=3,∴线段PQ长度的最小值==2,故答案为:2.【总结归纳】本题考查的是切线的性质、勾股定理、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.18.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为a n,若a1=2,则a2020=.【知识考点】规律型:点的坐标;一次函数的性质;一次函数图象上点的坐标特征;反比例函数的性质;反比例函数图象上点的坐标特征.【思路分析】根据反比例函数与一次函数图象上点的坐标特征分别求出A1、B1、A2、B2、A3、B3…,从而得到每3次变化为一个循环组依次循环,用2020除以3,根据商的情况确定出a2020即可.【解题过程】解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,B2的横坐标和A2的横坐标相同为a2═﹣,A3的纵坐标和B2的纵坐标相同为y3=﹣=,B3的横坐标和A3的横坐标相同为a3=﹣,A4的纵坐标和B3的纵坐标相同为y4=﹣=3,B4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2020÷3=673…1,∴a2020=a1=2,故答案为:2.【总结归纳】本题考查了一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,依次求出各点的坐标,观察出每3次变化为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:+(2cos60°)2020﹣()﹣2﹣|3+2|;(2)先化简,再求值:(x﹣)÷,其中x=+1,y=.【知识考点】实数的运算;分式的化简求值;负整数指数幂;特殊角的三角函数值.【思路分析】(1)先计算2cos60°、()﹣2,再化简和﹣|3+2|,最后加减求出值;(2)按分式的混合运算法则,先化简分式,再代入求值.【解题过程】解:(1)原式=3+(2×)2020﹣22﹣(3+2)=3+1﹣4﹣3﹣2=﹣6;(2)原式=•=•=x﹣y.当x=+1,y=时,原式=+1﹣=1.【总结归纳】本题考查了二次根式的化简、特殊角的三角函数值、负整数指数幂、绝对值的化简及分式的混合运算.题目综合性较强,是中考热点.熟记特殊角的三角函数值和负整数指数幂的意义是求(1)的关键,掌握分式的混合运算法则,化简分式是解决(2)的关键.20.(8分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.【知识考点】勾股定理;勾股定理的逆定理;垂径定理;圆周角定理;切线的判定与性质.【思路分析】(1)根据勾股定理的逆定理得到∠AEM=90°,由于MN∥BC,根据平行线的性质得∠ABC=90°,然后根据切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4﹣r)2,解方程即可得到⊙O的半径,即可得出答案.【解题过程】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵MN∥BC,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=,∴AB=2r=.【总结归纳】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和勾股定理的逆定理.21.(8分)如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,在直角三角形ACD中,求出CD的长,在直角三角形BCD中,利用锐角三角函数定义求出BC 的长,进而求出所求时间即可.【解题过程】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC=60海里,∴∠CDA=∠CDB=90°,∵在Rt△ACD中,∠CAD=∠MAB﹣∠MAC=90°﹣60°=30°,∴CD=AC=30(海里),在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD﹣∠NBC=90°﹣45°=45°,∴BC=CD=60(海里),∴60÷50=1.2(小时),∴从B处到达C岛处需要1.2小时.【总结归纳】此题考查了解直角三角形的应用﹣方向角,熟练掌握锐角三角函数定义是解本题的关键.22.(8分)东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.作业情况频数频率非常好0.22较好68一般不好40请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少名学生?(2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.【知识考点】用样本估计总体;频数(率)分布表;列表法与树状图法.【思路分析】(1)结合扇形统计图与表格确定出调查学生总数即可;(2)分别求出所缺的数据,填写表格即可;(3)根据题意列出算式,计算即可求出值;(4)列表确定出所有等可能的情况数,找出两次抽到的作业本都是“非常好”的情况数,即可求出所求概率.