最新上海松江区2019-2020学年七年级上期中考试数学试题(有详细答案)-(沪科版)
- 格式:doc
- 大小:636.50 KB
- 文档页数:7
2019-2020学年七年级(上册)期中考试数学试卷一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×10104.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)25.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,26.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab27.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187二.填空题(共8小题)11.直接写出结果:(1)﹣1+2=;(2)﹣1﹣1=;(3)(﹣3)3=;(4)6÷(﹣1)=;(5)(﹣1)2n﹣(﹣1)2n﹣1=(n为正整数);(6)方程4x=0的解为;(7)方程﹣x=2的解为.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有个.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=;b=;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=,b=,c=;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x =,最小值为.(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.参考答案与试题解析一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】由相反数的定义即可得到答案.【解答】解:2019的相反数是﹣2019.故选:B.2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘【分析】根据有理数乘方的定义解答即可.【解答】解:(﹣7)6的意义是6个﹣7相乘.故选:C.3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:16亿=1600000000=1.6×109,故选:C.4.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)2【分析】选项A根据相反数以及绝对值的定义判断;选项B、C、D根据有理数的乘方的定义判断.【解答】解:A.﹣(﹣2)=2,|﹣2|=2,∴﹣(﹣2)=|﹣2|,故本选项符合题意;B.(﹣2)2=4,﹣22=﹣4,故本选项不合题意;C.,,故本选项不合题意;D.(﹣2)3=﹣8,(﹣3)2=9,故本选项不合题意.故选:A.5.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,2【分析】单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,由此可得出答案.【解答】解:单项式的系数和次数分别是﹣π、3.故选:C.6.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab2【分析】根据合并同类项的法则计算即可.【解答】解:A、4a﹣2a=2a,故不符合题意;B、3xy﹣4yx=﹣xy,故符合题意;C、﹣2m+6n,不是同类项,不能合并;故不符合题意;D、3ab2﹣5ba2,不是同类项,不能合并;故不符合题意;故选:B.7.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay【分析】根据等式的性质,逐项判断即可.【解答】解:∵ax=ay,a=0时,x、y不一定相等,∴选项A不符合题意;∵ax=ay,∴ax+1=ay+1,∴选项B不符合题意;∵ax=ay,∴ax=﹣ay不一定成立,∴选项C不符合题意;∵ax=ay,∴3•ax=3•ay,∴选项D符合题意.故选:D.8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷【分析】利用运算法则计算即可确定出相应的运算符号.【解答】解:在算式3﹣|﹣4□5|中的“□”所在的位置中,要使计算出来的值最小,则应填入的运算符号为×,故选:C.9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定【分析】根据有理数的加法运算法则判断出y>0,然后根据有理数的大小比较方法判断出最小的数为x.【解答】解:∵x<0,x+y>0,∴y>0,∴x,y,x+y这三个数中最小的数是x.故选:A.10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187【分析】可设一个两位数的十位是a,个位是b,表示出该两位数和的调换位置后得到一个新数,得到所得的结果是11的倍数,再找到不是11的倍数的数即为所求.【解答】解:设一个两位数的十位是a,个位是b,则10a+b+10b+a=11a+11b=11(a+b),则所得的结果是11的倍数,在99,132,145,187中,只有145不是11的倍数.故选:C.二.填空题(共8小题)11.直接写出结果:(1)﹣1+2= 1 ;(2)﹣1﹣1=﹣2 ;(3)(﹣3)3=﹣27 ;(4)6÷(﹣1)=﹣4 ;(5)(﹣1)2n﹣(﹣1)2n﹣1= 2 (n为正整数);(6)方程4x=0的解为x=0 ;(7)方程﹣x=2的解为x=﹣6 .【分析】依据有理数的运算法则正确计算即可,利用一元一次方程的解法求解即可.【解答】解:(1)﹣1+2=+(2﹣1)=1;(2)﹣1﹣1=﹣(1+1)=﹣2;(3)(﹣3)3=(﹣3)(﹣3)(﹣3)=﹣27;(4)6÷(﹣1)=6×(﹣)=﹣4;(5))(﹣1)2n﹣(﹣1)2n﹣1=1﹣(﹣1)=2;(6)方程4x=0的两边都除以4得:x=0,故解为x=0;(7)方程﹣x=2的两边都乘以(﹣3)得:x=﹣6;故答案为:(1)1,(2)﹣2,(3)﹣27,(4)﹣4,(5)2,(6)x=0,(7)x=﹣6.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有 3 个.【分析】根据负有理数的定义得出即可.【解答】解:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有:﹣2,﹣2019,﹣5.,一共3个.故答案为:3.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1 .【分析】根据等式的性质判断即可.【解答】解:图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1.故答案为:等式的基本性质1.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:x2﹣2x﹣1 .【分析】根据二次三项式和多项式的系数、常数项的有关概念以及只含字母x,即可得出答案,(答案不唯一).【解答】解:这个二次三项式的常项是﹣1,只含字母x,∴这个二次三项式是:x2﹣2x﹣1;故答案为:x2﹣2x﹣1.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.【分析】根据同类项的定义中相同字母的指数也相同,可求得x和y的值.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项.【解答】解:∵a3x+1b与﹣2a3b y﹣1是同类项,∴3x+1=3,y﹣1=1,解得,y=2.∴.故答案为:16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=﹣3 .【分析】把x=﹣1代入方程即可得到一个关于a的方程,解方程求得a的值.【解答】解:把x=﹣1代入方程得:﹣5﹣a=﹣2,解得:a=﹣3.故答案是:﹣3.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是﹣4 .【分析】由B,O两点之间的距离等于A,B两点间的距离,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:0﹣(x+2)=x+2﹣x,解得:x=﹣4.故答案为:﹣4.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是4n﹣2(或2+4(n﹣1))个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n个就有阴影小三角形2+4(n﹣1)=4n﹣2个,故答案为:4n﹣2(或2+4(n﹣1))个.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.【分析】把各点在数轴上表示出来即可.【解答】解:如图所示:20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|【分析】(1)先化简再计算;(2)先算乘除,最后算加法;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(1)(﹣3)﹣(﹣5)﹣(+7)=﹣3+5﹣7=﹣5;(2)﹣8×+14÷(﹣7)=﹣4﹣2=﹣6;(3)()×(﹣30)=×(﹣30))﹣×(﹣30)+×(﹣30)=﹣3+4﹣25=﹣24;(4)﹣24+(1)×|3﹣(﹣3)2|=﹣16+×|3﹣9|=﹣16+×6=﹣16+4=﹣12.21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解;(3)先去括号,然后合并同类项即可求解.