活性炭吸附、解吸联合光催化降解装置18(好)
- 格式:pdf
- 大小:265.00 KB
- 文档页数:6
有机废气(VOCs)活性炭吸附+催化燃烧+UV光解工艺原理概述:本进化装置是根据吸附(效率高)和催化燃烧(节能)两个基本原理设计的。
即吸附浓缩--催化燃烧法。
设二个吸附床可交替使用,一个催化燃烧室,先将有机废气用活性炭吸附,当快达到饱和时停止吸附操作,然后用热气流将有机物从活性炭上脱附下来使活性炭再生;脱附下来的有机物已被浓缩(浓度较原来提高几十倍)并送入催化燃烧室进行催化燃烧,预热到220℃,在催化剂上于250~300℃左右进行催化氧化,使其转化为无害的二氧化碳和水排出。
当有机废气浓度达到2000ppm以上时,有机废气在催化床可维持自燃,不用外加热,燃烧后的尾气一部分排出大气,大部分送往吸附床用于活性炭的脱附再生。
这样能满足燃烧和脱附所需的热能,达到节能的目的,再生后的活性炭可用于下次吸附。
工艺特点:原理先进、用材独特、性能稳定、操作简便、安全可靠、节能省力、无二次污染。
采用新型的活性炭吸附材料--蜂窝状活性炭,与粒状相比具有优越的动力性能。
极适合大风量下使用。
催化燃烧室采用陶瓷蜂窝体的贵金属催化剂,阻力小、活性高。
吸附有机废气的活性炭床,可用催化燃烧后的的废气进行脱附再生,脱附后的气体在送入催化燃烧室进行净化,运转费用低。
活性炭再生冷却:在再生过程中,如果活性炭床内温度超过150℃时,补冷风机和补冷阀门开启,当温度降到145℃时,补冷风机和补冷阀门关闭,使活性炭床内温度保持在150℃以下;在再生过程中,如果活性炭床内温度超过160℃时,活性炭吸附装置内的温度感应器启动,自动打开喷淋系统的电磁阀,喷淋系统开始工作,对活性炭进行冷却降温。
UV光解:高效去除恶臭气体、挥发性有机物VOC。
效率最高可达90%以上,无需添加任何物质,只需设置排风管道和排风动力,使工业废气通过本设备进行分解净化,无需添加任何物质参与化学反应。
可每天24小时连续工作,运行稳定可靠。
本设备无任何机械动作,无噪音,无需专人管理和维护,只需做定期检查。
活性炭吸附装置主要技术参数1)活性炭除臭装置参数序号参数单位参数值1塔体尺寸(长×宽×高)mm 1.9×5.3×5.32处理风量m3/h 500003数量套 24工作阻力Pa 800-12005介质温度℃206介质垃圾池中生活垃圾发酵产生的臭气7活性炭滤料规格炭层2层,炭层总厚度356mm8活性炭填充量(单台套) kg 50009过滤面积m22810再生装置安装位置11装置总重kg12平均荷载kg/m213材料碳钢2)活性炭填料技术参数(材质:柱状活性炭)序号指标单位数值1碘吸附值mg/g 8002四氯化碳吸附值% 503苯吸附值mg/g 1504粒径目6-125亚甲基蓝mg/g 1206灰分% ≤47含水率% ≤88磨损率% ≤49堆积密度g/ cm35503)除臭风机参数序号参数单位参数值1数量套 22型号规格序号3旋向(出风) 右旋90度、左旋90度各一台4设计风量m3/h 575005设计风压Pa 20006工作温度°C 207活性炭装置外管道阻力Pa 8008电机型号9电机功率kW10电机转速r/min11电机电压V 38012电机防护等级IP54(防腐、防爆电机)13传动方式主要技术性能要求1)经活性炭装置处理后,除臭后气体符合排放指标GB14554-1993中恶臭污染物排放标准有组织排放标准的一级标准值。