【解题过程】解:(1)根据题意得:40÷=200(名),则本次抽样共调查了200名学生;(2)填表如下:作业情况频数频率非常好44 0.22较好68 0.34一般48 0.24不好40 0.20故答案为:44;48;0.34;0.24;0.20;(3)根据题意得:1800×(0.22+0.34)=1008(名),则该校学生作业情况“非常好”和“较好”的学生一共约1008名;(4)列表如下:A1A2 B C A1﹣﹣﹣(A1,A2)(A1,B)(A1,C)A2(A2,A1)﹣﹣﹣(A2,B)(A2,C)B (B,A1)(B,A2)﹣﹣﹣(B,C)C (C,A1)(C,A2)(C,B)﹣﹣﹣由列表可以看出,一共有12种结果,且它们出现的可能性相等,其中两次抽到的作业本都是“非常好”的有2种,则P(两次抽到的作业本都是“非常好”)==.【总结归纳】此题考查了列表法与树状图法,用样本估计总体,频数(率)分布表,弄清题中的数据是解本题的关键.23.(8分)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号甲乙价格(元/只)项目成本12 4售价18 6 (1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.【知识考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由“某医药公司每月生产甲、乙两种型号的防疫口罩共20万只和该公司三月份的销售收入为300万元”列出方程组,可求解;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w万元,由“四月份投入成本不超过216万元”列出不等式,可求a的取值范围,找出w与a的函数关系式,由一次函数的性质可求解.【解题过程】解:(1)设生产甲、乙两种型号的防疫口罩分别是x万只和y万只,由题意可得:,解得:,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a万只和(20﹣a)万只,利润为w万元,由题意可得:12a+4(20﹣a)≤216,∴a≤17,∵w=(18﹣12)a+(6﹣4)(20﹣a)=4a+40是一次函数,w随a的增大而增大,∴a=17时,w有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.【总结归纳】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,弄清题中的等量关系是解本题的关键.24.(10分)如图,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.【知识考点】一次函数的性质;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征;二次函数的最值;待定系数法求二次函数解析式;抛物线与x轴的交点.【思路分析】(1)将点C的坐标代入函数解析式求得a值即可;将所求得的抛物线解析式转化为两点式,易得点A、B的坐标;(2)由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,根据平行线截线段成比例将求的最大值转化为求的最大值,所以利用一次函数图象上点的坐标特征、二次函数图象上点的坐标特征,两点间的距离公式以及配方法解题即可.【解题过程】解:(1)把C(0,2)代入y=ax2﹣3ax﹣4a得:﹣4a=2.解得a=﹣.则该抛物线解析式为y=﹣x2+x+2.。
2024年山东省东营市中考数学真题试卷第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1. 3-的绝对值是( ) A. 3B. 3-C. 3±D.2. 下列计算正确的是( ) A. 236x x x ⋅= B. ()2211x x -=-C. ()2224xyx y =D. 2142-⎛⎫-=- ⎪⎝⎭3. 已知,直线a b ∥,把一块含有30︒角的直角三角板如图放置,130∠=︒,三角板的斜边所在直线交b 于点A ,则2∠=( )A. 50︒B. 60︒C. 70︒D. 80︒4. 某几何体的俯视图如图所示,下列几何体(箭头所示为正面)的俯视图与其相同的是( )A. B. C. D.5. 用配方法解一元二次方程2220230x x --=时,将它转化为2()x a b +=的形式,则b a 的值为( ) A. 2024-B. 2024C. 1-D. 16. 如图,四边形ABCD 是矩形,直线EF 分别交AD ,BC ,BD 于点E,F,O,下列条件中,不能证明BOF DOE △△≌的是( )A. O 为矩形ABCD 两条对角线的交点B. EO FO =C. AE CF =D. EF ⊥BD7. 如图,四边形ABCD 是平行四边形,从①AC BD =,①AC BD ⊥,①AB BC =,这三个条件中任意选取两个,能使ABCD 是正方形的概率为( )A.23B.12C.13D.568. 