【解答】解:(1)2ab﹣3ab+(﹣ab)=(2﹣3﹣1)ab=﹣2ab;(2)3(x﹣1)﹣(x﹣5)=3x﹣3﹣x+5=2x+2;(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]=3a2﹣[a﹣5a+a2+a2﹣1]=3a2﹣a+5a﹣a2﹣a2+1=a2+4a+1.22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x【分析】(1)移项、合并同类项,依此即可求解;(2)移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)2x=x﹣52x﹣x=﹣5,x=﹣5;(2)5x﹣2=1+9x,5x﹣9x=1+2,﹣4x=3,x=﹣.23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=3a2﹣ab﹣1﹣5ab﹣4a2+3=﹣a2﹣6ab+2,当a=﹣2,b=时,原式=﹣(﹣2)2﹣6×(﹣2)×+2=2.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=﹣6 ;b=+5 ;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)【分析】(1)根据学生的平均身高为160厘米,即可填写出表格中的数值;(2)求出6名学生的平均身高.【解答】解:(1)由题意:a=154﹣160=﹣6,b=165﹣160=+5;故答案为:﹣6,+5;(2)6名学生的平均身高=160+≈159.8cm,∴这6名学生的平均身高是159.8厘米.25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.【分析】(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积;(2)由图可知,20=3y,则可分别求出x、y的值,将x、y的值代入S=40x﹣2xy即可求解.【解答】解:(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积,∴S=20(x+x)﹣xy﹣2××xy=40x﹣2xy;(2)由图可知,20=3y,∴y=,当xy=1时,x=,∴S=40x﹣2=6﹣2=4.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?【分析】设中间的数为x,其它两个为(x﹣7)与(x+7),表示出之和,根据三个日期数之和为24,列出方程,如果求出的解符合题意,那么相邻三行里同一列的三个日期数之和能为24,否则不能.【解答】解:设中间的数为x,其它两个为(x﹣7)与(x+7),根据题意得:x﹣7+x+x+7=24,解得:x=8,∴x﹣7=1,x+7=15,答:这三个日期数分别是1,8,15.27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.【分析】(1)设﹣1与m是一组“相伴数”,根据“相伴数”的定义列式计算,得到答案;(2)根据“相伴数”的定义得到m+n=mn,根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:(1)设﹣1与m是一组“相伴数”,由题意得,﹣1+m=﹣m,解得,m=,故答案为:;(2)∵m、n是一组“相伴数”,∴m+n=mn,则2mn﹣[3m+2(n﹣m)+3mn﹣6]=2mn﹣m﹣(n﹣m)﹣mn+3=2mn﹣m﹣n+m﹣mn+3=mn﹣(m+n)+3=3.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.【分析】(1)根据0.化成分数的方法,设0.=x,仿照例题的解法即可得出结论;(2)①根据0.化成分数的方法,设0.=m,仿照例题的解法(×10换成×100)即可得出结论;②根据0.化成分数的方法,设0.43=n,仿照例题的解法即可得出结论.【解答】解:(1)设0.=x,方程两边都乘以10,可得10×0.=10x即4+x=10x解得x=,即0.=(2)①设0.=m,方程两边都乘以100,可得100×0.=100m即15+m=100m解得m=,即0.=,②设0.43=n,方程两边都乘以10,可得10×0.43=10n由0.43=0.43222…可知10×0.43=4.3222…=3.89+0.43,即3.89+n=10n解得n=,即0.43=,29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=﹣3 ,b= 1 ,c=9 ;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x = 1 ,最小值为12 .(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.【分析】(1)利用绝对值及偶次方的非负性可求出a,c的值,结合BC=2AB可求出b值;(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,结合当x=1时|x﹣b|=0,即可得出结论;(3)用含t的代数式表示出点M,N表示的数,结合MN=2,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵a、c满足|a+3|+(c﹣9)2=0,∴a+3=0,c﹣9=0,∴a=﹣3,c=9.又∵点B在点A、C之间,且满足BC=2AB,∴9﹣b=2[b﹣(﹣3)],∴b=1.故答案为:﹣3;1;9.(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,最小值为9﹣(﹣3)=12.∵|x﹣b|≥0,b=1,∴当x=b=1时,|x﹣b|取得最小值,最小值为0,∴当x=1时,|x﹣a|+|x﹣c|+|x﹣b|取得最小值,最小值为12.故答案为:1;12.(3)12÷2=6(秒),4+6=10(秒).当0≤t≤12时,点M表示的数为t﹣3;当t>12时,点M表示的数为9;当4≤t≤10时,点N表示的数为2(t﹣4)﹣3=2t﹣11;当10<t≤16时,点N表示的数为9﹣2(t﹣10)=29﹣2t.①当4≤t≤10时,MN=|t﹣3﹣(2t﹣11)|=2,解得:t=6或t=10,∴t﹣3=3或7;②当10<t≤12时,MN=|t﹣3﹣(29﹣2t)|=2,解得:t=10(舍去)或t=,∴t=3=;③当12<t≤16时,MN=|9﹣(29﹣2t)|=2,解得:t=9(舍去)或者t=11(舍去).综上所述:当t的值为6,10或时,M、N两点之间的距离为2个单位,此时点M表示的数为3,7或.。
第Ⅰ卷一、选择题:(本题共10小题,每小题3分,共30分)1.2016年9月15日22时04分,中国在酒泉卫星发射中心用长征二号FT2运载火箭将天宫二号空间实验室发射升空。
次日,天宫二号于成功实施了两次轨道控制,顺利进入运行轨道。
天宫二号空间实验室将开展的实验中,包括了空间科学物理领域重点项目——空间冷原子钟实验,有望实现3千万年误差一秒的超高精度,对卫星定位导航等生产生活及引力波探测等空间科学研究将产生重大影响。
空间冷原子钟可以将航天器自主守时精度提高两个数量级,大幅提高导航定位精度。
3000用科学记数法表示为()A.3 B. 0.3 C. 0.3D.2.下列算式中,运算结果为负数的是().A. (2)-- B. 3(2)- C.2- D. 2(2)-3.下列计算正确的是().A. 22232x y x y x y-= B. 277a a a+=C. 532y y-= D. 325a b ab+=4.已知1a b-=,则代数式223a b--的值是().A. 1-B. 1C. 5D.5-5.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.aB.C.D.6.若21(2)02x y-++=,则( )的值为()A.1-B.1C.D. 20167.人口自然增长率是指在一定时期内(通常为一年)人口增加数与该时期内平均人数之比。
人口自然增长率是反映人口发展速度和制定人口计划的重要指标,用来表明人口自然增长的程度和趋势。
2015年,一些国家的人口自然增长率(%)如下表所示,人口自然增长趋势最慢的国家是()美国日本中国印度德国卡塔尔0.9 -0.0772 0.48 1.312 -0.2 4.93A.卡塔尔B.中国C.日本D.德国8.历史上,数学家欧拉最先把关于x的多项式用记号()f x来表示,把x等于某数a时的多项式的值用()f a来表示,例如1x=-时,多项式2()35f x x x=+-的值记为(1)f-,那么(1)f-等于().A. 1-B. 3-C.7-D. 9-考生须知1.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共4页。
2019-2020年七年级(上)期中数学试卷(解析版)(I)一、单项选择题(每题2分,共30分)1.如果“+3吨”表示运入3吨大米,那么运出5吨大米应记作为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨2.下列代数式中,是单项式的是()A.x+B.5m﹣2m C.a D.3.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.1x2y4.下列说法正确的是()A.正负号相反的两个数互为相反数B.数轴上原点两侧的两个点所表示的数是互为相反数C.相反数和我们以前学过的倒数是一样的D.只有正负号不同的两个数称互为相反数,零的相反数是零5.﹣2的绝对值是()A.B.﹣C.2 D.﹣26.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣7.下列各数中,最小的数是()A.0 B.3 C.﹣2016 D.﹣0.0018.单项式5xy2的次数是()A.5 B.1 C.2 D.39.下列说法中,错误的是()A.最小的正整数是1 B.绝对值最小的数是0C.最大的负整数是﹣1 D.﹣2的平方等于﹣410.计算:(﹣3)2=()A.6 B.﹣6 C.9 D.﹣911.下列语句不正确的是()A.0是代数式B.a是整式C.x的3倍与y的的差表示为3x﹣yD.s=πr2是代数式12.多项式x3﹣x+1的次数是()A.0 B.﹣1 C.1 D.313.已知|a|=3,|b|=5且a>b,则a+b的值是()A.﹣2或﹣8 B.﹣2或8 C.2或8 D.2或﹣814.下列各组数中,结果相等的数是()A.﹣12与(﹣1)2B.与()2C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣3315.a是一个两位数,b是一个三位数,把a放在b的右边组成一个五位数,用a,b的代数式表示所得的五位数是()A.ba B.10b+a C.10000b+a D.100b+a二、填空题(每小题2分,满分20分)16.