序号控制项目单位一级二级三级新扩改建现有新扩改建现有1 氨mg/m3 1.0 1.5 2.0 4.0 5.02 三甲胺mg/m30.05 0.08 0.15 0.45 0.803 硫化氢mg/m30.03 0.06 0.10 0.32 0.604 甲硫醇mg/m30.004 0.007 0.010 0.020 0.0355 甲硫醚mg/m30.03 0.07 0.15 0.55 1.106 二甲二硫mg/m30.03 0.06 0.13 0.42 0.717 二硫化碳mg/m3 2.0 3.0 5.0 8.0 108 苯乙烯mg/m3 3.0 5.0 7.0 14 199 臭气浓度无量纲10 20 30 60 70控制柜能防尘、防腐、防潮、防结霉,防昆虫及啮齿动物,能承受指定场合的温度及支承结构的振动。
活性炭吸附净化设备设计方案一、设计原理活性炭是一种具有高度多孔性的材料,具有极大的比表面积,通过吸附作用可以有效地去除空气中的有害气体和异味。
活性炭吸附净化设备的设计原理基于以下几点:1.活性炭材料选择:选择具有大孔径和高比表面积的活性炭材料,以增加吸附容量和效果。
2.吸附介质的设计:活性炭吸附剂通常以颗粒状或块状存在,需要设计合适的吸附介质来保持活性炭的稳定性,并提供通气性。
3.空气处理系统:包括风机、过滤器和管道等组成,用于将空气输送到活性炭吸附装置中,并将处理后的空气排放出去。
4.吸附效果检测:设计合适的监测仪器,用于监测活性炭吸附装置的吸附效果,以确保其正常运行。
二、设备组成1.活性炭吸附装置:包括活性炭吸附层、吸附介质和支撑结构等。
活性炭吸附层通常由多层活性炭组成,以增加吸附效果。
2.风机:用于将空气送入活性炭吸附装置中,通常选择低噪音、高效率的离心风机。
3.空气过滤器:用于去除空气中的颗粒物和杂质,保护活性炭吸附层的稳定性和使用寿命。
4.管道系统:用于连接各个组件,保证空气的流动畅通。
5.监测仪器:包括空气质量检测仪器和吸附效果监测仪器,用于监测活性炭吸附装置的工作状态和吸附效果。
三、设计要点针对活性炭吸附净化设备的设计,需要注意以下几个要点:1.活性炭选择:根据空气中的污染物种类和浓度选择合适的活性炭材料,以及适当的装填方式和厚度,以提高吸附效果。
2.吸附介质设计:设计合适的吸附介质,保持活性炭的稳定性和通气性,同时考虑吸附剂的更换周期和维护成本。
3.空气流速:控制空气的流速,避免过高或过低,以提高吸附效果和系统的运行效率。
4.过滤器选择:选择合适的过滤器,去除空气中的颗粒物和杂质,保护活性炭吸附层的使用寿命。
5.排放处理:对处理后的空气进行适当的处理,保证排放的气体符合环境要求。
四、应用领域1.家用空气净化:如净化室内空气中的甲醛、苯等有害气体和异味。
2.工业废气处理:如处理化工厂、印染厂等工作场所的废气中的有机物和挥发性有机物。
活性炭吸附箱结构图活性炭吸附箱是一种常用于空气净化和废气处理的装置,其结构图如下所示:1. 活性炭层活性炭层是活性炭吸附箱中最重要的组成部分,也是实现吸附作用的关键。
活性炭层通常由高质量的活性炭颗粒组成,具有较大的比表面积和孔隙结构,以便更好地吸附和储存有害气体或颗粒物。
2. 过滤层在活性炭层上方,常常设置一个过滤层,用于过滤空气中的粗颗粒物和杂质,以防止其堵塞活性炭层和影响吸附效果。
过滤层通常由网状材料或滤纸等构成,具有较好的过滤效果。
3. 气流进出口活性炭吸附箱通常有明确的气流进出口,以便将待处理的空气引入活性炭层进行吸附,并将处理后的空气释放出去。