习近平总书记强调,中华优秀传统文化是中华民族的根和魂.东营市某学校组织开展中华优秀传统文化成果展示活动,小慧同学制作了一把扇形纸扇.如图,20cm OA =,5cm OB =,纸扇完全打开后,外侧两竹条(竹条宽度忽略不计)的夹角120AOC ∠=︒.现需在扇面一侧绘制山水画,则山水画所在纸面的面积为( )2cm .A.25π3B. 75πC. 125πD. 150π9. 已知抛物线2(0)y ax bx c a =++≠的图像如图所示,则下列结论正确的是( )A. 0abc <B. 0a b -=C. 30a c -=D. 2am bm a b +≤-(m 为任意实数)10. 如图,在正方形ABCD 中,AC 与BD 交于点O,H 为AB 延长线上的一点,且BH BD =,连接DH ,分别交AC ,BC 于点E,F,连接BE ,则下列结论:①CF BF =;①tan 1H ∠;①BE 平分CBD ∠;①22AB DE DH =⋅.其中正确结论的个数是( ) A. 1个B. 2个C. 3个D. 4个第Ⅰ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 从2024年一季度GDP 增速看,东营市增速位居山东16市“第一方阵”,一季度全市生产总值达到957.2亿元,同比增长7.1%,957.2亿用科学记数法表示为_______.12. 因式分解:2a 3−8a =______.13. 4月23日是世界读书日,东营市组织开展“书香东营,全民阅读”活动,某学校为了解学生的阅读时间,随机调查了七年级50名学生每天的平均阅读时间,统计结果如下表所示.在本次调查中,学生每天的平均阅读时间的众数是_______小时.14. 在弹性限度内,弹簧的长度(cm)y 是所挂物体质量(kg)x 的一次函数.一根弹簧不挂物体时长12.5cm,当所挂物体的质量为2kg 时,弹簧长13.5cm .当所挂物体的质量为5kg 时,弹簧的长度为_______cm15. 如图,将DEF 沿FE 方向平移3cm 得到ABC ,若DEF 的周长为24cm ,则四边形ABFD 的周长为_______cm .16. 水是人类赖以生存的宝贵资源,为节约用水,创建文明城市,某市经论证从今年1月1日起调整居民用水价格,每立方米水费上涨原价的14.小丽家去年5月份的水费是28元,而今年5月份的水费则是24.5元.已知小丽家今年5月份的用水量比去年5月份的用水量少33m .设该市去年居民用水价格为3/m x 元,则可列分式方程为_______.17. 我国魏晋时期数学家刘徽在《九章算术注》中提到著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416,如图,O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计O 的面积,可得π的估计值为2若用圆内接正八边形近似估计O 的面积,可得π的估计值为_________.18. 如图,在平面直角坐标系中,已知直线l 的表达式为y x =,点1A 的坐标为,以O 为圆心,1OA 为半径画弧,交直线l 于点1B ,过点1B 作直线l 的垂线交x轴于点2A ;以O 为圆心,2OA 为半径画弧,交直线l 于点2B ,过点2B 作直线l 的垂线交x 轴于点3A ;以O 为圆心,3OA 为半径画弧,交直线l 于点3B ,过点3B 作直线l 的垂线交x 轴于点4A ;……按照这样的规律进行下去,点2024A 的横坐标是_______.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (1)计算0(π 3.14)|22sin60-︒+-;(2)计算:2443111a a a a a -+⎛⎫÷+- ⎪--⎝⎭.20. 某学校举办“我参与,我劳动,我快乐,我光荣”活动.为了解学生周末在家劳动情况,学校随机调查了八年级部分学生在家劳动时间(单位:小时),并进行整理和分析(劳动时间x 分成五档:A 档:01x ≤<;B 档:12x ≤<;C 档:23x ≤<;D 档:34x ≤<;E 档:4x ≤).调查的八年级男生、女生劳动时间的不完整统计图如下:根据以上信息,回答下列问题:(1)本次调查中,共调查了_______名学生,补全条形统计图;(2)调查的男生劳动时间在C 档的数据是:2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为_______小时.(3)学校为了提高学生的劳动意识,现从E 档中选两名学生作劳动经验交流,请用列表法或画树状图的方法求所选两名学生恰好都是女生的概率.21. 如图,ABC 内接于O ,AB 是O 的直径,点E 在O 上,点C 是BE 的中点,AE CD ⊥,垂足为点D,DC 的延长线交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若CD =60ABC ∠=︒,求线段AF 的长.22. 如图,一次函数y mx n =+(0m ≠)的图象与反比例函数ky x=(0k ≠)的图象交于点(3,)A a -,()1,3B ,且一次函数与x 轴,y 轴分别交于点C,D .