2018-2019钦州市中考必备数学考前押题密卷模拟试卷13-14(共2套)附详细试题答案
- 格式:pdf
- 大小:480.61 KB
- 文档页数:18
钦州市中考模拟数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·呼和浩特模拟) 下列实数是分数的是()A . 3.14B . 0C .D .2. (2分)(2017·临沂模拟) 下列各式计算正确的是()A . a2+a2=a4B . (﹣2x)3=﹣8x3C . a3•a4=a12D . (x﹣3)2=x2﹣93. (2分)(2016·齐齐哈尔) 如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A . 5个B . 6个C . 7个D . 8个4. (2分)下列不是必然事件的是()A . 角平分线上的点到角两边的距离相等B . 三角形内心到三边距离相等C . 三角形任意两边之和大于第三边D . 面积相等的两个三角形全等5. (2分)下列说法中,正确的是().A . 相等的角一定是对顶角B . 四个角都相等的四边形一定是正方形C . 平行四边形的对角线互相平分D . 矩形的对角线一定垂直6. (2分)(2019·晋宁模拟) 如图,直线y=ax+b与x轴交于点A(7,0),与直线y=kx交于点B(2,4),则不等式kx≤ax+b的解集为()A . x≤2B . x≥2C . 0<x≤2D . 2≤x≤67. (2分)下列正多边形中,中心角等于内角的是()A . 正六边形B . 正五边形C . 正四边形D . 正三边形8. (2分)(2020·河北模拟) 一个正方形周长与一个等腰三角形的周长相等,若等腰三角形的两边长为和,则这个正方形的对角线长为()A .B .C .D .9. (2分)方程x2=3x的根是()A . 3B . ﹣3或0C . 3或0D . 010. (2分)(2020·云南) 如图,平行四边形的对角线,相交于点O,E是的中点,则与的面积的比等于()A .B .C .D .11. (2分)已知,二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下说法不正确的是()A . 根据图象可得该函数y有最小值B . 当x=﹣2时,函数y的值小于0C . 根据图象可得a>0,b<0D . 当x<﹣1时,函数值y随着x的增大而减小12. (2分) (2016九上·吴中期末) 如图,是一个圆锥形纸杯的侧面展开图,已知圆锥底面半径为5cm,母线长为15cm,那么纸杯的侧面积为()A . 75πcm2B . 150πcm2C .D .二、填空题 (共6题;共6分)13. (1分)(2020·贵州模拟) 分解因式: ________.14. (1分) (2017八上·李沧期末) 市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是________.甲乙丙丁平均数8.28.08.08.2方差 2.1 1.8 1.6 1.415. (1分)我们把不相等的两个实数a,b中较大实数a记作max{a,b}=a,例如:max{2.3,3.4}=3.4,max{﹣5.6,﹣8.7}=﹣5.6,max{﹣3,0}=0…那么:关于x的方程的解是________.16. (1分)(2017·慈溪模拟) 如图,在平面直角坐标系中,O为坐标原点,平行四边形ABOC的对角线交于点M,双曲线y= (x<0)经过点B、M.若平行四边形ABOC的面积为12,则k=________.17. (1分)(2017·禹州模拟) 如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC 于D,则∠CBD的度数为________°.18. (1分)将抛物线y=x2﹣4x﹣4向左平移4个单位,再向上平移3个单位,得到抛物线的函数表达式是________.三、解答题 (共7题;共59分)19. (2分) (2017七下·南通期中) 现场学习:我们学习了由两个一元一次不等式组成的不等式组的解法,知道可以借助数轴准确找到不等式组的解集,即两个不等式的解集的公共部分.解决问题:解不等式组并利用数轴确定它的解集;拓展探究:由三个一元一次不等式组成的不等式组的解集是这三个不等式解集的公共部分.(1)直接写出的解集为________;(2)已知关于的不等式组无解,则的取值范围是________.20. (5分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?21. (5分)(2019·江北模拟) 如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC 的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)22. (12分)(2020·武汉) 为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了________名居民进行调查统计,扇形统计图中,类所对应的扇形圆心角的大小是________;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?23. (10分)(2020·天台模拟) 如图,四边形ABCD中,∠BAC=∠BDC,(1)求证:△ADE∽△CEB;(2)已知△ABC是等边三角形,求证:① ;② .24. (10分)(2018·松桃模拟) 如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果AC= ,求DE的长.25. (15分) (2019九上·哈尔滨月考) 如图,已知抛物线与轴交于点和点与y轴交于点C,过点A的直线交抛物线的另一个点为点E,点E的横坐标为2.(1)求b和c的值.(2)点p在直线AE下方的抛物线上任一点,点p的横坐标为t过点p作轴,交AE于点F,设求出d与t的函数关系式,并直接写出t的取值范围.(3)在(2)问的条件下,过点p作,垂足为点K,连接 ,若把分成面积比为的两个三角形,求出此时的值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共59分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
2019年钦州市中考模拟试题与答案汇总(七科)目录语文模拟试题与答案----------- 2 数学模拟试题与答案-----------14 英语模拟试题与答案-----------24 物理模拟试题与答案-----------38 化学模拟试题与答案-----------47 思想品德模拟试题与答案-------55 历史模拟试题与答案-----------642019年钦州市中考语文模拟试题与答案注意事项:1.全卷共三大题,24小题,满分为120分,考试时间为120分钟。
2.各题的答案必须用黑色的钢笔或签字笔写在“答题纸”的相应位置上。
3.请用黑色字迹的钢笔或签字笔在“答题纸”上先填写姓名和准考证号。
一、积累(32分)1. 下面语段中加点字的拼音正确的一项是()(3分)人要高瞻.远瞩.,应走出生活里的山谷与阴影,进入一望无际的高原,然后沉浸在那阳光里,让灵魂翱.翔,让内心充满伟大的梦想,让生命、生活和热情恣.意奔放。
A. zhān zhǔáo zìB. zhān chǔáo zīC. shān zhǔáo zìD. Zhān zhǔáo zī2.下列语句中没有语病....的一项是()(3分)A. 目前,青年中出现一阵盲目追星的热潮正在悄悄兴起。
B. 会不会感冒,主要取决于自身的抗病能力和环境卫生的情况。
C. 以网络技术为重要支撑的知识经济革命极大地改变了人们的生产生活方式,加速了社会文明。
D. 元朝末年,顾坚等人对南曲的原有腔调加以改进和整理,称之为“昆山腔”,这就是昆曲的雏形。
3.下列句子中加点词语使用不恰当的一项是()(3分)A. 网络交友已是许多人玩腻了的游戏,可有些年轻人依然乐此不...疲.,一个个前赴后继地扎进去。
B.那只最后从蛋壳里爬出来的小鸭是那么丑陋,他处处挨啄,被排挤,被讪笑..。
C.为保障游客权益,使游客在参差不齐....的旅游信息中不受骗,国家大力整顿了旅游市场。
广西钦州市2018年第四次中考模拟测试数学试题本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑). 1. 2017的倒数是(). A .20171B .2017C .-2017D . 20171- 2.在3,0,2-,2四个数中,最小的数是().A .3B .0C .2-D .23.下面四个图形中,∠1=∠2一定成立的是().A B C D4. 体育老师统计了某一小组8个人的数学成绩,成绩如下(单位为分):55,56,56,57,58,55,56,56,这组数据的众数是().A . 55B . 56C .57D .585.下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A. 正三角形B. 平行四边形C. 矩形D. 正五边形6.若扇形的弧长是16cm ,面积是56cm 2,则它的半径是(). A.2.8cm B.3.5cm C.7cm D.14cm 7.正方形的正投影不可能是:()A .正方形B .长方形C .线段D .梯形8.如图,在⊙O 中,直径CD 垂直于弦AB ,若∠C=25°,则∠BOD 的度数是( ) A .25° B .30° C .40° D .50°第8题图 第9题图 9. 如图,等腰△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( ) A .13 B .14 C .15 D .1610.