在﹣,2,0,0.3,﹣9这五个数中,是负有理数;是整数.(提示:要填完整哈)17.平方后等于的有理数是.18.比较下列各对数的大小(填“>”、“<”或“=”):(1)﹣2016 1(2)0 ﹣8.(3)﹣1 ﹣0.01.19.﹣6的相反数是,+2的相反数是.20.绝对值等于12的有理数有.(提示:要填完整哟)21.﹣1的倒数是.22.“a的4倍与b的平方的差”用代数式表示为.23.将算式(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:.24.把多项式﹣x﹣1﹣3x3y2+2x2y3按x的降幂排列是.25.多项式x3﹣2x2y2+3y2是次项式.三、解答题(共70分)(要求写出适当的解题过程)26.把下列各数填入表示它所在的数集的圈里:(提示:共10个数)﹣0.10,,1,﹣789,325,0,﹣20,10.10,1000.1,﹣5%27.画出数轴,在数轴上表示下列各数,并按从小到大的顺序排列,用“<“号把这些数连接起来.2.5,﹣3,5,0,﹣2.28.当x=﹣2,y=﹣4时,求下列各代数式的值(提示:注意书写格式):(1)x2+2xy+y2(2)x2﹣2xy+y2.29.填空(1)(﹣16)+(﹣8)= ;(2)(+15)+(﹣4)= ;(3)(﹣)+(﹣)= ;(4)(﹣3.4)+4.3= ;(5)(﹣3.5)+0= ;(6)(﹣12)+(+12)= ;(7)(﹣32)﹣(+5)= ;(8)7.3﹣(﹣6.8)= ;(9)(﹣3.28)﹣1= ;(10)12﹣21= ;(11)(﹣5)×(﹣3)= ;(12)(﹣)×= ;(13)(﹣10)××0.1×(﹣6)= ;(14)21×(﹣71)×0×43= ;(15)(﹣18)÷6= ;(16)÷(﹣)= ;(17)= ;(18)﹣÷×(﹣)= ;(19)(﹣2)5= ;(20)﹣24= .30.计算:(1)(+14)+(﹣4)+(﹣2)+(+26)+(﹣3)(2)﹣24+3.2﹣16﹣3.5+0.3(3)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2](4)|﹣2|﹣(﹣)+1﹣|1﹣|(5)﹣22×(﹣)+4+(﹣3)3÷2×(﹣)2(6)﹣14﹣(1﹣0.5)÷(﹣)×[4﹣(﹣4)2].31.某检修小组乘一辆汽车沿东西向公路检修线路,约定向东为正,某天从A 地出发到收工时,行走记录为(长度单位:千米):(每小题10分,共30分)+15,﹣2,+5,﹣3,+8,﹣3,﹣1,+11,+4,﹣5,﹣2,+7,﹣3,+5.收工时,检修小组在A地的哪一边?距A地多远?2016-2017学年四川省宜宾市珙县洛表民族中学七年级(上)期中数学试卷参考答案与试题解析一、单项选择题(每题2分,共30分)1.如果“+3吨”表示运入3吨大米,那么运出5吨大米应记作为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨【考点】正数和负数.【分析】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为﹣5吨.故选A2.下列代数式中,是单项式的是()A.x+B.5m﹣2m C.a D.【考点】单项式.【分析】根据单项式的概念对各选项进行逐一分析即可.【解答】解:A、x+是两个单项式的和,是多项式,故本选项错误;B、5m﹣2m是两个单项式的和,是多项式,故本选项错误;C、a是单独的一个字母,是单项式,故本选项正确;D、是分式,故不是单项式,故本选项错误.故选C.3.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.1x2y【考点】代数式.【分析】直接利用代数式书写方法分析得出答案.【解答】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为,故书写错误,不合题意;D、1x2y=x2y,故书写错误,不合题意;故选:A.4.下列说法正确的是()A.正负号相反的两个数互为相反数B.数轴上原点两侧的两个点所表示的数是互为相反数C.相反数和我们以前学过的倒数是一样的D.只有正负号不同的两个数称互为相反数,零的相反数是零【考点】数轴;相反数;倒数.【分析】根据互为相反数的性质,两数互为相反数,它们的和为0,符号相反的不一定是互为相反数作答.【解答】解:A、2,﹣3是符号相反的两个数,但不是互为相反数,故本选项错误;B、2,﹣3是数轴上原点两侧的两个点所表示的数,但不是互为相反数,故本选项错误;C、相反数和倒数是两个不同的概念,故本选项错误;D、只有正负号不同的两个数称互为相反数,零的相反数是零,故本选项正确.故选D.5.﹣2的绝对值是()A.B.﹣C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:C.6.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.7.下列各数中,最小的数是()A.0 B.3 C.﹣2016 D.﹣0.001【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:∵﹣2016<﹣0.001<0<3,∴四个数中﹣2016最小,故选:C.8.单项式5xy2的次数是()A.5 B.1 C.2 D.3【考点】单项式.【分析】根据单项式的概念及单项式的次数的定义解答.【解答】解:单项式5xy2的次数是1+2=3.故选:D.9.下列说法中,错误的是()A.最小的正整数是1 B.绝对值最小的数是0C.最大的负整数是﹣1 D.﹣2的平方等于﹣4【考点】有理数的乘方;绝对值.【分析】根据有理数的相关概念,有理数的乘方,绝对值的性质对各选项分析判断即可得解.【解答】解:A、最小的正整数是1,说法正确,故本选项错误;B、绝对值最小的数是0,说法正确,故本选项错误;C、最大的负整数是﹣1,说法正确,故本选项错误;D、应为﹣2的平方等于4,所以,本题说法错误,故本选项正确.故选D.10.计算:(﹣3)2=()A.6 B.﹣6 C.9 D.﹣9【考点】有理数的乘方.【分析】根据有理数的乘方运算,(﹣3)2表示2个(﹣3)的乘积.【解答】解:(﹣3)2=9.故选C.11.下列语句不正确的是()A.0是代数式B.a是整式C.x的3倍与y的的差表示为3x﹣yD.s=πr2是代数式【考点】代数式.【分析】根据代数式的定义分别进行分析,即可得出答案.【解答】解:A、0是代数式是正确的,不符合题意;B、a是整式是正确的,不符合题意;C、x的3倍与y的的差表示为3x﹣y是正确的,不符合题意;D、S=πr2不是代数式,原来的说法是错误的,符合题意;故选D.12.多项式x3﹣x+1的次数是()A.0 B.﹣1 C.1 D.3【考点】多项式.【分析】根据多项式的概念及次数的定义解答.【解答】解:多项式x3﹣x+1的次数是3.故选:D.13.已知|a|=3,|b|=5且a>b,则a+b的值是()A.﹣2或﹣8 B.﹣2或8 C.2或8 D.2或﹣8【考点】有理数的加法;绝对值.【分析】求出a,b的值,根据a>b,确定a,b的值,进而求出解.【解答】解:∵|a|=3,∴a=±3.∵|b|=5,∴b=±5,∵a>b,∴a=3,b=﹣5和a=﹣3,b=﹣5.∴a+b=﹣2或a+b=﹣8.故选:A.14.下列各组数中,结果相等的数是()A.﹣12与(﹣1)2B.与()2C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33【考点】有理数的乘方;绝对值.【分析】利用有理数乘方法则判定即可.【解答】解:A、﹣12=﹣1,(﹣1)2=1,所以选项结果不相等;B、=,()2=,所以选项结果不相等;C、﹣|﹣2|=﹣2,﹣(﹣2)=2,所以选项结果不相等;D、(﹣3)3=﹣27,﹣33=﹣27,所以选项结果相等.故选:D.15.a是一个两位数,b是一个三位数,把a放在b的右边组成一个五位数,用a,b的代数式表示所得的五位数是()A.ba B.10b+a C.10000b+a D.100b+a【考点】列代数式.【分析】b原来的最高位是百位,现在最高位为万位,扩大了100倍,a不变.【解答】解:两位数a放在一个三位数b的右边相当于b扩大了100倍,那么这个五位数为.故选D二、填空题(每小题2分,满分20分)16.在﹣,2,0,0.3,﹣9这五个数中,﹣,﹣9 是负有理数;2,0,﹣9 是整数.(提示:要填完整哈)【考点】有理数.【分析】根据有理数的分类:有理数填写即可.【解答】解:在﹣,2,0,0.3,﹣9这五个数中,﹣,﹣9是负有理数;2,0,﹣9是整数.故答案为:﹣,﹣9;2,0,﹣9.17.平方后等于的有理数是±.【考点】平方根.【分析】根据题意,平方后等于的有理数即为的平方根.【解答】解:∵(±)2=,∴平方后等于的有理数是:±.故答案为±.18.比较下列各对数的大小(填“>”、“<”或“=”):(1)﹣2016 < 1(2)0 >﹣8.(3)﹣1 <﹣0.01.【考点】有理数大小比较.【分析】(1)根据正数大于负数,可得答案;(2)根据零大于负数,可得答案;(3)根据负数比较大小,绝对值大的数反而小,可得答案.【解答】解:(1)﹣2016<1(2)0>﹣8.(3)﹣1<﹣0.01,故答案为:<,>,<.19.﹣6的相反数是 6 ,+2的相反数是﹣2 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣6的相反数是 6,+2的相反数是﹣2,故答案为:6,﹣2.20.绝对值等于12的有理数有12或﹣12 .(提示:要填完整哟)【考点】有理数;绝对值.【分析】根据绝对值的意义得到|﹣12|=12,|12|=12.【解答】解:绝对值等于12的有理数有12或﹣12.故答案为:12或﹣12.21.﹣1的倒数是﹣.【考点】倒数.【分析】依据倒数的定义回答即可.【解答】解:﹣1的倒数是﹣.故答案为:﹣.22.“a的4倍与b的平方的差”用代数式表示为4a﹣b2.【考点】列代数式.【分析】明确给出文字语言中的运算关系,先求倍数,然后求差,再求平方.【解答】解:a的4倍为4a,与b的平方差为4a﹣b2,故答案为:4a﹣b2.23.将算式(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:﹣8+10﹣6﹣4 .【考点】有理数的加减混合运算.【分析】根据去括号的法则省略括号和加号即可得出答案.【解答】解:(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:﹣8+10﹣6﹣4;故答案为:﹣8+10﹣6﹣4.24.