(1)求反比例函数和一次函数的表达式; (2)根据图象直接写出不等式kmx n x+>的解集; (3)在第三象限的反比例函数图象上有一点P,使得4=△△OCP OBD S S ,求点P 的坐标.23. 随着新能源汽车的发展,东营市某公交公司计划用新能源公交车淘汰“冒黑烟”较严重的燃油公交车.新能源公交车有A 型和B 型两种车型,若购买A 型公交车3辆,B 型公交车1辆,共需260万元;若购买A 型公交车2辆,B 型公交车3辆,共需360万元.(1)求购买A 型和B 型新能源公交车每辆各需多少万元?(2)经调研,某条线路上的A 型和B 型新能源公交车每辆年均载客量分别为70万人次和100万人次.公司准备购买10辆A 型,B 型两种新能源公交车,总费用不超过650万元.为保障该线路的年均载客总量最大,请设计购买方案,并求出年均载客总量的最大值.24. 在Rt ABC △中,90ACB ∠=︒,1AC =,3BC =.(1)问题发现如图1,将CAB △绕点C 按逆时针方向旋转90︒得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系是______,AD 与BE 的位置关系是______; (2)类比探究将CAB △绕点C 按逆时针方向旋转任意角度得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系、位置关系与(1)中结论是否一致?若AD 交CE 于点N,请结合图2说明理由; (3)迁移应用如图3,将CAB △绕点C 旋转一定角度得到CDE ,当点D 落到AB 边上时,连接BE ,求线段BE 的长.25. 如图,在平面直角坐标系中,已知抛物线2y x bx c =++与x 轴交于(1,0)A -,(2,0)B 两点,与y 轴交于点C ,点D 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点D 在直线BC 下方的抛物线上时,过点D 作y 轴的平行线交BC 于点E ,设点D 的横坐标为t,DE 的长为l ,请写出l 关于t 的函数表达式,并写出自变量t 的取值范围;(3)连接AD ,交BC 于点F ,求DEFAEFS S △△的最大值.2024年山东省东营市中考数学真题试卷答案一、选择题.二、填空题. 11.【答案】109.57210⨯ 12.【答案】2a (a +2)(a −2) 13.【答案】1 14.【答案】15 15.【答案】3016.【答案】2824.5354x x -=17.【答案】18.【答案】10122 三、解答题.19.【答案】(1)1;(2)22a a -+. 20.【答案】(1)50 (2)2.5 (3)1621.【答案】(1)略 (2)6 22.【答案】(1)3y x=,y =x +2 (2)30x -<<或1x >(3)点P 坐标为3,44⎛⎫-- ⎪⎝⎭23.【答案】(1)购买A 型新能源公交车每辆需60万元,购买B 型新能源公交车每辆需80万元;(2)方案为购买A 型公交车8辆,B 型公交车2辆时.线路的年均载客总量最大,最大在客量为760万人.24.【答案】(1)3BE AD =;AD BE ⊥ (2)一致;理由略 (3)BE = 25.【答案】(1)2y x x 2=--(2)()2202l t t t =-+<< (3)1()3DEFAEF S S =最大。
A .16B .12C .23D .136. 如图,已知抛物线2()0y ax bx c a =++≠的图象与x 轴交于,A B 两点,其对称轴与x 轴交于点,C 其中,A C 两点的横坐标分别为1-和1,下列说法错误的是( )A .0abc <B .40a c +=C .1640a b c ++<D .当2x >时,y 随x 的增大而减小 7. 用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为( ) A .π B .2π C .2 D .18. 中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半, 一共走了六天才到达目的地.则此人第三天走的路程为( )A .96里B .48里C .24里D .12里9. 如图1,点P 从ABC 的顶点A 出发,沿A B C →→匀速运动到点,C 图2是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则ABC 的边AB 的长度为( )A .12B .8C .10D .1310.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A B 、重合) ,对角线AC BD 、相交于点,O 过点P 分别作AC BD 、的垂线,分别交AC BD 、于点,E F 、交AD BC 、于点M N 、.下列结论:APE AME ①≌;PM PN AC +=②;222PE PF PO +=③;POF BNF ④;⑤点O 在M N 、两点的连线上.其中正确的是( )A .①②③④B .①②③⑤C .①②③④⑤D .