已知一次函数221+-=x y ,当41≤≤x 时,y 的最大值是( ).A .2B .23C .25D .6-11.在平面直角坐标系中,将抛物线322++=x x y 绕着它与y 轴的交点旋转180°,所得抛物线的解析式是().A .2)1(2++-=x yB .4)1(2+--=x yC .2)1(2+--=x yD .4)1(2++-=x y12.如图,OBC ∆中是直角三角形,OB 与x 轴正半轴重合,︒=∠90OBC ,且OB=1,3=BC ,将OBC ∆绕原点O 逆时针旋转60°再将其各边扩大为原来的m 倍,使OC OB =1,得到11C OB ∆,将11C OB ∆绕原点O 逆时针旋转60°再将其各边扩大为原来的m 倍,使12OC OB =,得到22C OB ∆……,如此继续下去,得到20172017C OB ∆,则m 的值和点2017C 的坐标是().A .2,)32,2(20172017⨯-B .2,)0,2(2018-C .3,)32,2(20172017⨯-D .3,)0,2(2018-二、填空题13.点A (﹣2,3)关于x 轴的对称点A ′的坐标为 . 14.因式分解:x 3﹣x= .15.随着桂林“国际旅游胜地”建设的全面推进,桂林旅游吸引力进一步提高,据统计,仅2016年春节假日期间,桂林市共接待国内外游客54.73万人次,将54.73万人次用科学记数法表示为 人次.16.在学校组织的数学实践活动中,小新同学制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是.17.如图,过矩形ABCD 的顶点B 作BE ∥AC ,垂足为E ,延长BE 交AD 于F ,若点F 是边AD 的中点,则sin ∠ACD 的值是 .第12题18.如图是在正方形网格中按规律填成的阴影,根据此规律,若第n 个图中阴影部分小正方形的个数为440个,则n 的值是 .第Ⅱ卷(非选择题,共84分)考生注意:第三至第八大题为解答题,要求在答题卷上写出解答过程.如果运算含有根号,请保留根号.三、(本大题共2小题,每小题满分6分,共12分) 19.计算:()()()011π20103tan 60---+--°+2.20.先化简,再求值:()()()322484a b a b ab a b ab +-+-÷,其中a =2,1b =.四、(本大题共2小题,每小题满分8分,共16分)21.某厂房屋顶呈人字架形(等腰三角形),如图8所示,已知8AC BC ==m ,30A ∠=°,CD AB ⊥,于点D .(1)求ACB ∠的大小. (2)求AB 的长度.22.2010年世界杯足球赛在南非举行.赛前某足球俱乐部组织了一次竞猜活动,就哪一支球队将在本届世界杯足球赛中夺冠进行竞猜,并绘制了两幅不完整的统计图(如图9-①和9-②所示).请你根据图中提供的信息,解答下列问题: (1)求出参加这次竞猜的总人数;(2)请你在图9-①中补全频数分布直方图,在图9-②中分别把“阿根廷队”和“巴西队”所对应的扇形图表示出来.A CD图8B五、(本大题满分8分)23.如图10,已知ABC ADE Rt △≌Rt △,90ABC ADE ∠=∠=°,BC 与DE 相交于点F ,连接CD ,EB . (1)图中还有几对全等三角形,请你一一列举.(2)求证:.CF EF =六、(本大题满分10分)24.2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A 、B 两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为:大车630元/辆,小车420元/辆;运往B 地的运费为:大车750元/辆,小车550元/辆.(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A 地,某余货车前往B 地,且运往A 地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.A CEBDF图10七、(本大题满分10分)25.如图11-①,AB 为⊙O 的直径,AD 与⊙O 相切于点A DE ,与⊙O 相切于点E ,点C 为DE 延长线上一点,且.CE CB = (1)求证:BC 为⊙O 的切线;(2)连接AE ,AE 的延长线与BC 的延长线交于点(如图11-②所示).若252AB AD ==,,求线段BC 和EG 的长.八、(本大题满分10分)26.如图12,把抛物线2y x =-(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E . (1)分别写出抛物线1l 与2l 的解析式;(2)设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.B图11-②GOAD EC图11-①B OA DEC AC DE BOyx1 2 3 4 5 6 7 8 9 10 11 12A CB BC CD D A B B A数学试题参考答案及评分标准二、填空题13.点A(﹣2,3)关于x轴的对称点A′的坐标为(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,即可解答.【解答】解:点A(﹣2,3)关于x轴的对称点A′的坐标为(﹣2,﹣3),故答案为:(﹣2,﹣3).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.14.因式分解:x3﹣x=x(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.随着桂林“国际旅游胜地”建设的全面推进,桂林旅游吸引力进一步提高,据统计,仅2016年春节假日期间,桂林市共接待国内外游客54.73万人次,将54.73万人次用科学记数法表示为 5.473×105人次.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将54.73万用科学记数法表示为5.473×105.故答案为:5.473×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.16.在学校组织的数学实践活动中,小新同学制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是3π.【考点】圆锥的计算.【分析】先利用勾股定理计算出圆锥的高,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算这个圆锥的侧面积.【解答】解:圆锥的母线长==3,所以这个圆锥的侧面积=•2π•1•3=3π.故答案为3π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.如图,过矩形ABCD的顶点B作BE∥AC,垂足为E,延长BE交AD于F,若点F是边AD的中点,则sin∠ACD的值是.【考点】矩形的性质;解直角三角形.【分析】由矩形的性质得出AD∥BC,AD=BC,∠D=90°,证出△AEF∽△CEB,得出对应边成比例=,设AF=DF=a,AE=x,则CE=2x,AC=3x,再证明△AEF∽△ADC,得出,得出x=,AC=a,再由三角函数的定义即可得出结果.【解答】解:∵点F是边AD的中点,∴AF=DF=AD,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠D=90°,∴AF=BC,△AEF∽△CEB,∴=,设AF=DF=a,AE=x,则CE=2x,AC=3x,∵BF⊥AC,∴∠AEF=∠D=90°,∵∠EAF=∠DAC,∴△AEF∽△ADC,∴,即,解得:x=,∴AC=a,∴sin ∠ACD==,故答案为:.【点评】本题考查了矩形的性质、相似三角形的判定与性质、三角函数;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.18.如图是在正方形网格中按规律填成的阴影,根据此规律,若第n 个图中阴影部分小正方形的个数为440个,则n 的值是 20 .【考点】规律型:图形的变化类.【分析】先根据图形的变化得出阴影部分小正方形的个数的变换规律,再根据规律得出关于n 的方程,求得n 的值即可. 【解答】解:由题可得,第1个图中阴影部分小正方形的个数为3=22﹣1个; 第2个图中阴影部分小正方形的个数为8=32﹣1个; 第3个图中阴影部分小正方形的个数为17=42﹣1个; 以此类推,第n 个图中阴影部分小正方形的个数为(n +1)2﹣1个; 当(n +1)2﹣1=440时, 解得n=20, 故答案为:20【点评】本题主要考查了图形的变换规律,解题时首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、(本大题共2小题,每小题满分6分,共12分) 19.解:()()()011π20103tan 60---+- -°+2=111332+-⨯+……………………………………………………………(4分)=1232-+…………………………………………………………………………(5分)=12-………………………………………………………………………………(6分) 20.解:(1)()()()322484a b a b ab a b ab +-+-÷=2222a b b ab -+-……………………………………………………………(3分) =22a ab -………………………………………………………………………(4分)当2a =,1b =时,原式=22221-⨯⨯…………………………………………………(5分)=44-=0………………………………………………………………(6分)四、(本大题共2小题,每小题满分8分,共16分)21.