把多项式﹣x﹣1﹣3x3y2+2x2y3按x的降幂排列是﹣3x3y2+2x2y3﹣x﹣1 .【考点】多项式.【分析】按x的指数从大到小排列即可,注意:排列时带着项的符号.【解答】解:把多项式﹣x﹣1﹣3x3y2+2x2y3按x的降幂排列是﹣3x3y2+2x2y3﹣x﹣1.故答案为:﹣3x3y2+2x2y3﹣x﹣1.25.多项式x3﹣2x2y2+3y2是四次三项式.【考点】多项式.【分析】根据多项式的定义,若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【解答】解:根据多项式的定义,多项式x3﹣2x2y2+3y2是四次三项式.故答案为:四,三.三、解答题(共70分)(要求写出适当的解题过程)26.把下列各数填入表示它所在的数集的圈里:(提示:共10个数)﹣0.10,,1,﹣789,325,0,﹣20,10.10,1000.1,﹣5%【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:27.画出数轴,在数轴上表示下列各数,并按从小到大的顺序排列,用“<“号把这些数连接起来.2.5,﹣3,5,0,﹣2.【考点】有理数大小比较;数轴.【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的是右边的总比左边的大,可得答案.【解答】解:如图,用“<“号把这些数连接起来,得﹣3<﹣2<0<2.5<5.28.当x=﹣2,y=﹣4时,求下列各代数式的值(提示:注意书写格式):(1)x2+2xy+y2(2)x2﹣2xy+y2.【考点】完全平方式.【分析】先化成完全平方式,再代入求值比较简单.【解答】解:(1)当x=﹣2,y=﹣4时,x2+2xy+y2=(x+y)2=(﹣2﹣4)2=36,(2)当x=﹣2,y=﹣4时,x2﹣2xy+y2=(x﹣y)2=(﹣2+4)2=4.29.填空(1)(﹣16)+(﹣8)= ﹣24 ;(2)(+15)+(﹣4)= 11 ;(3)(﹣)+(﹣)= ﹣;(4)(﹣3.4)+4.3= 0.9 ;(5)(﹣3.5)+0= ﹣3.5 ;(6)(﹣12)+(+12)= 0 ;(7)(﹣32)﹣(+5)= ﹣37 ;(8)7.3﹣(﹣6.8)= 14.1 ;(9)(﹣3.28)﹣1= ﹣4.28 ;(10)12﹣21= ﹣9 ;(11)(﹣5)×(﹣3)= 15 ;(12)(﹣)×= ﹣;(13)(﹣10)××0.1×(﹣6)= 2 ;(14)21×(﹣71)×0×43= 0 ;(15)(﹣18)÷6= ﹣3 ;(16)÷(﹣)= ﹣;(17)= ;(18)﹣÷×(﹣)= ;(19)(﹣2)5= ﹣32 ;(20)﹣24= ﹣16 .【考点】有理数的混合运算.【分析】根据有理数加减乘除的运算方法,以及有理数的混合运算的运算方法,求出每个算式的值是多少即可.【解答】解:(1)(﹣16)+(﹣8)=﹣24;(2)(+15)+(﹣4)=11;(3)(﹣)+(﹣)=﹣;(4)(﹣3.4)+4.3=0.9;(5)(﹣3.5)+0=﹣3.5;(6)(﹣12)+(+12)=0;(7)(﹣32)﹣(+5)=﹣37;(8)7.3﹣(﹣6.8)=14.1;(9)(﹣3.28)﹣1=﹣4.28;(10)12﹣21=﹣9;(11)(﹣5)×(﹣3)=15;(12)(﹣)×=﹣;(13)(﹣10)××0.1×(﹣6)=2;(14)21×(﹣71)×0×43=0;(15)(﹣18)÷6=﹣3;(16)÷(﹣)=﹣;(17)=;(18)﹣÷×(﹣)=;(19)(﹣2)5=﹣32;(20)﹣24=﹣16.故答案为:﹣24;11;﹣;0.9;﹣3.5;0;﹣37;14.1;﹣4.28;﹣9;15;﹣;2;0;﹣3;﹣;;;﹣32;﹣16.30.计算:(1)(+14)+(﹣4)+(﹣2)+(+26)+(﹣3)(2)﹣24+3.2﹣16﹣3.5+0.3(3)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2](4)|﹣2|﹣(﹣)+1﹣|1﹣|(5)﹣22×(﹣)+4+(﹣3)3÷2×(﹣)2(6)﹣14﹣(1﹣0.5)÷(﹣)×[4﹣(﹣4)2].【考点】有理数的混合运算.【分析】(1)(2)从左向右依次计算,求出算式的值是多少即可.(3)首先计算乘方和括号里面的运算,然后计算乘法即可.(4)应用加法结合律,求出算式的值是多少即可.(5)首先计算乘方、乘法和除法,然后计算加法即可.(6)首先计算乘方和括号里面的运算,然后计算除法、乘法和减法即可.【解答】解:(1)(+14)+(﹣4)+(﹣2)+(+26)+(﹣3)=10﹣2+26﹣3=31(2)﹣24+3.2﹣16﹣3.5+0.3=﹣20.8﹣16﹣3.5+0.3=﹣40(3)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2]=[1﹣(1﹣)]×[2﹣9]=×(﹣7)=﹣(4)|﹣2|﹣(﹣)+1﹣|1﹣|=(2+)+(1﹣)=3+=3(5)﹣22×(﹣)+4+(﹣3)3÷2×(﹣)2 =﹣4×(﹣)+4+(﹣27)÷2×=+4﹣=0(6)﹣14﹣(1﹣0.5)÷(﹣)×[4﹣(﹣4)2] =﹣1﹣÷(﹣)×[4﹣16]=﹣1+×(﹣12)=﹣1﹣8=﹣931.某检修小组乘一辆汽车沿东西向公路检修线路,约定向东为正,某天从A 地出发到收工时,行走记录为(长度单位:千米):(每小题10分,共30分)+15,﹣2,+5,﹣3,+8,﹣3,﹣1,+11,+4,﹣5,﹣2,+7,﹣3,+5.收工时,检修小组在A地的哪一边?距A地多远?【考点】有理数的加法;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:由题意得:向东路程记为“+”,向西路程记为“﹣”,则检修小组离A点的距离为:(+15)+(﹣2)+(+5)+(﹣3)+(+8)+(﹣3)+(﹣1)+(+11)+(+4)+(﹣5)+(﹣2)+(+7)+(﹣3)+(+5)=36(千米)答:小花猫最后在出发点的东边;离开出发点A相距36千米.2017年5月3日。
)))))、)9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费 元(用含a 、b 的式子表示). 10.2xy-的系数是a ,次数是b ,则a +b = . 11.若313m x y +与126n x y +是同类项,则m +n = .12.把多项式x 2-2-3x 3+5x 按x 的升幂排列为 . 13.已知多项式3x 2-4x 的值为9,则6x 2-8x -6的值为 .14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤ y 时,x ★y = x 2;x >y 时,x ★y = y . 则(-2★-4)★1的值为 .15.计算:(-3. 14)+(+4. 96)+(+2. 14)+(-7. 96).16.计算:(-3)2-60 ÷22×110+|-2|.17.计算:2x2y3+(-4 x2y3)-(-3 x2y3). 18.计算:(3a2-2a)-2(a2-a-1).19.已知A = 3x2+4xy,B = x2+3xy-y2,求2B-A.20.先化简,再求值:5x2-[3x-2(2x-3)+7x2],其中x=1 2 .得分评卷人四、解答题(每小题7分,共28分)21.小明做了如下一道有理数混合运算的题目:﹣34÷(﹣27)-[(﹣2)×(﹣43)+(﹣2)]3= 81÷(﹣27)-[ 83+(-8)]= ……思考:(1)请用圆圈圈出小明第一步计算中的错误;(2)正确的解答这道题.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的整式的卡片,规则是两位同学的整式相减等于第三位同学的整式,则实验成功. 甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉琪发现丙减甲可以使实验成功,请求出丙的整式.甲乙丙(第22题)2x2-3x-1x2-2x+3+223.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,15 个站点如图所示. 某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A 站下车时,本次志愿者服务活动结束. 约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,-2,-6,+8,+3,-4,-9,+8. (1)请通过计算说明A 站是哪一站;(2)若相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?(第23题)24.如图,长为50 cm ,宽为x cm 的大长方形被分割为8小块,除阴影A 、B 外,其余6块是形状、大小完全相同的小长方形,其较短一边长为a cm.(1)由图可知,每个小长方形较长的一边长是 cm (用含a 的代数式表示); (2)当x = 40时,求图中两块阴影A 、B 的周长和. (第24题)红咀子南部新城市政府卫星广场繁荣路工农广场东北师大儿童公园人民广场胜利公园长春站长春站北一匡街庆丰路北环25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒). (1)当t = 0.5时,求点Q 到原点O 的距离; (2)当t = 2.5时,求点Q 到原点O 的距离;(3)当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.(第25题)QP OA26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x筒(x>30). 经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒,现有甲、乙两家体育用品商店有如下优惠方案:方案一:甲商店:买一支网球拍送一筒网球;方案二:乙商店:网球拍与网球均按定价90%付款.(1)方案一:到甲商店购买,需要支付元;方案二:到乙商店购买,需要支付元(用含x的代数式表示);(2)若x = 10,请通过计算说明学校采用以上哪个方案较为优惠;(3)已知x = 100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以更省钱,请直接写出比方案一省多少钱?