③④⑤第II 卷 (非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果.11. 2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为_ . 12. 因式分解:22123a b -= . 13. 东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)13 14 15 人数 4 74 则该校女子游泳队队员的平均年龄是 岁.14. 已知一次函数()0y kx b k =+≠的图象经过()()1,11,3A B --、两点,则k _____ 0(填“>”或“<”).15. 如果关于x 的一元二次方程260x x m -+=有实数根,那么m 的取值范围是 .16.如图,P 为平行四边形ABCD 边BC 上一点,E F 、分别为PA PD 、上的点,且3,3,PA PE PD PF ==,PEF PDC PAB ,的面积分别记为12,S S S 、.若2,S =则12S S += .17.如图,在Rt AOB 中,3,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的--条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为 .18.如图,在平面直角坐标系中,已知直线1y x =+和双曲线1y x=-,在直线上取一点,记为1A ,过1A 作x 轴的垂线交双曲线于点1B ,过1B 作y 轴的垂线交直线于点2A ,过2A 作x 轴的垂线交双曲线于点2B ,过2B 作y 轴的垂线交直线于点3,A ······,依次进行下去,记点n A 的横坐标为n a ,若12,a =则2020a = .三、解答题 (本大题共7小题,共62分.解答应写出文字说明、证明过程或演算步骤.)19.()1计算()220201272603232cos -⎛⎫--+ ⎪⎝⎭; ()2先化简,再求值:22222xy y x y x x x xy⎛⎫÷ ⎪⎝⎭---+,其中21,2x y ==20. 如图,在ABC 中,以AB 为直径的O 交AC 于点,M 弦//MN BC 交AB 于点,E 且3,ME =4,AE =5AM =.()1求证:BC是O的切线;()2求O的直径AB的长度.21. 如图,C处是一钻井平台,位于东营港口A的北偏东60方向上,与港口A相距602海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC 方向行进,此时C位于B的北偏西45方向,则从B到达C需要多少小时?22. 东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.作业情况频数频率非常好0.22较好68一般不好40请根据图表中提供的信息,解答下列问题:()1本次抽样共调查了多少名学生?()2将统计表中所缺的数据填在表中横线上;()3若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?()4某学习小组4名学生的作业本中,有2本“非常好”(记为12、),1本“较好”(记A A为B),1本“一般”(记为C),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.23. 2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:甲乙型号价格(元/只)项目成本124售价186()1若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?()2如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.24. 如图,抛物线234y ax ax a =--的图象经过点()0,2C ,交x 轴于点A B 、(点A 在点B 左侧),连接,BC 直线()10y kx k =+>与y 轴交于点,D 与BC 上方的抛物线交于点,E 与BC 交于点F .()1求抛物线的解析式及点A B 、的坐标;()2EF DF是否存在最大值?若存在,请求出其最大值及此时点E 的坐标;若不存在,请说明理由.25. 如图1,在等腰三角形ABC 中,120,,A AB AC ∠==点D E 、分别在边AB AC 、上,,AD AE =连接,BE 点M N P 、、分别为DE BE BC 、、的中点.()1观察猜想图1中,线段NM NP 、的数量关系是______________,MNP ∠的大小为__________; ()2探究证明把ADE 绕点A 顺时针方向旋转到如图2所示的位置,连接,MP BD CE 、、判断MNP 的形状,并说明理由;()3拓展延伸把ADE 绕点A 在平面内自由旋转,若1,3AD AB ==,请求出MNP 面积的最大值参考答案一、选择题:本大题共10小题. 在每小题给出的四个选项中,只有一项是正确的.请把正确的选项选出来每小题选对得3分,共30分.