解:(1)30AC BC A =∠= ,°,30A B ∴∠=∠=°…………………………(1分)180A B ACB ∠+∠+∠= °…………………………(2分)180ACB A B ∴∠=∠-∠°-=180°30-°30-° =120°…………………………(4分)(2)AC BC CD AB =⊥ ,2AB AD ∴=………………………………………………………………(5分)在Rt ADC △中,30A AC ∠==°,8.cos AD AC A ∴=·,………………………………………………………(6分) =8·cos 30°=38432⨯= ()283m AB AD ∴==.…………………………………………………(8分)22.(1)参加这次竞猜的总人数是500人.………………………………………………(2分) (2)补充图①……………………………………………………………………………(4分)补充图②…………………………………………………………………………(8分)ACDB五、(本大题满分8分)23.(1)ADC ABE CDF EBF ∆∆∆∆≌,≌.…………………………………………(2分) (2)证法一:连接CE…………………………………(3分)Rt ABC ADE ∆∆ ≌Rt AC AE ∴=…………………………………(4分)ACE AEC ∴∠=∠…………………………………(5分) 又Rt Rt ABC ADE △≌△ACB AED ∴∠=∠…………………………………(6分)ACE ACB AEC AED ∴∠-∠=∠-∠即BCE DEC ∠=………………………………………………………………(7分)CF EF ∴=.………………………………………………………………………(8分)证法二:Rt Rt ABC ADE △≌△AC AE AD AB CAB EAD ∴==∠=∠,,CAB DAB EAD DAB ∴∠-∠=∠-∠即CAD EAB ∠=……………………(3分) ()ACD AEB SAS ∴△≌△.………………………………(4分)CD EB ADC ABE ∴=∠=∠,………………………………(5分) 又ADE ABC ∠=∠CDF EBF ∴∠=∠………………………………(6分) 又DFC BFE ∠=∠()CDF EBF AAS ∴△≌△.……………………………………………………(7分) CF EF ∴=.………………………………………………………………………(8分)证法三:连接AF .………………………………………………………………(3分)Rt Rt ABC ADE △≌△,90AB AD BC DE ABC ADE ∴==∠=∠=,,°.又AF AF = .ACEBDFACEBDFA()Rt Rt ABF ADF HL ∴△≌△.……………………………(5分)BF DF ∴=.……………………………(6分) 又BC DE = .BC BF DE DF ∴-=-,………………………………(7分) 即CF EF =.……………………………(8分)六、(本大题满分10分)24.解(1)解法一:设大车用x 辆,小车用y 辆.依据题意,得20x y x y +=⎧⎨⎩,15+10=240.…………………………………………………………………(2分) 解得812x y =⎧⎨=⎩,.∴大车用8辆,小车用12辆.……………………………………………………(4分)解法二:设大车用x 辆,小车用()20x -辆.依题意,得()151020240x x +-=…………………………………………………………(2分)解得8x =.2020812x ∴-=-=.∴大车用8辆,小车用12辆.……………………………………………………(4分)(2)设总运费为W 元,调往A 地的大车a 辆,小车()10a -辆;调往B 地的大车()8a -辆,小车()2a +辆.则……………………………………………………………………(5分)()()()6304201075085502W a a a a =+-+-++,即:1011300W a =+ (0a a ≤≤8,为整数),………………………………(7分)()151010a a +- 115≥.a ∴≥3.………………………………………………………………………………(8分)又W 随a 的增大而增大,∴当3a =时,W 最小.当3a =时,1031130011330W =⨯+ = .…………………………………………(9分)因此,应安排3辆大车和7辆小车前往A 地;安排5辆大车和5辆小车前往B 地.最少运费为11 330元.……………………………………………………………………………(10分) 七、(本大题满分10分)25.(1)连接OE OC ,……………………………………………………………………(1分)()OBC OEC SSS ∴△≌△,OBC OEC ∴∠=∠.………………………(2分) 又DE 与O ⊙相切于点E ,90OEC ∴∠=°.…………………………(3分)90OBC ∴∠=°.BC ∴为O ⊙的切线.…………………………(4分)(2)过点D 作DF BC ⊥于点F ,AD DC BG ,,分别切O ⊙于点A E B ,,, DA DE CE CB ∴==,.………………………………(5分)设BC 为x ,则22CF x DC x =-=+,. 在Rt DFC △中,()()()2222225x x +--=, 解得:52x =.…………………………………………………………………………(6分) AD BG ∥, DAE EGC ∴∠=∠. DA DE = ,DAE AED ∴∠=∠.AED CEG ∠=∠ ,EGC CEG ∴∠=∠,52CG CE CB ∴===,………………………………………………………………(7分)5BG ∴=.()222554535AG ∴=+==.……………………………………………(8分)解法一:连接BE ,12ABG ∆=S AB BG AG BE =1··,225535BE ∴⨯=,103BE ∴=.…………………………………………………………………………(9分) 在Rt BEG △中,22221055533EG BG BE ⎛⎫=-=-= ⎪⎝⎭.…………………(10分)解法二:DAE EGC AED CEG ∠=∠∠=∠ ,,ADE GCE ∴△∽△,…………………………………………………………………(9分)35AD AE EGCG EG EG-∴==2,,2.5 BGOAD ECF解得:553EG =.…………………………………………………………………(10分) 八、(本大题满分10分)26.解:(1)()21:11l y x =--+(或22y x x =-+);………………………………(1分)()22:11l y x =--+(或22y x x =--);………………………………(2分)(2)以P 、Q 、C 、D 为顶点的四边形为矩形或等腰梯形.………………………(3分)理由: 点C 与点D ,点P 与点Q 关于y 轴对称,CD PQ x ∴∥∥轴.①当P 点是2l 的对称轴与l 1的交点时,点P 、Q 的坐标分别为(-1,-3)和(1,-3),而点C 、D 的坐标分别为(1-)和(1,1),所以C D P Q C P C=⊥,,四边形C P Q D 是矩形.………………………………………………………………………………………(4分) ②当P 点不是2l 的对称轴与1l 的交点时,根据轴对称性质, 有:CP DQ =(或CQ DP =),但CD PQ ≠.∴四边形CPQD (或四边形CQPD )是等腰梯形.…………………………………(5分)(3)存在.设满足条件的M 点坐标为()x y ,,连接MA MB AD ,,,依题意得:()()()20A B E ,,-2,0,0,1,()121322AOEDS +⨯==梯形.……………………………………………………………(6分)①当0y >时,13422ABM S y ∆=⨯⨯=, 34y ∴=.…………………………………………………………………………………(7分)将34y =代入1l 的解析式,解得:132x =,2x 1=.2132M ⎛⎫∴ ⎪⎝⎭3,4,212M ⎛⎫⎪⎝⎭3,.4……………………………………………………………(8分) ②当0y <时,()13422ABM S y ∆=⨯⨯-=, 34y ∴=-.………………………………………………………………………………(9分)将34y =-代入1l 的解析式,解得:712x =±. 3272M ⎛⎫+∴ ⎪ ⎪⎝⎭3,-4,4272M ⎛⎫- ⎪ ⎪⎝⎭3,-.4……………………………………(10分)。