名校调研系列卷·七年上期中测试 数学(人教版)参考答案一、1. A 2. C 3. B 4. D 5. C 6. B 二、填空题:7. > 8. 5.619. (4a +10b ) 10.11. 312. -2+5x +x 2-3x 313. 1214. 16三、15. 解:原式=(-3. 14+2. 14)+(+4. 96-7. 96)= -1-3 =-4. 16. 解:原式= 9-60×14×110+2 = 9-32+2 =192. 17. 解:原式= 2x 2y 3-4x 2y 3+3x 2y 3 = x 2y 3. 18. 解:原式= 3a 2-2a -2a 2+2a +2 = a 2+2.四、19. 解:2B -A =2(x 2+3xy -y 2)-(3x 2+4xy )= 2x 2+6xy -2y 2-3x 2-4xy =-x 2+2xy -2y 2 .20. 解:5x 2-[3x -2(2x -3)+7x 2] = 5x 2-(3x -4x +6+7x 2)= 5x 2-3x +4x -6-7x 2=-2x 2+x -6.当x =12时,原式=-2×(12)2+12-6 =12 +12-6 =-6. 21. 解:(1) ; (2)﹣34÷(﹣27)- [(﹣2)×(﹣43)+(﹣2)]3=-81÷(﹣27)-(83-2)3 = 3-(23)3 = 3-827=19227.22. 解:(1)根据题意,得:2x 2-3x -1-(x 2-2x +3)= 2x 2-3x -1-x 2+2x -3 = x 2-x -4,则甲减乙不能是实验成功;(2)根据题意,得,丙表示的整式为2x 2-3x -1+ x 2-2x +3 = 3x 2-5x +2.五、23. 解:(1)+5-2-6+8+3-4-9+8= 3,答:A 站是工农广场站;(2)(5+2+6+8+3+4+9+8)×1. 3 = 45×1. 3 = 58. 5(千米), 答:这次王红志愿服务期间乘坐地铁行进的路程是58. 5千米.24. 解:(1)(50-3a );(2)2 [50-3a +(x -3a )]+2 [3a +x -(50-3a )]= 2(50+x -6a )+2(6a +x -50) = 100+2x -12a +12a +2x -100 = 4x .当x = 40时,原式= 4×40 = 160 .32= 81÷(-27)-[83+(-8)]= ……六、25. 解:(1)当t = 0. 5时,AQ = 4t = 4×0. 5= 2,∵OA = 8,∴OQ = OA-AQ = 8-2 = 6,∴点Q到原点O的距高为6;(2)当t = 2. 5时,点Q运动的距离为4t = 4×2. 5 = 10,∴OQ =10-8 = 2,∴点Q到原点O的距离为2;(3)当点Q到原点O的距离为4时,∵OQ = 4,∴当点Q向左运动时,OA = 8,则AQ = 4,∴t = 1,∴OP = 2;当点Q向右运动时,OQ = 4,∴点Q运动的距离是8+4 = 12,∴运动时间t=12÷4 = 3,∴OP = 2×3 = 6,∴点P到原点O的距离为2或6.26. 解:(1)甲商店购买需付款30×100+(x-30)×20 = 20x+30×(100-20)=(20x+2400)元;乙商店购买需付款100×90%×30+20×90%×x =(18x+2700)元.故答案为:(20x+2400),(18x+2700);(2)当x = 100时,甲商店需20×100+2400 = 4400(元);乙商店需18×100+2700 = 4500(元);所以甲离店购买合算;(3)先在甲商店购买30支球拍,送30筒球需3000元,差70筒球在乙商店购买需1260元,共需4260元,4400-4260 = 140(元),比方案一省140元钱.。
2019-2020学年交大附中七年级(上)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣5的相反数是()A.﹣5B.﹣C.5D.2.(3分)2019年国庆,建国70周年阅兵式邀请了包括优秀共产党员、人民满意的公务员、时代楷模、最美人物、大国工匠、优秀农民工等近1500名各界的先进模范人物代表参加观礼,将1500用科学记数法表示为()A.1.5×102B.15×102C.1.5×103D.0.15×1043.(3分)下列各式中结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.﹣324.(3分)下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=15.(3分)实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b>0B.|a﹣b|=a﹣bC.|b|>|a|D.(a+1)(b﹣1)>06.(3分)如果a、b互为相反数a≠0),x、y互为倒数,那么代数式的值是()A.0B.1C.﹣1D.27.(3分)如果|a+2|+(b﹣3)2=0,则a b的值是()A.﹣6B.6C.﹣8D.88.(3分)已知(m2﹣1)x2+(m﹣1)x+7=0是关于x的一元一次方程,则m的值为()A.±1B.﹣1C.1D.以上答案都不对9.(3分)下列结论正确的是()A.a一定比﹣a大B.不是单项式C.﹣3ab2和b2a是同类项D.x=3是方程﹣x+1=4的解10.(3分)小明和小勇一起玩猜数游戏,小明说:“你随便选定三个一位数,按下列步骤进行计算:①把第一个数乘以2;②加上2;③乘以5;④加上第二个数;⑤乘以10;⑥加上第三个数;只要你告诉我最后的得数,我就能知道你所选的三个一位数.”小勇表示不相信,但试了几次,小明都猜对了,请你利用所学过的数学知识来探索该“奥秘”并回答当“最后的得数”是567时,小勇最初选定的三个一位数分别是()A.5,6,7B.6,7,8C.4,6,7D.5,7,8二、填空题(每空2分,满分18分,将答案填在答题纸上)11.(2分)写出一个系数是2,且含有字母a,b的3次单项式(答案不唯一).12.(2分)“a,b两数和的5倍”这句话用代数式可以表示为.13.(2分)计算=.14.(2分)数轴上与原点距离为4个单位长度表示的数是.15.(4分)比较大小:;.16.(2分)若关于x的方程2x+a﹣6=0的解是x=2,则a的值等于.17.(2分)用“☆”定义一种新运算:对于任意有理数a,b,都有a☆b=ab+a2,则3☆(﹣2)=.18.(2分)一列方程如下排列:的解是x=2的解是x=3的解是x=4……根据观察所得到的规律,请你写出一个解是x=10的方程:.三、计算题:(本大题共4个小题,每小题8分,共16分).19.(8分)(1)25﹣9+(﹣12)﹣(﹣7);(2)20.(8分)(1)2(m2n+5mn3)﹣5(2mn3﹣m2n);(2)2x﹣2[x﹣(2x2﹣3x+2)]﹣3x2.四、解方程:(本大题共2个小题,每小题10分,共10分).21.(10分)(1)5(x﹣6)=﹣4x﹣3;(2).五、化简求值(本大题共2个小题,每小题6分,共12分).22.(6分)设A=x﹣4(x+y)+(x﹣y)(1)当x=﹣,y=1时,求A的值;(2)若使求得的A的值与(1)中的结果相同,则给出的x,y的值还可以是.23.(6分)已知a﹣b=2,ab=﹣1,求(4a﹣5b﹣ab)﹣(2a﹣3b+5ab)的值.六、探究题(本大题共4个小题,第24、第25小题3分,第26、27小题4分,共14分).24.(3分)你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答会告诉你方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.解:设=x.方程两边都乘以10,可得7.=10x.由=x和7.=10x,可得7.﹣0.即7=10x﹣x.(请你体会将方程两边都乘以10起到的作用)解得,即0.7=.填空:将0.写成分数形式为.(2)请你仿照上述方法把小数1.化成分数,要求写出利用一元一次方程进行解答的过程.25.(3分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全562的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个十位数字是a的两位数的平方,过程部分如图3所示,则这个两位数为(用含a的代数式表示).26.(4分)观察下面的等式:3﹣1=﹣|﹣1+2|+31﹣1=﹣|1+2|+3(﹣2)﹣1=﹣|4+2|+3回答下列问题:(1)填空:﹣1=﹣|6+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是;(3)设满足上面特征的等式最左边的数为y,则y的最大值是,此时的等式为.27.(4分)阅读下列材料:我们给出如下定义:数轴上给定两点A,B以及一条线段PQ,若线段AB的中点R在线段PQ上(点R 可以与点P或Q重合),则称点A与点B关于线段PQ径向对称.下图为点A与点B关于线段PQ径向对称的示意图.解答下列问题:如图1,在数轴上,点O为原点,点A表示的数为﹣1,点M表示的数为2.(1)①点B,C,D分别表示的数为﹣3,,3,在B,C,D三点中,与点A关于线段OM径向对称;②点E表示的数为x,若点A与点E关于线段OM径向对称,则x的取值范围是;(2)在数轴上,点H,K,L表示的数分别是﹣5,﹣4,﹣3,当点H以每秒1个单位长度的速度向正半轴方向移动时,线段KL同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t(t>0)秒,问t为何值时,线段KL上至少存在一点与点H关于线段OM径向对称.参考答案与试题解析一、选择题:1.解:只有符号不同的两个数称为互为相反数,则﹣5的相反数为5,故选:C.2.解:1500=1.5×103.故选:C.3.解:A、﹣(﹣3)=3,是正数,故本选项不符合题意;B、|﹣3|=3是正数,故本选项不符合题意;C、(﹣3)2=9是正数,故本选项不符合题意;D、﹣32=﹣9是负数,故本选项符合题意.故选:D.4.解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b﹣3ba2=0,C正确;D、5a2﹣4a2=a2,D错误,故选:C.5.解:由图,得a<﹣1<0<b<1.A、a+b<0,故A错误;B、|a﹣b|=b﹣a,故B错误;C、|a|>|b|,故C错误;D、(a+1)(b﹣1)>0,故D正确;故选:D.6.解:根据题意得:a+b=0,xy=1,=﹣1,则原式=0﹣1+1=0,故选:A.7.