选错、不选或选出的答案超过一个均记零分 题号1 2 3 4 5 6 7 8 9 10 答案 C C B A D B D B C B二、填空题11.8210-⨯12.()()322a b a b +- 13.1414.1415.9;m ≤16.18 17.2 18.2 三、解答题19. 解:()1原式3314323=--- 36=;()2原式222222x xy y x x xy x y=⋅-++- ()()()2()x y x x y y x y x x -+-=+⋅ x y =-.当21,2x y == 原式2121==.20.()1证明:3,4,5ME AE AM ===, 222AE ME AM ∴+=,90,AEM ∴∠=︒//,MN BC90,ABC AEM ∴∠=∠=︒ AB 为O 的直径,BC ∴是O 的切线.()2如图,连接,BMAB 为O 的直径,90,AMB ∴∠=︒又90,AEM ∠=AM AE cos BAM AB AM∴∠== 即545AB = 254AB ∴= 从而O 的直径AB 的长度为25421. 解:如图,过点C 作CD AB ⊥于点,D由题意得://,//AE CD BF CD ,60,45ACD CAE BCD CBF ∴∠=∠=∠=∠=︒在Rt ACD 中,602AC =1302,2CD AC ∴== 在Rt CDB 中,302CD =260BC CD ∴==.60 1.250∴=(小时), ∴从B 到达C 需要1.2小时. 22.解:()72140200360÷=(名),本次抽样共调查了200名学生; ()2 作业情况频数 频率 非常好44 0.22 较好68 0.34 一般48 0.24 不好 400.2 ()()318000.220.341008⨯+=(名),所以该校学生作业情况“非常好”和“较好”的学生一共约1008名;()4列表如下:第一次第二1A 2A B C(树状图略) 由列表可以看出,一共有12种结果,并且它们出现的可能性相等.其中两次抽到的作业本都是“非常好”的有2种,所以“"()21126P ==两次抽到的作业本都是非常好 23. 解:()1设甲种型号口罩的产量是x 万只,则乙种型号口罩的产量是()20x -万只, 根据题意得:()18620300,x x +-=解得:15,x =则2020155,x -=-=则甲、乙两种型号口罩的产量分别为15万只和5万只;()2设甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是()20y -万只, 根据题意得:()12420216,y y +-≤解得:17y ≤.设所获利润为w 万元,则()()()181********,w y y y =-+--=+由于40>,所以w 随y 的增大而增大,即当17y =时,w 最大,此时41740108w =>+=.从而安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,获得最大利润,最大利润为108万元.24. 解:()1把()0,2C 代入334y ax ax a =-- 得:42,a -= 解得12a =- ∴抛物线的解析式为213222y x =-++ 令2132022x -++= 可得:121,4,x x =-=()()1,0,4,0A B ∴-()2存在.如图,由题意,点E 在y 轴的右侧,作//EG y 轴,交BC 于点G .//,CD EG ∴EF EG DF CD∴= 直线()10y kx k =+>与y 轴交于点D .则()0,1D ,211,CD =-=∴EF EG DF∴= 设BC 所在直线的解析式为()0y mx n m =+≠,将()()4,0,0,2B C 代入上述解析式得:042m n n=+=⎧⎨⎩解得:122m n ⎧=-⎪⎨⎪=⎩BC ∴的解析式为122y x =+- 设213,222E t t t ⎛⎫-++ ⎪⎝⎭则1,22G t t ⎛⎫-+ ⎪⎝⎭,其中04t <<. ()22131122222222EG t t x t ⎛⎫∴=-++-+=--+ ⎪⎝⎭- 2(22,2)1EF t DF ∴=--+ 10,2-< 当2t =时,有最大值,最大值为2.此时点E 的坐标为()2,3.25. 解:()1相等,60()2MNP 是等边三角形.理由如下:如图,由旋转可得,BAD CAE ∠=∠又,,AB AC AD AE ==()ABD ACE SAS ∴≌,,BD CE ABD ACE =∠=∠∴点M N 、分别为DE BE 、的中点,MN ∴是EBD 的中位线,122MN BD ∴=且//MN BD . 同理可证12PN CE =且//PN CE . ,,MN PN MNE DBE NPB ECB ∴=∠=∠∠=∠.,MNE DBE ABD ABE ACE ABE ∴∠=∠=∠+∠=∠+∠ ,ENP EBP NPB EBP ECB ∠=∠+∠=∠+∠MNP MNE ENP ACE ABE EBP ECB ∴∠=∠+∠=∠+∠+∠+∠ 60ABC ACB =∠+∠=︒.MNP ∴是等边三角形.()3根据题意得:BD AB AD ≤+.即4BD ≤,从而2,MN ≤MNP 的面积212MN MN MN ==所以MNP。