2018年广西钦州市中考数学二模试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)﹣的相反数是()A.B.﹣C.2018D.﹣20182.(3分)太阳的温度很高,其表面温度大概有6 000℃,而太阳中心的温度达到了19 200 000℃,用科学记数法可将19 200 000表示为()A.1.92×106B.1.92×107C.1.92×108D.1.92×109 3.(3分)下面的几何体是棱柱的为()A.B.C.D.4.(3分)关于x的一元一次不等式+2≤的解为()A.x≤B.x≥C.x≤D.x≥5.(3分)一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°6.(3分)如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能7.(3分)某等腰三角形的三边长分别为x,3,2x﹣1,则该三角形的周长为()A.11B.11或8C.11或8或5D.与x的取值有关8.(3分)语文老师将6本莫言作品分别放在6个完全相同的不透明礼盒中,准备将它们奖给李明等6位在阅读活动中表现突出的同学,这6本作品中有3本是《红高粱家族》,2本是《娃》,1本是《生死疲劳》,李明从中随机取一个礼盒,恰好取到装有书本《娃》的礼盒的概率是()A.B.C.D.9.(3分)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2B.x1=1,x2=﹣2C.x1+x2=3D.x1x2=2 10.(3分)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.11.(3分)如图,在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且.连接EH、FG.若AB=10,BC=12,则图中阴影部分的面积为()A.25B.30C.35D.4512.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,若OA2﹣AB2=12,则k的值为()A.4B.6C.8D.12二、填空题(共6小题,每小题3分,满分18分)13.(3分)圆内接正六边形的一条边所对的圆心角的度数为.14.(3分)某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是分.15.(3分)因式分解:x2y﹣9y=.16.(3分)如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是°.17.(3分)设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为.18.(3分)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2018个点的坐标为.二、解答题(共8小题,满分66分)19.(6分)计算:(2+)0+tan30°+|﹣2|+()﹣220.(6分)(1)如图1,方格纸中的每个方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1),将Rt△ABC向右平移5个单位后,得到Rt△A1B1C1,并写出A1点的坐标.(2)如图2有一张矩形纸片ABCD,要将点D沿某条直线翻折180°,恰好落在BC边上的D′处,请在图中做出该直线(保留尺规作图痕迹)21.(8分)如图,▱ABCD中,点E、F在对角线AC上,且AE=CF.求证:四边形BEDF 是平行四边形.22.(8分)为了解青少年形体情况,现随机抽查了若干名初中学生坐姿、站姿、走姿的好坏情况(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)求这次被抽查形体测评的学生一共有多少人?(2)求在被调查的学生中三姿良好的学生人数,并将条形统计图补充完整;(3)若全市有5万名初中生,那么估计全市初中生中,坐姿和站姿不良的学生共有多少人?23.(8分)王亮同学要测量广场内被湖水隔开的两颗大树A和B之间的距离,它在A处测得B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,这是测得大树B在C的北偏西60°的方向.(1)求∠ABC的度数;(2)求两颗大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,,1.732,≈2.449)24.(10分)某贸易公司计划租用甲、乙两种型号的货车共8辆,将100吨货物一次全部运往某地销售,其中每辆甲型车最多能装该种货物12吨,每辆乙型车最多能装该种货物14吨,已知租用1辆甲型货车和2辆乙型货车共需费用2600元,租用2辆甲型货车1辆乙型货车共需费用2500元,租同一种型号的货车每辆租车费用相同.(1)求租用一辆甲型货车、一辆乙型货车的费用分别是多少元?(2)若该贸易公司计划此次租车费用不超过7000元,应选择哪种租车方案可使总费用最低?并求出最低的租车总费用.25.(10分)如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=,求AE的长.26.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B 坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)若点F是抛物线上的一个动点,当∠FBA=∠BDE时,求点F的坐标.2018年广西钦州市中考数学二模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.(3分)﹣的相反数是()A.B.﹣C.2018D.﹣2018【解答】解:﹣的相反数是,故选:A.2.(3分)太阳的温度很高,其表面温度大概有6 000℃,而太阳中心的温度达到了19 200 000℃,用科学记数法可将19 200 000表示为()A.1.92×106B.1.92×107C.1.92×108D.1.92×109【解答】解:将19 200 000用科学记数法表示为:1.92×107.故选:B.3.(3分)下面的几何体是棱柱的为()A.B.C.D.【解答】解:A、是棱台,不是棱柱;B、是圆台,不是棱柱;C、符合棱柱的概念是棱柱;D、是棱锥,不是棱柱.故选:C.4.(3分)关于x的一元一次不等式+2≤的解为()A.x≤B.x≥C.x≤D.x≥【解答】解:不等式去分母得:2﹣2x+12≤3x+3,移项合并得:5x≥11,解得:x≥,故选:D.5.(3分)一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°【解答】解:如图,由三角形的外角性质得,∠1=45°+90°=135°,∠α=∠1+30°=135°+30°=165°.故选:D.6.(3分)如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()A.相离B.相交C.相切D.以上三种情况均有可能【解答】解:过点C作CD⊥AO于点D,∵∠O=30°,OC=6,∴DC=3,∴以点C为圆心,半径为3的圆与OA的位置关系是:相切.故选:C.7.(3分)某等腰三角形的三边长分别为x,3,2x﹣1,则该三角形的周长为()A.11B.11或8C.11或8或5D.与x的取值有关【解答】解:当x=3时,此时2x﹣1=5,∴3+3>5,能组成三角形,此时三角形的周长为:3+3+5=11,当x=2x﹣1时,此时x=1,∴1+1<3,不能组成三角形,当2x﹣1=3时,此时x=2∴3+2>3,能组成三角形,此时三角形的周长为:3+3+2=8,故选:B.8.(3分)语文老师将6本莫言作品分别放在6个完全相同的不透明礼盒中,准备将它们奖给李明等6位在阅读活动中表现突出的同学,这6本作品中有3本是《红高粱家族》,2本是《娃》,1本是《生死疲劳》,李明从中随机取一个礼盒,恰好取到装有书本《娃》的礼盒的概率是()A.B.C.D.【解答】解:∵这些奖品中3本是《红高粱家庭》,2本是《蛙》,1本是《生死疲劳》共计6本,则李明从中随机取一个礼盒,恰好取到《蛙》的概率是:=,故选:A.9.(3分)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2B.x1=1,x2=﹣2C.x1+x2=3D.x1x2=2【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,∴x1+x2=﹣=3,x1•x2==﹣2,∴C选项正确.故选:C.10.(3分)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.【解答】解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,故选:B.11.(3分)如图,在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且.连接EH、FG.若AB=10,BC=12,则图中阴影部分的面积为()A.25B.30C.35D.45【解答】解:连接EF,过P作PN⊥EF,则PN⊥CD.∵在矩形ABCD中,E、F分别是边AD、BC的中点,∴四边形EFCD是矩形.∴EF=CD=AB=10,EF∥CD∴△EPF∽△HPG∴==2又PN+PM=BC=6∴PM=2,PN=4∴△EPF的面积是:EF•PN=×10×4=20;△HPG的面积是:GH•PM=×5×2=5.又∵四边形EFCD的面积=矩形ABCD的面积=×10×12=60.∴图中阴影部分的面积=60﹣20﹣5=35故选:C.12.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,若OA2﹣AB2=12,则k的值为()A.4B.6C.8D.12【解答】解:由题意可知,OC=AC,DB=DA,OA=OC,AB=BD,点B的横坐标为:OC+BD,纵坐标为OC﹣BD,∵OA2﹣AB2=12,∴OC2﹣DB2=6,即(OC+BD)(OC﹣BD)=6,∴k=6,故选:B.二、填空题(共6小题,每小题3分,满分18分)13.(3分)圆内接正六边形的一条边所对的圆心角的度数为60°.【解答】解:圆内接正六边形的一条边所对的圆心角的度数为:=60°,故答案为:60°.14.(3分)某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是93.6分.【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分).故小明的体育成绩是93.6分.故答案为93.6.15.(3分)因式分解:x2y﹣9y=y(x+3)(x﹣3).【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).16.(3分)如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是40°.