解:根据题意得:,解得:,则a b=(﹣2)3=﹣8.故选:C.8.解:由题意,得m2﹣1=0且m﹣1≠0,解得m=﹣1,故选:B.9.解:A、当a=0时,a=﹣a,故本选项不符合题意;B、是单项式,故本选项不符合题意;C、﹣3ab2和b2a是同类项,故本选项符合题意;D、x=﹣3是方程﹣x+1=4的解,x=3不是方程的解,故本选项不符合题意.故选:C.10.解:设三个数为a,b,c,则计算结果为100a+10b+c+100,奥妙为:答案减100后,百位是a(第1个数),十位为b(第2个数),个位是c(第3个数).∴小勇最初选定的三个一位数分别:4,6,7.故选:C.二、填空题(每空2分,满分18分,将答案填在答题纸上)11.解:单项式的系数已确定,字母a、b的次数可按照3=1+2=2+1的方式分配,故所求单项式为:2a2b 或2ab2.12.解:“a,b两数和的5倍”这句话用代数式可以表示为5(a+b).故答案为:5(a+b).13.解:,=×12+×12﹣×12,=3+2﹣6,=5﹣6,=﹣1.14.解:数轴上与原点距离为4个单位长度表示的数是±4.故答案为:±4.15.解:∵,∴;∵,,∴.故答案为:<;>16.解:把x=2代入方程得:4+a﹣6=0,解得:a=2.故答案为:2.17.解:根据题中的新定义得:原式=﹣6+9=3,故答案为:318.解:方程+=1的解为x=10.故答案为:+=1.三、计算题:(本大题共4个小题,每小题8分,共16分).19.解:(1)原式=25﹣9﹣12+7=11;(2)原式=×(﹣8)×=﹣2.20.解:(1)原式=2m2n+10mn3﹣10mn3+5m2n=7m2n;(2)原式=2x﹣2x+4x2﹣6x+4﹣3x2=x2﹣6x+4.四、解方程:(本大题共2个小题,每小题10分,共10分).21.解:(1)去括号得:5x﹣30=﹣4x﹣3,移项合并得:9x=27,解得:x=3;(2)去分母得:4x+2=6+1﹣10x,移项合并得:14x=5,解得:x=.五、化简求值(本大题共2个小题,每小题6分,共12分).22.解:(1)A=x﹣4(x+y)+(x﹣y)=x﹣4x﹣y+x﹣y=﹣2x﹣2y,当x=﹣,y=1时,原式=﹣2×(﹣)﹣2×1=﹣1;(2)﹣2x﹣2y=﹣2(x+y)=﹣1,则x+y=,若使求得的A的值与(1)中的结果相同,则给出的x,y的值还可以是:x=0,y=(答案不唯一).故答案为:x=0,y=(答案不唯一).23.解:(4a﹣5b﹣ab)﹣(2a﹣3b+5ab)=4a﹣5b﹣ab﹣2a+3b﹣5ab=2a﹣2b﹣6ab,=2(a﹣b)﹣6ab,当a﹣b=2,ab=﹣1时,原式=2×2﹣6×(﹣1)=10.六、探究题(本大题共4个小题,第24、第25小题3分,第26、27小题4分,共14分). 24.解:(1)设0.=x,则4+x=10x,∴x=.故答案是;(2)设0.=m,方程两边都乘以100,可得100×0.=100m.由0.=0.3232…,可知100×0.=32.3232…=32+0.即32+m=100m可解得m=,∴1.=1.25.解:(1)如图所示:(2)设这个两位数的个位数字为b,依题意有20a×b=a×100,解得b=5,故这个两位数为10a+5.故答案为:10a+5.26.解:(1)∵﹣|6+2|+3=﹣5,﹣4﹣1=﹣5,故答案为﹣4;(2)由所给式子可知,x+2=2,∴x=0,故答案为0;(3)∵y﹣1=﹣|2﹣y+2|+3,∴y=﹣|y﹣4|+4,当y≥4时,y=﹣y+8,∴y=4;当y<4时,式子恒成立,∴y=4时最大,此时4﹣1=﹣|﹣2+2|+3,故答案为4,4﹣1=﹣|﹣2+2|+3.27.解:(1)①根据径向对称的定义,点C,D与点A关于线段OM径向对称.②当点O是AE的中点时,x=1,当点M是AE的中点时x=5,∴满足条件的x的值为1≤x≤5.故答案为C,D,1≤x≤5.(2)若点H与点E关于线段OM径向对称,设点E表示的数为x,则x的取值范围是5﹣t≤x≤9﹣t,∴满足条件的t的值满足:5﹣t﹣(﹣3)≤3t≤9﹣t﹣(﹣4),解得2≤t≤.。
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如果一个角α的度数为13°14',那么关于x 的方程21803x x α-=︒-的解为( )A.76°46'B.76°86'C.86°56'D.166°46' 2.在同一平面上,若∠BOA =60.3°,∠BOC =20°30′,则∠AOC 的度数是( )A.80.6°B.40°C.80.8°或39.8°D.80.6°或40° 3.如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面亮到现点B ,则它爬行的最短路程是( )A B . C .D .5 4.下列结论错误的是( ) A .若a=b ,则a ﹣c=b ﹣c B .若a=b ,则ax=bxC .若x=2,则x 2=2xD .若ax=bx ,则a=b 5.互联“微商”经营已成为大众创业新途径.某微信平台上一件商品标价为440元,按标价的五折销售,仍可获利10%,则这件商品的进价为( )A .240元B .200元C .160元D .120元6.下列说法正确的是( ) A.3xy 5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式 D.2x x 1--的常数项是1 7.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,……按照这样的规律排列下去,则第6个图形由( )个圆组成A .39B .40C .41D .42 8.下列方程中,以x = -1为解的方程是 ( ) A.13222x x +=- B.7(x -1)=0C.4x -7=5x +7D.13x =-3 9.下列说法中正确的是( ) A .2x y 4不是整式 B .0是单项式 C .22πab -的系数是2- D .223xy -的次数是5 10.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c(对应顺序暂不确定).如果ab <0,a+b >0,ac >bc ,那么表示数b 的点为( )A.点MB.点NC.点PD.点O11.下列运算中,正确的是( ) A.3÷6× 12=3÷3=1 B.﹣|﹣5|=5C.﹣2(x ﹣3y )=6y ﹣2xD.(﹣2)3=﹣612.若实数a 、b 互为相反数,则下列等式中成立的是( ) A .a ﹣b =0B .a+b =0C .ab =1D .ab =﹣1 二、填空题13.若∠A 度数是它补角度数的13,则∠A 的度数为 °. 14.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE//BC ,分别交AB,AC 于点D,E,若AB=4,AC=3,则△ADE 的周长是_______________。
上海市七年级数学2019-2020年度第一学期期中测试卷一.填空题(每题2分,共36分)1.直接写出答案(1)231()4x y -= 63164x y - . (2)34()x x ⋅- 7x . (3)3()()a b b a --= 4()a b -- . (结果用幂的形式表示)2.因式分解:(1)2812a b ac -= 4(23)a a b c - . (2)28149x -= (97)(97)x x +- .(3)214x x ++= 21()2x + . (4)26x x +-= (3)(2)x x +- . 3.用代数式表示x 的平方的倒数减去12的差: 2112x - . 4.请将多项式2233241x y xy x y -+--按字母x 降幂排列3322421x y x x y y -++-- .5.已知单项式143n x y +与3212m x y -是同类项,则m n += 8 . 6.若多项式2342x y kx ky k -+++-不含y 项,则常数k =32 . 7.已知22()()9x ay x ay x y -+=-,那么a 3± . 8.因式分解:2(2)4(2)a a b b b a -+-= 22(2)a b - . 9.如果2425x mx ++是一个完全平方式,那么常数m = 20± .10.已知16x x +=,那么221x x+= 34 . 11.计算:2010201123()()32⨯-= 32- . 12.若2m a =,4n a =,则32m n a+= 128 . 13.若4x y +=,2214x y +=,则2()x y -= 12 .二.选择题(每题2分,共10分)14.下列代数式2x a +;22x y ;1m ;73a b-;2-;b ;2781x x +-;3π中,单项式有( C )个.A.2B.3C.4D. 515.在(1)623[()]a a -⋅-;(2)43()a a ⋅-;(3)2332()()a a -⋅;(4)43[]a --中,计算结果为 12a -的有( A ).A.(1)和(3)B.(1)和(2)C.(2)和(3)D.(3)和(4)16. ()()a b c a b c +---的计算结果是( D ).A.222a b c +-B.222a b c -+C.2222a ab b c -+- D.2222a ac c b -+-17.下列多项式乘法能用平方差公式计算的是( B ).A.(3)(3)x y x y ----B.(3)(3)x y x y ---+C.(3)(3)x y x y +--D.(3)(3)x y x y -+-18.要使二次三项式25x x p -+在整数范围内能因式分解,那么整数p 的取值可以为( D ).A.2个B.4个C.6个D.无数个三.计算题(每题4分,共20分) 19.2222131()(2)224x xy y xy --+⋅- 20. 22(2)(2)a b b a +- =44352626x y x y x y --+ 4224816b a b a =-+21. 2(23)x y z +- 22. 22(23)(94)(32)a b b a b a ++-222494612x y z x y x z y z =+++-- 448116b a =-四.因式分解(每题4分,共16分)23.381a a - 24.2318248a a a -+- (9)(9)a a a =+- 22(32)a a =--25.229(2)(2)a b a b +-- 26.4254x x -+ 8()(4)a b a b =++ (2)(2)(1)(1)x x x x =+-+-五.