进出口通常位于吸附箱的两侧或顶部,具体位置根据使用场景和设计要求而定。
4. 密封装置为了确保活性炭吸附箱的密封性能,避免空气泄漏,通常在气流进出口处设置密封装置。
密封装置可以采用橡胶垫圈、密封胶条等材料进行密封,以保证箱体内外的气流不会相互干扰,影响吸附效果。
5. 支架为了支撑和稳定活性炭吸附箱,通常在箱体下方设置一个支架。
支架可以采用金属材料制成,具有足够的强度和稳定性,以便承载箱体和吸附层的重量,同时方便移动和固定吸附箱。
6. 底座底座是活性炭吸附箱的底部结构,它可以使吸附箱稳定地放置在地面上,同时提高吸附箱与地面的接触面积,便于热量传递和排放。
底座通常由金属材料制成,具有足够的稳定性和耐腐蚀性。
7. 水平校准装置为了确保活性炭吸附箱平稳放置,以及吸附层的水平度,通常在箱体底部的四个角上设置水平校准装置。
这些装置可以通过调整螺丝或其他可调节的部件来实现箱体的水平校准,以适应不同的地面情况和使用需求。
8. 活性炭补充口在长时间使用后,活性炭层的吸附能力会逐渐减弱,需要定期更换或补充活性炭。
为了方便补充活性炭,活性炭吸附箱通常在箱体的一侧或底部设置一个活性炭补充口,以便将新的活性炭颗粒或其他吸附材料注入吸附箱。
9. 监测仪表为了实时监测活性炭吸附效果和空气质量,活性炭吸附箱通常配备有监测仪表。
活性炭吸附净化设备设计方案1. 引言活性炭是一种广泛应用于工业和环境领域的吸附材料,具有良好的吸附性能和高度的表面活性。
活性炭吸附净化设备适用于处理废气、废水和有机物污染物的去除。
本文将介绍活性炭吸附净化设备的设计方案。
2. 设计目标活性炭吸附净化设备的设计目标包括但不限于以下几个方面: - 提供高效的吸附性能,达到净化要求; - 实现设备的稳定运行和长寿命; - 目标污染物的去除率达到要求; - 设备操作和维护简便。
3. 设计原理活性炭吸附净化设备的设计原理是利用活性炭材料对污染物进行吸附,从而达到净化的目的。
活性炭具有高度发达的孔结构和巨大的比表面积,能够有效吸附各种有机物和气体。
通过在设备中设置适当的流动路径和吸附床层,使气体或液体中的污染物与活性炭接触并吸附到活性炭表面,从而实现净化效果。
4. 设计步骤(1)确定处理介质:根据实际情况,确定要处理的废气或废水污染物的组成和浓度,以及处理量。
(2)选型活性炭:根据处理介质的特性和目标污染物的吸附性能要求,选择适合的活性炭材料。
考虑活性炭的孔径分布、比表面积、强度等指标。
(3)确定处理设备结构:设计活性炭吸附净化设备的结构,包括吸附床、进出气口、流动路径等。
要考虑介质的流动性、污染物的浓度以及设备操作和维护的便利性。
(4)计算吸附床层高度:根据目标污染物的浓度和去除率要求,计算吸附床层的高度。
考虑吸附床层中活性炭的用量和密度,以及污染物的吸附速度。
(5)确定进出口管道:根据设备的处理能力和处理介质的流量,确定进出口管道的直径和设计。
考虑流体的流速和压降。
(6)设备组装和测试:将各个部件组装到一起,并进行测试和调试。
确保设备能够正常运行和达到设计要求。
5. 设计优化活性炭吸附净化设备的设计可以通过以下方式进行优化: - 选择更高效的活性炭材料,提高吸附性能; - 优化吸附床层的高度和体积,使设备更稳定; - 设计合理的流动路径,提高介质的接触效果; - 增加附加设备,如预处理设备、再生装置等,提高设备的综合性能。
浅谈电子厂房中废气处理的措施发布时间:2021-11-19T00:58:29.278Z 来源:《工程建设标准化》2021年18期作者:张国梁[导读] 我国经济发展中,人们日益重视环境保护,国家也出台了多项环保法律,环境保护工作更加系统和规范。