【解答】解:连接OB,∵∠A与∠BOC是所对的圆周角与圆心角,∠A=50°,∴∠BOC=2∠A=2×50°=100°,∵OB=OC,OD⊥BC,∴∠DOC=∠BOC=×100°=50°,在Rt△DOC中,∵∠ODC=90°,∠DOC=50°,∴∠OCD=90°﹣∠DOC=90°﹣50°=40°.故答案为:40.17.(3分)设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.【解答】解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴ab=2,b﹣a=﹣1,∴﹣==﹣.故答案为:﹣.18.(3分)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2018个点的坐标为(45,7).【解答】解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2018个点是(45,7).故答案为:(45,7).二、解答题(共8小题,满分66分)19.(6分)计算:(2+)0+tan30°+|﹣2|+()﹣2【解答】解:原式=1++2﹣+4=7+﹣=7﹣.20.(6分)(1)如图1,方格纸中的每个方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1),将Rt△ABC向右平移5个单位后,得到Rt△A1B1C1,并写出A1点的坐标.(2)如图2有一张矩形纸片ABCD,要将点D沿某条直线翻折180°,恰好落在BC边上的D′处,请在图中做出该直线(保留尺规作图痕迹)【解答】解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1的坐标为(1,1);(2)如图,连接DD′,作出线段DD′的垂直平分线即为所求.21.(8分)如图,▱ABCD中,点E、F在对角线AC上,且AE=CF.求证:四边形BEDF 是平行四边形.【解答】证明:连接BD交AC于O.∵四边形ABCD是平行四边形,∴AO=CO BO=DO,∵AE=CF,∴AO﹣AE=CO﹣CF,即EO=FO,∴四边形BEDF为平行四边形.22.(8分)为了解青少年形体情况,现随机抽查了若干名初中学生坐姿、站姿、走姿的好坏情况(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)求这次被抽查形体测评的学生一共有多少人?(2)求在被调查的学生中三姿良好的学生人数,并将条形统计图补充完整;(3)若全市有5万名初中生,那么估计全市初中生中,坐姿和站姿不良的学生共有多少人?【解答】解:(1)100÷20%=500(名),答:这次被抽查形体测评的学生一共是500名;(2)三姿良好的学生人数:500×15%=75名,补全统计图如图所示;(3)5万×(20%+30%)=2.5万,答:全市初中生中,坐姿和站姿不良的学生有2.5万人.23.(8分)王亮同学要测量广场内被湖水隔开的两颗大树A和B之间的距离,它在A处测得B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,这是测得大树B在C的北偏西60°的方向.(1)求∠ABC的度数;(2)求两颗大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,,1.732,≈2.449)【解答】解:由题意可知:∠BAC=∠BAD+∠CAD=30°+15°=45°,∠MCA=∠CAD=15°,∴∠ACB=180°﹣∠MCA﹣∠BCN=180°﹣15°﹣60°=105°,在△ABC中,∠ABC=180°﹣∠BCA﹣∠BAC=180°﹣105°﹣45°=30°;过点C作CH⊥AB于点H,在Rt△ACH中,∵AC=200(米),∠CAH=45°,∴CH=AC sin∠CAH=200×sin45°=200×=100(米)∴AH=CH=100(米)在Rt△BCH中,∵CH=100(米),∠CBH=30°,∴;∴AB=AH+BH=100+100≈386(米)答:两棵大树A和B之间的距离约为386米.24.(10分)某贸易公司计划租用甲、乙两种型号的货车共8辆,将100吨货物一次全部运往某地销售,其中每辆甲型车最多能装该种货物12吨,每辆乙型车最多能装该种货物14吨,已知租用1辆甲型货车和2辆乙型货车共需费用2600元,租用2辆甲型货车1辆乙型货车共需费用2500元,租同一种型号的货车每辆租车费用相同.(1)求租用一辆甲型货车、一辆乙型货车的费用分别是多少元?(2)若该贸易公司计划此次租车费用不超过7000元,应选择哪种租车方案可使总费用最低?并求出最低的租车总费用.【解答】解:(1)设租用一辆甲型货车x元,租用一辆乙型货车y元,,得,答:租用一辆甲型货车800元,租用一辆乙型货车900元;(2)设租用甲型货车a辆,则租用乙型货车(8﹣a)辆,租车总费用为w元,则w=800a+900(8﹣a)=﹣100 a+7200,根据题意,得,解这个不等式组,得2≤a≤6,∵a为正整数,∴a=2,3,4,5,6,∵w=﹣100 a+7200是关于a的一次函数,k=﹣100<0,∴w随a的增大而减小,∴当a=6时,购买总费用最低,w=﹣100×6+7200=6600(元),此时8﹣6=2,答:当租用甲型货车6辆,则租用乙型货车2辆时,租车总费用最低,最低租车费用是6600元.25.(10分)如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=,求AE的长.【解答】(1)证明:连接OC,如图,∵点C为弧BF的中点,∴弧BC=弧CF.∴∠BAC=∠F AC,∵OA=OC,∴∠OCA=∠OAC.∴∠OCA=∠F AC,∴OC∥AE,∵AE⊥DE,∴OC⊥DE.∴DE是⊙O的切线;(2)解:在Rt△OCD中,∵tan D==,OC=3,∴CD=4,∴OD==5,∴AD=OD+AO=8,在Rt△ADE中,∵sin D===,∴AE=.26.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B 坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)若点F是抛物线上的一个动点,当∠FBA=∠BDE时,求点F的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x 轴下方时,有=,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣).第21页(共21页)。
广西钦州市中考数学试卷一、选择题:每小题3分,共36分1.2的相反数是( )A .﹣2B .2C .﹣D .2.如图,已知a ∥b ,∠1=60°,则∠2的度数是( )A .30°B .60°C .90°D .120°3.如图是由五个相同的小正方体搭成的几何体,则它的主视图是( )A .B .C .D .4.据报道,22年前,中国开始接入国际互联网,至今已有4130000家网站,将数4130000用科学记数法表示为( )A .413×104B .41.3×105C .4.13×106D .0.413×1075.下列运算正确的是( )A .a+a=2aB .a 6÷a 3=a 2C .+= D .(a ﹣b )2=a 2﹣b 2 6.不等式组的解集在数轴上表示为( ) A . B . C . D .7.小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件为必然事件的是( )A .骰子向上的一面点数为奇数B .骰子向上的一面点数小于7C .骰子向上的一面点数是4D .骰子向上的一面点数大于68.已知点A (x 1,y 1)、B (x 2,y 2)是反比例函数y=﹣图象上的两点,若x 2<0<x 1,则有( )A .0<y 1<y 2B .0<y 2<y 1C .y 2<0<y 1D .y 1<0<y 29.若关于x 的一元二次方程x 2﹣6x+a=0有两个不相等的实数根,则a 的取值范围是( )A .a ≤9B .a ≥9C .a <9D .a >910.如图,为固定电线杆AC,在离地面高度为6m的A处引拉线AB,使拉线AB与地面上的BC的夹角为48°,则拉线AB的长度约为()(结果精确到0.1m,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)A.6.7m B.7.2m C.8.1m D.9.0m11.如图,把矩形纸片ABCD沿EF翻折,点A恰好落在BC边的A′处,若AB=,∠EFA=60°,则四边形A′B′EF 的周长是()A.1+3B.3+C.4+D.5+12.如图,△ABC中,AB=6,BC=8,tan∠B=,点D是边BC上的一个动点(点D与点B不重合),过点D 作DE⊥AB,垂足为E,点F是AD的中点,连接EF,设△AEF的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y与x的函数关系的图象大致是()A.B. C.D.二、填空题:本大题共6小题,每小题3分,共18分13.因式分解:ab+2a=______.2=1.9,乙队队员身高的方差是S 14.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.2,那么两队中队员身高更整齐的是______队.(填“甲”或“乙”)乙15.若正比例函数y=kx 的图象经过点(1,2),则k=______.16.如图,在菱形ABCD 中,AB=4,线段AD 的垂直平分线交AC 于点N ,△CND 的周长是10,则AC 的长为______.17.若x ,y 为实数,且满足(x+2y )2+=0,则x y 的值是______.18.