解答题(每题4分,满分12分)27.已知正整数n 满足1639273n ⨯⨯=,求n 的值. 解:2312316392733333n n n ++⨯⨯=⨯⨯== 则6n =28.已知22137m n a b +--是四次单项式,求222(4)(2)m n m m n mn n --+--的值.(m 、n 为正整数) 解:由题可知:2214m n ++-=,所以23m n +=2222(4)(2)(2)9m n m m n mn n m n --+--=-+=-29.因式分解2x mx n ++时,小李看错了m ,分解为(6)(1)x x +-,小红看错了n ,分解为(2)(1)x x -+,那么这个代数式正确分解的结果应该是怎样的?解:由题意可知6n =-,1m =-226(3)(2)x mx n x x x x ++=--=-+六.综合题(第31题2分,第32题4分,共6分)30.如图是用四个相同的小长方形与一个正方形组成的图,已知该图面积为49,小正方形的面积为4,若用x 和y 表示小长方形的长和宽(x 大于y ).1.请你判断下列结论哪些是正确的?(1)7x y += (2)2x y -=(3)4449xy += (4)2225x y += 答:正确的是 (1)(2)(3) (填序号)2.若小正方形的边长为y ,该图形的面积未知,求x 和y之间的关系.解:22()4x y xy y +-=yx故2x y =31.已知2222211234(1)(21)6n n n n +++++=++,请利用公式计算: (1)22222123450+++++ 解:原式150(501)(2501)6=⨯⨯+⨯⨯+ 42925=(2)222226272850++++ 解:原式1150(501)(2501)25(251)(2251)66=⨯⨯+⨯⨯+-⨯⨯+⨯⨯+ 429255525=-37400=。
'''5 43124 41673 4161825 -=+--=+-+-=解:原式2019-2020学年度第一学期七年级期中联考数学科试卷答案第一部分(共36分)1. C2. D3. A4. B5. D6. D7. D8. D9. B 10. C 11. B 12. B第二部分(各3分,共12分)15.16.【解析】时,,时,, 时,, 时,,依此类推,三角形的边上有 枚棋子时,S=3n —3第三部分17.(各5分,共10分)(1) (2)18.(6分)当时,19. (6分)(1) 第二组人数:62a ⎛⎫+ ⎪⎝⎭人.(2) 第三组人数: 3(6)2a+人. (3) 第四组人数:(人). (4) 时,第四组有 人(答案不唯一).'''5 134 2730-161 36-43-36-6536-94- =+=⨯⨯+⨯=)()()()(解:原式……2分 ……4分 ……6分……1分……2分……4分……6分92290)]5()3(810[5190=+=-+-++++20. (6分)克,答:抽样检测的袋食品的平均质量是克.(列式4分+正确结论2分)21. 三视图如下:(每个2分共6分)22.(8分)解:因为10>8>0>—3>—5所以第3的计为0分,小明的90分计为0分其余的分数分别是90+10=100分,90+8=98分,90-3=87分,90-5=85分平均分是:23.(10分)(1),,,都是负数或其中一个为负数,另两个为正数,……1分①当,,都是负数,即,,时,则……3分②,,有一个为负数,另两个为正数时,设,,,则.……5分因此的值为或.……6分(2),,且,,,……8分则.……10分……1分……2分……4分……6分……8分。
2019-2020学年度第一学期期中质量监测七年级数学答案一、选择题(共40分,每小题4分)1. B2. B3. D4. B5. A6. A7. C8. C9. D10. D二、填空题(共24分,每小题4分)11. −112. 6.5×10713. 2114. m+n3015. −2或−816. 28三、解答题(本题共9题,共86分)17. (共16分,每小题4分)解:(1)原式=−5.3−3.2+2.2−5.7………2分=-5.3-5.7-3.2+2.2=-11-1……………………………3分=-12………………………………4分(2)原式=2+(29−14+118)×(−36)………….1分=2+29×(−36)−14×(−36)+118×(−36)………2分=2−8+9−2…………3分=1……………………4分(3)原式=−4+(−27)×(−29)+4×(−1)…………2分=−4+6−4…………………………………3分=−2…………………………………………4分(4)原式=2x−6x2+2+6x2−3x−6………2分=−x−4………………………………4分18. 解:原式 =x2+2xy−3y2−2x2−2yx+4y2…………………3分=−x2+y2……………………………5分当x=−1,y=2时,原式=−(−1)2+22=−1+4=3…………………7分19. 解:①标对1个给1分,共5分②−(−2)2<−112<0<|−2.5|<−(−4)…………7分20. 解:(1)如图所示:……………3分(2)26……………………6分(3)2……………………8分21. (1)−5…………………3分(2)根据题意得:C=(x2−6x−2)−(−5x2−4x)=6x2−2x−2………………5分∴A −C =−5x 2−4x −6x 2+2x +2=−11x 2−2x +2………….7分则“A −C ”的正确答案为−11x 2−2x +2………………….8分22. (1)1800 ……………2分(2)740 ……………4分(3)(120+150-200+220-320+410+420+2000×7)÷200=74(min) ………7分 答:这周小明跑步的时间为74min 。
2019-2020学年七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在表格相应位置上1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.82.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×1053.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.76.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,每小题2分,共20分请将答案填在题中相应的横线上)9.的倒数是.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作11.写出一个比3大且比4小的无理数:.12.若a<0,且|a|=2,则a﹣1=13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是.17.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示(结果能化简的要化简)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有(填写所有正确结论的序号)三、解谷题(本大题共7题,计56分)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)9920.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:数量范围(千克)0~50 50以上~150 150以上~250 250以上价格(元)零售价的90% 零售价的85% 零售价的80% 零售价的75% (1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.参考答案与试题解析一.选择题(共8小题)1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.8【分析】先比较数的大小,再得出选项即可.【解答】解:﹣2<0<1<8,最小的数是﹣2,故选:A.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故选:D.3.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a【分析】根据数轴左边的数小于右边的数即可直接解答.【解答】解:根据实数实数a、0、b在数轴上的位置可以得知:b<0<a,且a距离原点比b近.,故|b|>a,故选:D.4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab【分析】根据有理数的运算法则以及合并同类项法则即可求出答案.【解答】解:(A)原式=﹣9,故A错误;(C)原式=a3﹣a2,故C错误;(D)原式=2a+3b,故D错误;故选:B.5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.7 【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=﹣2,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×(﹣2)=7;故选:D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是三次三项式,故本选项错误.故选:C.7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数【分析】利用绝对值的知识分别判断后即可确定正确的选项.【解答】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选:C.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个二.填空题(共10小题)9.的倒数是﹣3 .【分析】根据倒数的定义.【解答】解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作﹣120元【分析】首先审清题意,明确“正”和“负”所表示的意义,再结合题意作答.【解答】解:如果收入180元记作+180元,那么支出120元记作﹣120元.故答案为﹣120元.11.写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.12.若a<0,且|a|=2,则a﹣1=﹣3【分析】直接利用绝对值的性质得出a的值进而得出答案.