工业生产厂房的封闭性较强,抑张国梁中国轻工业广州工程有限公司广东广州 511400摘要:我国经济发展中,人们日益重视环境保护,国家也出台了多项环保法律,环境保护工作更加系统和规范。
工业生产厂房的封闭性较强,抑制了工业废气扩散,但是废气量的增加也会引发较多的安全隐患。
故而如何科学处理工业厂房内废气,是企业发展中需要关注的重点问题。
而本文就对此问题进行了分析与论述。
关键词:电子厂房;废气处理;措施;当前,我国工业发展进程加快,大气中的废气排放量也随之增多,受大气流作用的影响,废气扩散范围较大,对自然环境造成了破坏,不利于保障人们的身体健康。
近年来我国在电子行业领域的发展突飞猛进,显示屏、电池以及高科技电子产品的生产都会产生一定量的有机废气,应基于可持续发展、人员健康、环境保护的要求,对有机废气的处理成为企业发展中的重点关注问题。
下面以某电子厂房生产中产生的废气进行分析,解决废气处理的方式。
1.生产车间内有机废气的产生1.1调配、混合、涂布和干燥过程产生的有机废气本项目外购乙醇浓度为99.7%,使用前需进行调配,调配后乙醇浓度为20%,调配过程会产生有机废气;本项目在混合、涂布和干燥过程使用乙醇和丙醇时会产生有机废气。
乙醇调配过程和后续使用过程中有机废气产生量按外购乙醇全部挥发(99.7%)计算,根据建设单位提供的资料,本项目乙醇年使用量为0.06吨,则VOCs的产生量约为0.06t/a。
1.2点胶工序产生的有机废气根据建设单位提供的MSDS报告,密封胶的主要成分为<0.1%甲苯、0.1%~1%的2-丁氧基乙醇、<0.1%的2-苯基丙烯,15%~25%非结晶性二氧化硅、75%~85%烯烃类树脂,其他合成树脂,添加剂。
活性炭纤维吸附装置在回收处理二氯甲烷废气中的工程实例应用作者:马卫祥来源:《中国化工贸易·下旬刊》2017年第09期摘要:活性炭纤维吸附工艺成熟稳定,工程投资少,可重复使用,在工程中应用广泛。
回收装置由预处理系统、吸附系统、脱附系统、干燥降温系统、回收系统和自动控制系统组成。
关键词:活性炭;吸附脱附;挥发性有机物;二氯甲烷二氯甲烷在化工、石化、医药行业中大量使用,通常作为溶剂使用,因二氯甲烷的沸点较低,大量使用会产生大量挥发性有机物VOCs,有机废气不仅污染了大气环境,而且还造成资源的极大浪费,回收处理二氯甲烷废气,减少废气排放,实现废气的资源化,具有良好的社会效益和经济效益。
目前,常用的二氯甲烷尾气处理方法有冷凝法、吸收法和吸附法等,其中活性炭纤维吸附工艺成熟稳定,工程投资少,可重复使用,因而在工程中应用广泛。
1活性炭吸附处理二氯甲烷废气装置系统简介二氯甲烷的分子式:CH2Cl2。
无色透明液体,有芳香气味。
微溶于水,溶于乙醇和乙醚,是不可燃低沸点溶剂,常用来代替易燃的石油醚、乙醚等。
二氯甲烷尾气活性炭纤维吸附回收装置由预处理系统、吸附系统、脱附系统、干燥降温系统、回收系统和自动控制系统组成。
1.1预处理系统将含二氯甲烷废气收集引至预处理系统,通过碱洗喷淋塔去除有机尾气中的颗粒状杂质及部分酸性气体,避免颗粒物堵塞活性炭纤维的微孔,影响吸附效果。
1.2吸附、脱附系统采用三箱活性炭纤维装置处理,吸附系统在任何时间都有两台吸附器在执行吸附过程,一台吸附器执行脱附再生过程。
三个吸附箱交替工作,吸附箱的工作状态由自动控制系统自动切换交替进行,吸附、脱附工艺流程图见图1。