如图,∠MON=60°,作边长为1的正六边形A 1B 1C 1D 1E 1F 1,边A 1B 1、F 1E 1分别在射线OM 、ON 上,边C 1D 1所在的直线分别交OM 、ON 于点A 2、F 2,以A 2F 2为边作正六边形A 2B 2C 2D 2E 2F 2,边C 2D 2所在的直线分别交OM 、ON 于点A 3、F 3,再以A 3F 3为边作正六边形A 3B 3C 3D 3E 3F 3,…,依此规律,经第n 次作图后,点B n 到ON 的距离是______.三、解答题:本大题共8小题,共66分19.计算:|﹣8|+(﹣2)3+tan45°﹣.20.解分式方程: =. 21.如图,DE 是△ABC 的中位线,延长DE 到F ,使EF=DE ,连接BF(1)求证:BF=DC ;(2)求证:四边形ABFD 是平行四边形.22.如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣1),B (﹣3,3),C (﹣4,1)(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点B 的对应点B 1的坐标;(2)画出△ABC 绕点A 按逆时针旋转90°后的△AB 2C 2,并写出点C 的对应点C 2的坐标.23.网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题组别学习时间x(h)频数(人数)A 0<x≤1 8B 1<x≤2 24C 2<x≤3 32D 3<x≤4 nE 4小时以上 4(1)表中的n=______,中位数落在______组,扇形统计图中B组对应的圆心角为______°;(2)请补全频数分布直方图;(3)该校准备召开利用网络资源进行自主学习的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.24.某水果商行计划购进A、B两种水果共200箱,这两种水果的进价、售价如下表所示:价格进价(元/箱)售价(元/箱)类型A 60 70B 40 55(1)若该商行进贷款为1万元,则两种水果各购进多少箱?(2)若商行规定A种水果进货箱数不低于B种水果进货箱数的,应怎样进货才能使这批水果售完后商行获利最多?此时利润为多少?25.如图,在△ABC中,AB=AC,AD是角平分线,BE平分∠ABC交AD于点E,点O在AB上,以OB为半径的⊙O经过点E,交AB于点F(1)求证:AD是⊙O的切线;(2)若AC=4,∠C=30°,求的长.26.如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C(1)直接写出抛物线的函数解析式;(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.广西钦州市中考数学试卷参考答案与试题解析一、选择题:每小题3分,共36分1.2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据相反数的定义即可求解.【解答】解:2的相反数等于﹣2.故选A.2.如图,已知a∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.90°D.120°【考点】平行线的性质.【分析】根据平行线的性质进行解答.【解答】解:∵a∥b,∠1=60°,∴∠2=∠1=60°,故选B.3.如图是由五个相同的小正方体搭成的几何体,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义,观察图形即可解决问题.【解答】解:主视图是从正面看得到图形,所以答案是D.故选D.4.据报道,22年前,中国开始接入国际互联网,至今已有4130000家网站,将数4130000用科学记数法表示为()A.413×104B.41.3×105C.4.13×106D.0.413×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4130000用科学记数法表示为:4.13×106.故选:C.5.下列运算正确的是()A.a+a=2a B.a6÷a3=a2C. +=D.(a﹣b)2=a2﹣b2【考点】二次根式的加减法;合并同类项;同底数幂的除法;完全平方公式.【分析】根据合并同类项、同底数幂的除法、二次根式的化简、完全平方公式解答.【解答】解:A、a+a=(1+1)a=2a,故本选项正确;B、a6÷a3=a6﹣3≠a2,故本选项错误;C、+=2+=3≠,故本选项错误;D、(a﹣b)2=a2+2ab+b2≠a2﹣b2,故本选项错误.故选A.6.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集再表示在数轴上即可.【解答】解:∵解不等式x﹣6≤0,得:x≤6,解不等式x>2,得:x>2,∴不等式组的解集为:2<x≤6,将不等式解集表示在数轴上如图:,故选C.7.小明掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件为必然事件的是()A .骰子向上的一面点数为奇数B .骰子向上的一面点数小于7C .骰子向上的一面点数是4D .骰子向上的一面点数大于6【考点】随机事件.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:掷一枚质地均匀的骰子可能会出现1,2,3,4,5,6六种情况,出现每一种情况均有可能,属于随机事件,朝上的一面的点数必小于7,故选B .8.已知点A (x 1,y 1)、B (x 2,y 2)是反比例函数y=﹣图象上的两点,若x 2<0<x 1,则有( )A .0<y 1<y 2B .0<y 2<y 1C .y 2<0<y 1D .y 1<0<y 2【考点】反比例函数图象上点的坐标特征.【分析】依据反比例函数的性质确定双曲线所在的现象,即可作出判断.【解答】解:∵k=﹣3<0,∴双曲线位于二、四象限.∵x 2<0<x 1,∴y 2>0,y 1<0.∴y 1<0<y 2.故选:D .9.若关于x 的一元二次方程x 2﹣6x+a=0有两个不相等的实数根,则a 的取值范围是( )A .a ≤9B .a ≥9C .a <9D .a >9【考点】根的判别式.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于a 的不等式,求出不等式的解集即可得到a 的范围.【解答】解:根据题意得:△=(﹣6)2﹣4a >0,即36﹣4a >0,解得:a <9,则a 的范围是a <9.故选:C .10.如图,为固定电线杆AC ,在离地面高度为6m 的A 处引拉线AB ,使拉线AB 与地面上的BC 的夹角为48°,则拉线AB 的长度约为( )(结果精确到0.1m ,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)A.6.7m B.7.2m C.8.1m D.9.0m【考点】解直角三角形的应用.【分析】在直角△ABC中,利用正弦函数即可求解.【解答】解:在直角△ABC中,sin∠ABC=,∴AB=AC÷sin∠ABC=6÷sin48°=≈8.1(米).故选:C.11.如图,把矩形纸片ABCD沿EF翻折,点A恰好落在BC边的A′处,若AB=,∠EFA=60°,则四边形A′B′EF 的周长是()A.1+3B.3+C.4+D.5+【考点】翻折变换(折叠问题);矩形的性质.【分析】先在直角三角形EFG中用勾股定理求出EF,FG,再判断出三角形A'EF是等边三角形,求出AF,从而得出BE=B'E=1,最后用四边形的周长公式即可.【解答】解:如图,过点E作EG⊥AD,∴∠AGE=∠FGE=90°∵矩形纸片ABCD,∴∠A=∠B=∠AGE=90°,∴四边形ABEG是矩形,∴BE=AG,EG=AB=,在Rt△EFG中,∠EFG=60°,EG=,∴FG=1,EF=2,由折叠有,A'F=AF,A'B'=AB=,BE=B'E,∠A'FE=∠AFE=60°,∵BC∥AD,∴∠A'EF=∠AFE=60°,∴△A'EF是等边三角形,∴A'F=EF=2,∴AF=A'F=2,∴BE=AG=AF﹣FG=2﹣1=1∴B'E=1∴四边形A′B′EF的周长是A'B'+B'E+EF+A'F=+1+2+1=4+,故选C.12.如图,△ABC中,AB=6,BC=8,tan∠B=,点D是边BC上的一个动点(点D与点B不重合),过点D 作DE⊥AB,垂足为E,点F是AD的中点,连接EF,设△AEF的面积为y,点D从点B沿BC运动到点C的过程中,D与B的距离为x,则能表示y与x的函数关系的图象大致是()A.B. C.D.【考点】动点问题的函数图象.【分析】由 tan∠B==,设DE=4m,BE=3m,则BD=5m=x,然后将AE与DE都用含有x的代数式表示,再计算出△AEF的面积即可得到y与x的函数关系,由此对照图形即可.【解答】解:∵DE⊥AB,垂足为E,∴tan∠B==,设DE=4m,BE=3m,则BD=5m=x,∴m=,DE=,BE=,∴AE=6﹣∴y=S△AEF=(6﹣)•化简得:y=﹣+x,又∵0<x≤8∴该函数图象是在区间0<x≤8的抛物线的一部分.故:选B二、填空题:本大题共6小题,每小题3分,共18分13.因式分解:ab+2a= a(b+2).【考点】因式分解-提公因式法.【分析】找出公因式进而提取公因式得出即可.【解答】解:ab+2a=a(b+2).故答案为:a(b+2).14.某校甲乙两个体操队队员的平均身高相等,甲队队员身高的方差是S甲2=1.9,乙队队员身高的方差是S 乙2=1.2,那么两队中队员身高更整齐的是乙队.(填“甲”或“乙”)【考点】方差.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=1.9,S乙2=1.2,∴S甲2=1.9>S乙2=1.2,∴两队中队员身高更整齐的是乙队;故答案为:乙.15.