【解答】解:∵a<0,且|a|=2,∴a=﹣2,∴a﹣1=﹣3.故答案为:﹣3.13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=0 【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵关于x的方程mx m﹣1﹣m+2=0是一元一次方程,∴m﹣1=1,解得:m=2,故2x=0,解得:x=0.故答案为:0.14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为0.8x﹣10=90【分析】设某种书包原价每个x元,根据两次降价后售价为90元,即可得出关于x的一元一次方程,此题得解.【解答】解:设某种书包原价每个x元,根据题意得:0.8x﹣10=90.故答案为:0.8x﹣10=90.15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.【分析】原式利用已知新定义化简,计算即可得到结果.【解答】解:原式==,故答案为:16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是34 .【分析】首先求出A+B,根据多项式A+B不含一次项,列出方程求出m的值即可解决问题.【解答】解:∵A+B=(3x3+2x2﹣5x+7m+2)+(2x2+mx﹣3)=3x3+2x2﹣5x+7m+2+2x2+mx﹣3=3x2+4x2+(m﹣5)x+7m﹣1∵多项式A+B不含一次项,∴m﹣5=0,∴m=5,∴多项式A+B的常数项是34,故答案为3417.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示110a﹣97 (结果能化简的要化简)【分析】根据个位上的数字为a,十位上的数字比个位上的数字小1可以求出三左边的数字,再加上个位上的三,即可求出答案.【解答】解:∵个位上的数字为a,十位上的数字比个位上的数字小1,∴3的左边的数是100(a﹣1)+10a,∴这个三位数可以表示为100(a﹣1)+10a+3=100a﹣100+10a+3=110a﹣97.故答案为:110a﹣97.18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有④(填写所有正确结论的序号)【分析】利用题中的新定义判断即可.【解答】解:①[0)=1;②[x)﹣x无最小值;③[x)﹣x无最大值;④存在实数x,使[x)﹣x=0.4成立,故答案为:④三.解答题(共7小题)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99【分析】(1)根据有理数的加法的运算方法,求出每个算式的值各是多少即可.(2)先计算乘方,再利用乘法分配律变形,利用除法法则计算即可得到结果;【解答】解:(1)23+(﹣17)+(+7)+(﹣13),=23﹣17+7﹣13,=23+7﹣17﹣13,=30﹣30,=0;(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99,=﹣24×+24×+24×+16÷(﹣8)﹣1,=﹣16+12+30﹣2﹣1,=﹣19+42,=23.20.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=【分析】(1)原式去括号、合并同类项即可化简;(2)先将原式去括号、合并同类项化为最简形式,再将x,y的值代入计算可得.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=x﹣2x+y﹣x+y=﹣3x+y,当x=﹣2,y=时,原式=﹣3×(﹣2)+=6.21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?【分析】(1)根据题意列出算式,再根据有理数的减法法则计算可得;(2)根据题意列出算式B=4x2﹣6x﹣3﹣(2x2﹣x+5),再去括号、合并即可得.【解答】解:(1)根据题意,得:[(﹣1)﹣(﹣)]﹣=﹣1+﹣=﹣;(2)根据题意,得B=4x2﹣6x﹣3﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)【分析】(1)求出这些数的和,即可得出答案;(2)求出这些数的绝对值的和,再乘以0.15升即可.【解答】解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3(千米),∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16(千米),16×0.15=2.4(升),故这次巡逻(含返回)共耗油2.4升.23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?【分析】(1)根据题意给出的等式,将a=20代入即可求出b的值.(2)根据题意给出的等式,将a=50时代入求出b的值,然后将b与23相比较即可知道是否有危险.【解答】解:(1)当a=20时,b=0.8(220﹣a)=0.8×(220﹣20)=160,所以在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;(2)他有危险,当a=50时,b=0.8(220﹣a)=0.8×(220﹣50)=136,因为136÷60×10=<23,所以此人有危险.24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:数量范围(千克)0~50 50以上~150 150以上~250 250以上价格(元)零售价的90% 零售价的85% 零售价的80% 零售价的75% (1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.【分析】(1)根据A、B两家的优惠办法分别求出两家购买需要的费用即可;(2)根据题意列出式子分别表示出购买x千克太湖蟹所相应的费用即可.【解答】解:(1)A:80×60×95%=4560(元),B:50×70×90%+(80﹣50)×70×85%=4935(元),∵4560元<4935元,∴他在A商家批发合算;(2)A:60×90%x=54x(元),B:50×70×90%+100×70×85%+(x﹣150)×70×80%=56x+700(元).25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.。
2019-2020学年度第一学期期中考试 七年级数学 2019.11 (完卷时间90分钟 满分100分)
1.计算:23a a ⋅= . 2、计算:23(3)x -= . 3、计算34(5)(5)-⋅-= .(结果用幂的形式表示) 4、计算:)21)(23(ab b a -- = . 5、计算:210099101-⨯= . 6、当2x =-时代数式(1)3x x -的值是 . 7、如果3m a =,那么3m a =________. 8、单项式32b a -的系数是 ,次数是 . 9、 已知3b 23x 2y y x a 与是同类项,则代数式ab = 10、把多项式23563+2x x y x --按字母x 的降幂排列: . 11、代数式5.0,)(,32,22,222b a a a a a a +++-π,中,多项式有 12、因式分解:3642-x = 。
13.若(x +P )与(x +3)的乘积中,不含x 的一次项,则P 的值是 . 14、将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n 个图形有
个小圆.(用含n 的代数式表示)
学校
班级
姓名
座位号
……
……………
…………
…
…
…
…
…
…
装
……
…
…
…
…
…
……
…
…
…
…
…
订
…
…
…
…
…
…
…
…
…
…
线
………………………………
二、选择题:(每题3分,共12分)
15.下列计算正确的是( )
.A 532x x x =+ .B 632x x x =⋅ .C 632x x x -= .D 623)(x x =-
16. 下列各式从左到右的变形,是因式分解的是:( )
A 、x x x x x 6)3)(3(692+-+=+-
B 、()()103252-+=-+x x x x
C 、()2
24168-=+-x x x D 、623ab a b =⋅ 17.(﹣x+y )( )=x 2﹣y 2,其中括号内的是( )
A.﹣x ﹣y B .﹣x+y C.x ﹣y D .x+y
18.计算(-2)2016+(-2)2017的结果是 ( )
A .-2
B .2
C .-22016
D .22017
三、简答题:(每题5分,共计40分)
19、计算:2322)()(a a a --- 20.计算:)2
1(2222y y x x y +--⋅-
21.计算:2)1(++b a . 22、计算:(23)(23)x y x y +--+
(第18题图)
第1个图形 第2个图形 第3个图形 第4个图形
23、求整式2818x x -+减去2437x x -+的差.
24、因式分解:4()2()a x y b y x --- 25、因式分解:2221xy x y -+-
26、因式分解:222224)(y x y x -+
四、解答题:(6分+6分+8分,共计20分)
27、先化简,再求值:
22(2)(3)(3)x y x x y x y x y +-+++-(),其中1,2x y =-=.
28、一条隧道的横截面如图所示,它的上部是一个半径为r的半圆,下部是一个长方形,长方形的一边长为2.5 米,隧道横截面为S平方米.
(1)用r的代数式表示S;
(2)当=2
r时,求S的值.( 取3.14 )
29.我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上有许多代数恒等式可以用图形的面积来表示.例如:沿图1长方形中的虚线平均分成四块小长方形, 然后按图2的形状拼成一个正方形.
图3 图4
(1)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①.方法②;
(2)观察图2请你写出代数式(m+n)2、(m-n)2 、mn之间的等量关系式 .
(3)请写出图3(或图4)中所表示的代数恒等式____________
22(4)试画出一个几何图形,使它的面积能表示()()
343
++=++
a b a b a ab b。