1.3干燥降温系统蒸汽从吸附器顶部进入,穿过活性炭纤维,把被吸附的二氯甲烷脱附出来,同时带出吸附器进入冷凝器,经过冷凝,二氯甲烷和水蒸汽的混合物被冷凝下来流入气液分离器,在气液分离器中,二氯甲烷和冷凝水分离而回收。
2废气系统浓度及设计参数2.1废气基本设计参数废气的基本参数如下:采用预处理方式和三箱活性炭吸附装置对二氯甲烷、盐酸废气进行吸附处理,处理后的洁净气经过15m高排气筒高空排放,排气浓度满足《大气污染物排放标准》(GB16297-1996)的要求。
一、产品概述低温等离子光催化氧化活性炭吸附一体机综合了低温等离子、光催化氧化、活性炭吸附的综合特点,综合利用各处理工艺的特点。
1.1低温等离子工艺原理等离子体就是处于电离状态的气体,由大量的带电粒子、中性原子、激发态原子、光子和自由基等组成。
电子和正离子的电荷数表现出电中性。
具有导电和受电磁影响的性质。
许多方面与固体、液体和气体不同,因此有人把它称为物质的第四种状态。
介质阻挡放电过程中,等离体子内部产生富含极高化学活性的粒子,如电子、离子、自由基和激发态分子等。
废气中的污染物质与这些具有较高能力的活性集团发生反应,最终转化为CO2、H2O等物质,从而达到净化废气的目的。
1.2光催化氧化工艺原理光催化氧化法通过利用特制的高能紫外线光束照射、通过紫外线光束分解氧分子产生游离氧、以及通过光束照射纳米TiO2光触媒产生电子-空穴对等多种方式分解有机气体。
能高效快速去除挥发性有机物(VOC)、无机物、硫化氢、氨气、硫醇、硫醚、苯类等有毒有害、刺激性气体,脱臭效率可达99%以上,脱臭效果大大超过国家1993年颁布的恶臭污染物排放标准(GB14554-93)。
它具有适应性强、运行成本低、设备占在面积小等特点。
1.3活性炭吸附工艺原理活性炭是比表面积很大的细小的多孔炭粒。
炭粒上的微孔结构具有很强的吸附能力。
很大的比表面积导致炭粒能与气体(杂质)充分接触,使得气体(杂质)被微孔充分吸附,起到效果非常好的净化作用。
活性炭吸附装置利用活性炭的多孔性,存在吸引力的原理而开发的。
由于固体表面上存在着未平衡饱和的分子力或化学键力,当此固体表面与气体接触时,就能吸引气体分子,使其浓集并保持在固体表面,这种现象就是吸附现象。
二、设备特点低温等离子光催化氧化活性炭吸附一体机是治理工业生产过程中生产的有机废气的专用设备。
适用于家具厂、静电喷涂厂、印刷厂、鞋厂、电子厂等行业产生的废气。
对废气中的苯、甲苯、二甲苯、非甲烷中烃等有机废气处理效果明显(注意:严禁将易燃易爆气体引入设备内部)。
活性炭吸附技术对VOCs净化处理的研究进展*余倩,邓欣,李俊,李聪,余林,王运佳,沈丽斯【摘要】介绍了VOCs的概况,简述了各种治理方法,包括热破坏法、吸附法、吸收法、光催化降解法、冷凝法和生物控制法.在此基础上,以活性炭吸附为重点,探究了活性炭吸附技术的应用和发展现状.【期刊名称】材料研究与应用【年(卷),期】2010(004)004【总页数】4【关键词】挥发性有机废气;活性炭;吸附【文献来源】https:///academic-journal-cn_materials-research-application_thesis/0201221535744.html挥发性有机废气(Volatile Organic Compounds,VOCs)是指空气中存在的,在室温下蒸汽压大于70.91 Pa,沸点低于260℃的挥发性有机物质.