若正比例函数y=kx的图象经过点(1,2),则k= 2 .【考点】一次函数图象上点的坐标特征.【分析】由点(1,2)在正比例函数图象上,根据一次函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.【解答】解:∵正比例函数y=kx的图象经过点(1,2),∴2=k×1,即k=2.故答案为:2.16.如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为 6 .【考点】菱形的性质;线段垂直平分线的性质.【分析】由菱形性质AC=CD=4,根据中垂线性质可得DN=AN ,继而由△CND 的周长是10可得CD+CN+DN=CD+CN+AN=CD+AC .【解答】解:如图,∵四边形ABCD 是菱形,AB=4,∴AB=CD=4,∵MN 垂直平分AD ,∴DN=AN ,∵△CND 的周长是10,∴CD+CN+DN=CD+CN+AN=CD+AC=10,∴AC=6,故答案为:6.17.若x ,y 为实数,且满足(x+2y )2+=0,则x y 的值是 . 【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根. 【分析】因为,(x+2y )2≥0,≥0,所以可利用非负数的和为0的条件分析求解. 【解答】解:∵(x+2y )2+=0,且(x+2y )2≥0,≥0, ∴ 解之得:∴x y =4﹣2==.18.如图,∠MON=60°,作边长为1的正六边形A 1B 1C 1D 1E 1F 1,边A 1B 1、F 1E 1分别在射线OM 、ON 上,边C 1D 1所在的直线分别交OM 、ON 于点A 2、F 2,以A 2F 2为边作正六边形A 2B 2C 2D 2E 2F 2,边C 2D 2所在的直线分别交OM 、ON于点A 3、F 3,再以A 3F 3为边作正六边形A 3B 3C 3D 3E 3F 3,…,依此规律,经第n 次作图后,点B n 到ON 的距离是 3n ﹣1• .【考点】正多边形和圆.【分析】首先求出B 1,B 2,B 3,B 4到ON 的距离,条件规律后,利用规律解决问题.【解答】解:点B 1到ON 的距离是,点B 2到ON 的距离是3, 点B 3到ON 的距离是9, 点B 4到ON 的距离是27, …点B n 到ON 的距离是3n ﹣1•.三、解答题:本大题共8小题,共66分19.计算:|﹣8|+(﹣2)3+tan45°﹣.【考点】实数的运算;特殊角的三角函数值.【分析】根据实数的运算法则以及特殊角的锐角三角函数计算即可.【解答】解:原式=2﹣8+1﹣2,=﹣6﹣1,=﹣7.20.解分式方程: =.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:原方程两边同乘以x(x﹣2),得3x﹣6=5x,解得:x=﹣3,检验x=﹣3是分式方程的解.21.如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF(1)求证:BF=DC;(2)求证:四边形ABFD是平行四边形.【考点】平行四边形的判定;三角形中位线定理.【分析】(1)连接DB,CF,利用对角线互相平分的四边形是平行四边形可得四边形CDBF是平行四边形,进而可得CD=BF;(2)由(1)可得CD∥FB,再利用三角形中位线定理可得DF∥AB,根据两组对边分别平行的四边形是平行四边形可得结论.【解答】证明:(1)连接DB,CF,∵DE是△ABC的中位线,∴CE=BE,∵EF=ED,∴四边形CDBF是平行四边形,∴CD=BF;(2)∵四边形CDBF是平行四边形,∴CD∥FB,∴AD∥BF,∵DE是△ABC的中位线,∴DE∥AB,∴DF∥AB,∴四边形ABFD是平行四边形.22.如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣1),B (﹣3,3),C (﹣4,1)(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点B 的对应点B 1的坐标;(2)画出△ABC 绕点A 按逆时针旋转90°后的△AB 2C 2,并写出点C 的对应点C 2的坐标.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)补充成网格结构,然后找出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1的位置,再顺次连接即可;再根据平面直角坐标系写出点B 1的坐标;(2)根据旋转的性质画出△ABC 绕点A 按逆时针方向旋转90°后的△AB 2C 2,写出点C 2的坐标即可.【解答】解:(1)如图所示,△A 1B 1C 1即为△ABC 关于y 轴对称的图形;则B 1的坐标是(3,3);(2)△ABC 绕点A 按逆时针旋转90°后的△AB 2C 2是:则点C的对应点C的坐标是(1,2).223.网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题组别学习时间x(h)频数(人数)A 0<x≤1 8B 1<x≤2 24C 2<x≤3 32D 3<x≤4 nE 4小时以上 4(1)表中的n= 12 ,中位数落在 C 组,扇形统计图中B组对应的圆心角为108 °;(2)请补全频数分布直方图;(3)该校准备召开利用网络资源进行自主学习的交流会,计划在E组学生中随机选出两人进行经验介绍,已知E组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图;扇形统计图;中位数.【分析】(1)根据A组的频数和百分比求出总人数,再利用D组的百分比求出n的值,n=总人数×D组的百分比;根据中位数的定义,中间的一个数或两个数的平均数求出中位数;圆心角=百分比×360°;(2)如图,(3)先画树状图得出所有等可能的情况数,找到抽取的两名学生都来自九年级的情况数,计算概率即可.【解答】解:(1)8÷10%=80,n=15%×80=12,∵总人数为80人,∴中位数落在第40、41个学生学习时间的平均数,8+24=32<40,32+32=64>40,∴中位数落在C组,B:×360°=108°,故答案为:12,C,108;(2)如图所示,(3)画树状图为:共12种可能,抽取的两名学生都来自九年级的有2种可能,==,∴P(两个学生都是九年级)答:抽取的两名学生都来自九年级的概率为.24.某水果商行计划购进A、B两种水果共200箱,这两种水果的进价、售价如下表所示:价格进价(元/箱)售价(元/箱)类型A 60 70B 40 55(1)若该商行进贷款为1万元,则两种水果各购进多少箱?(2)若商行规定A种水果进货箱数不低于B种水果进货箱数的,应怎样进货才能使这批水果售完后商行获利最多?此时利润为多少?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据题意可以得到相应的方程,从而可以得到两种水果各购进多少箱;(2)根据题意可以得到利润与甲种水果的关系式和水果A与B的不等式,从而可以解答本题.【解答】解:(1)设A种水果进货x箱,则B种水果进货箱,60x+40=10000,解得,x=100,200﹣x=100,即A种水果进货100箱,B种水果进货100箱;(2)设A种水果进货x箱,则B种水果进货箱,售完这批水果的利润为w,则w=(70﹣60)x+(55﹣40)=﹣5x+3000,∵﹣5<0,∴w随着x的增大而减小,∵x≥,解得,x≥50,当x=50时,w取得最大值,此时w=2750,即进货A种水果50箱,B种水果150箱时,获取利润最大,此时利润为2750元.25.如图,在△ABC中,AB=AC,AD是角平分线,BE平分∠ABC交AD于点E,点O在AB上,以OB为半径的⊙O经过点E,交AB于点F(1)求证:AD是⊙O的切线;(2)若AC=4,∠C=30°,求的长.【考点】切线的判定;等腰三角形的性质;含30度角的直角三角形;弧长的计算.【分析】(1)连接OE,利用角平分线的定义和圆的性质可得∠OBE=∠OEB=∠EBD,可证明OE∥BD,结合等腰三角形的性质可得AD⊥BD,可证得OE⊥AD,可证得AD为切线;(2)利用(1)的结论,结合条件可求得∠AOE=30°,由AC的长可求得圆的半径,利用弧长公式可求得.【解答】(1)证明:如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠EBD,∴∠OEB=∠EBD,∴OE∥BD,∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠OEA=∠BDA=90°,∴AD是⊙O的切线;(2)解:∵AB=AC=4,∴OB=OE=OF=2,由(1)可知OE∥BC,且AB=AC,∴∠AOE=∠ABC=∠C=30°,∴==.26.如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C(1)直接写出抛物线的函数解析式;(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.【考点】二次函数综合题.【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式;(2)令抛物线解析式中x=0求出点C的坐标,根据点A、B的坐标即可求出其中点M的坐标,由此即可得出CM的长,根据圆中直径对的圆周角为90°即可得出△COM∽△CDE,根据相似三角形的性质即可得出,代入数据即可求出DC的长度;(3)根据平移的性质求出平移后的抛物线的解析式,令其y=0,求出平移后的抛物线与x轴的交点坐标,由此即可得出点P横坐标的范围,再过点P作PP′⊥y轴于点P′,过点D作DD′⊥y轴于点D′,通过分割图形求面积法找出S△PDE关于x的函数关系式,利用配方结合而成函数的性质即可得出△PDE面积的最大值.【解答】解:(1)将点A(﹣3,0)、B(1,0)代入y=ax2+bx﹣2中,得:,解得:,∴抛物线的函数解析式为y=x2+x﹣2.(2)令y=x2+x﹣2中x=0,则y=﹣2,∴C(0,﹣2),∴OC=2,CE=4.∵A(﹣3,0),B(1,0),点M为线段AB的中点,∴M(﹣1,0),∴CM==.∵CE为⊙O的直径,∴∠CDE=90°,∴△COM∽△CDE,∴,∴DC=.(3)将抛物线向上平移个单位长度后的解析式为y=x2+x﹣2+=x2+x﹣,令y=x2+x﹣中y=0,即x2+x﹣=0,解得:x1=,x2=.∵点P在第三象限,∴<x<0.过点P作PP′⊥y轴于点P′,过点D作DD′⊥y轴于点D′,如图所示......... 在Rt △CDE 中,CD=,CE=4, ∴DE==,sin ∠DCE==, 在Rt △CDD ′中,CD=,∠CD ′D=90°,∴DD ′=CD •sin ∠DCE=,CD ′==, OD ′=CD ′﹣OC=,∴D (﹣,),D ′(0,),∵P (x , x 2+x ﹣),∴P ′(0, x 2+x ﹣).∴S △PDE =S △DD ′E +S 梯形DD ′P ′P ﹣S △EPP ′=DD ′•ED ′+(DD ′+PP ′)•D ′P ′﹣PP ′•EP ′=﹣﹣x+2(<x <0),∵S △PDE =﹣﹣x+2=﹣+,<﹣<0, ∴当x=﹣时,S △PDE 取最大值,最大值为.故:△PDE 的面积关于x 的函数关系式为S △PDE =﹣﹣x+2(<x <0),且△PDE 面积的最大值为.。
广西钦州市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)对任意实数a,下列各式一定不成立的是()A . a2=(-a)2B . a3=(-a)3C . |a|=|-a|D . a2≥02. (2分)下列计算正确的是()A . x3+x3=x6B . (ab4)2=ab8C . (m5)5=m10D . x3y3=(xy)33. (2分)(2017·吉林) 计算(﹣1)2的正确结果是()A . 1B . 2C . ﹣1D . ﹣24. (2分)如图,将正方体相邻的两个面上分别画出3×3的正方形网格,并分别用图形“”和“○”在网格内的交点处做上标记,则该正方体的表面展开图是()A .B .C .D .5. (2分)若=+,则()A . m=﹣3,n=1B . m=3,n=﹣1C . m=3,n=1D . m=2,n=16. (2分) (2019八下·博罗期中) 下列计算正确是()A . (a﹣b)2=a2﹣b2B . x+2y=3xyC .D . (﹣a3)2=﹣a67. (2分)(2017·江北模拟) 下列调查中,最适宜采用抽样调查方式的是()A . 对全班同学体能测试达标情况的调查B . 对嘉陵江水域水流污染情况的调查C . 对乘坐飞机的旅客是否携带了违禁物品的检查D . 对奥运会参赛者是否服用了兴奋剂的检查8. (2分)(2017·浙江模拟) 如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A .B .C . 3D . 49. (2分)(2017·枣庄) 如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y= (x<0)的图象经过顶点B,则k的值为()A . ﹣12B . ﹣27C . ﹣32D . ﹣3610. (2分) (2016九上·靖江期末) 如图,△AB C内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则cosA等于()A .B .C .D .二、填空题: (共4题;共4分)11. (1分) (2019七上·椒江期末) 当x变化时,|x-4|+|x-t|有最小值5,则常数t的值为________.12. (1分)化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.13. (1分)(2017·高唐模拟) 若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是________.14. (1分)(2018·浦东模拟) 如图,已知在Rt△ABC中,∠ACB=90°,,BC=8,点D在边BC 上,将△ABC沿着过点D的一条直线翻折,使点B落在AB边上的点E处,联结CE、DE,当∠BDE=∠AEC时,则BE 的长是________.三、计算题: (共2题;共15分)15. (10分)(2017·仪征模拟) 计算下面各题(1)计算:2sin60°× ﹣(﹣1)0;(2)化简:﹣÷ .16. (5分) (2018九上·宜昌期中) 解方程: .四、作图题: (共1题;共10分)17. (10分)(2017·瑞安模拟) 如图,在方格纸中,点A,B,P,Q都在格点上.请按要求画出以AB为边的格点四边形.(1)在图甲中画出一个▱ABCD,使得点P为▱ABCD的对称中心;(2)在图乙中画出一个▱ABCD,使得点P,Q都在▱ABCD的对角线上.五、解答题: (共4题;共45分)18. (15分)(2018·安顺模拟) 经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.时间x(天)1≤x≤5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.19. (5分) (2017九下·莒县开学考) 如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E 点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)20. (15分) (2019九下·鞍山月考) 如图,一次函数与反比例函数的图象交于两点,过点作轴,垂足为点,且。
钦州市数学中考模拟试卷(3月)姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分) (2019七上·咸阳月考) 的相反数是________,是________的相反数.2. (1分)(2019·黔东南) 分解因式:9x2-y2=________.3. (1分)(2019·自贡) 如图,直线被直线所截,∥ , ;则=________.4. (1分)一个正方形的边长为5cm,它的边长减少xcm后得到的新正方形的周长为ycm,则y与x的关系式是________,自变量的取值范围是________.5. (1分)(2019·泸西模拟) 如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x >0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1﹣k2=________.6. (1分) (2017八下·丹阳期中) 如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、Sn ,则Sn的值为__.(用含n的代数式表示,n为正整数)二、单选题 (共8题;共16分)7. (2分) (2019九上·平房期末) 下列大小相同5个正方体搭成的几何体如图所示,其俯视图是()A .B .C .D .8. (2分)(2019·大庆) 小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,搜索到与之相关的结果条数为608000,这个数用科学记数法表示为()A . 60.8×104B . 6.08×105C . 0.608×106D . 6.08×1079. (2分)(2019·山西) 下列运算正确的是()A .B .C .D .10. (2分) (2019八下·忻城期中) 将一个n边形变成(n+1)边形,内角和将()A . 减少180°B . 增加90°C . 增加180°D . 增加360°11. (2分)下列方程没有实数根的是()A . x2+4x=0B . x2+x﹣1=0C . x2﹣2x+3=0D . (x﹣2)(x﹣3)=1212. (2分)在半径为12cm的圆中,垂直平分半径的弦长为()A . cmB . 27 cmC . cmD . cm13. (2分) (2018·邗江模拟) 一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A . 平均数B . 中位数C . 众数D . 方差14. (2分) (2018九下·嘉兴竞赛) 如图,正方形ABCD中,AB=6,点E,F分别在AD,BC边上,点G,H分别在AB,CD边上,EF=2 ,EF与GH相交所得的锐角为45°,则GH的长为()A . 6B . 3C . 2D . 5三、解答题 (共9题;共90分)15. (5分) (1)计算:(2)解方程:16. (5分) (2017八上·点军期中) 如图,已知BE=CF,AB∥CD,AB=CD.求证:△ABF≌△DCE.17. (10分)(2018·武昌模拟) 某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A 型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.18. (10分) (2016九下·萧山开学考) 给出下面四个方程:x+y=2,xy=1,x=cos60°,y+2x=5(1)任意两个方程所组成的方程组是二元一次方程组的概率是多少?(2)请找出一个解是整数的二元一次方程组,并直接写出这个方程组的解.19. (5分)如图,在▱ABCD中,∠BCD=120°,分别以BC和CD为边作等边△BCE和等边△CDF.求证:AE=AF.20. (15分)(2019·信阳模拟) 雾霾天气严重影响市民的生活质量。