包括烷烃、VOCs芳香烃、烯烃、醇类、醛类、酮类、卤代烃.VOCs具有毒性、致癌性危害人体健康,而且还能通过光化学反应产生光化学烟雾,是空气污染的主要污染物之一[1].1 VOCs的净化处理技术目前,对VOCs的治理方法主要有热破坏法、吸附法、吸收法、光催化剂降解法、冷凝法和生物控制等方法.1.1 热破坏法热破坏法分为直接火焰燃烧法和催化燃烧法.虽然直接火焰燃烧法对VOCs的去除率可达99%,但由于在大多数情况下,VOCs的浓度较低,通量较大,在没有辅助燃料时不足以燃烧,实用意义不大.催化燃烧法适合处理量大、浓度低的有机废气.催化燃烧能耗低、效率高,转化率在95%以上,不易生成高温下的二次污染物如二噁英、氮氧化物等[2].催化燃烧的关键是研发起燃点低、催化活性高、稳定价廉的催化剂.目前,国内外已有不少学者对它展开了研究工作[3-5].Kim 等人研究了Pt,Pd的原子比例对Pt-Pd/γ-Al2 O3 催化剂活性和稳定性的影响,发现恰当的Pt-Pd原子比例可以促进Pt和Pd的协同作用,提高催化剂的活性和稳定性.国内学者余凤江等人采用共沉淀法制备了Cu-Mn-Ce-Zr复合氧化物催化剂,考察了对苯燃烧的催化活性,结果表明,该催化剂具有优良的催化活性,完全转化温度只有182℃.1.2 吸附法吸附法具有效率高、净化彻底、易于推广实用、环境效益和经济效益良好等优点.目前最成熟的吸附系统是1977~1979年在日本开发成功的蜂窝轮吸附.经过多年的改善,蜂窝状吸附轮的性能得到了不断的提高.Mitsuma Y等人提出的制造蜂窝轮新方法[6],能够使VOCs的去除率高达90%~95%.吸附法处理废气的关键是吸附剂.常用的有活性炭、活性氧化铝、硅胶、人工沸石等.另外,据张洪林等人的研究,炉灰渣也可以作为吸附材料[7].由于吸附剂容易失效,频繁更换所导致的高额费用是限制吸附法推广应用的瓶颈.1.3 吸收法采用吸收法治理气态污染物在无机污染物治理中得到了广泛的应用.但对于有机废气,由于其水溶性一般不好,因而应用不太普遍.目前吸收有机气体的主要吸收剂是油类物质,但也有人另辟新径.日本的上殊勇等人根据环糊精对有机卤化物亲合性极强的特性,以环糊精的水溶液作为吸收剂对含有机卤化物的有机废气进行吸收.这种吸收剂具有无毒不污染,捕集后解吸率高,可反复使用的优点.1.4 光催化降解法1972年日本的Fujishima和Hondal发现TiO2单晶电极分解水,标志着纳米半导体多相光催化新时代的开始.国外通常采用TiO2粉末作为光催化剂降解苯系物.美国KSE公司开发出一种专利催化吸附剂,通过光催化氧化处理VOCs.刘亚兰等人将纳米TiO2与活性炭纤维复合,用来降解甲醛,进一步提高了净化效率[8].利用TiO2作为光催化剂净化空气的技术在国外已逐渐成熟,但国内的研究较少,近几年在做初步实验研究和动力学探讨.1.5 冷凝法利用VOCs在不同温度和压力下具有不同的饱和蒸气压的性质,采用降低系统温度或提高压力,使VOCs从废气中分离.实验表明,冷凝法对沸点在60℃以下的VOCs的去除率为80%~90%.此法适用于VOCs浓度大于5%的情况,对VOCs浓度太低的废气处理效果不理想.1.6 生物控制法生物控制法是近年来发展起来的空气污染控制技术,其实质是附着在生物填料介质上的微生物在适宜的环境条件下,利用废气中的污染物作为碳源和能源,维持其生命活动,并将它们分解为CO2和H 2 O等无害无机物的过程,目前在发达国家已是成熟的工艺,是处理含VOCs废气的首选技术.在国内,生物控制法的优越性也日益被人们所认识.浙江大学采用自主研制的新型复合生物滤塔,耦合净化处理某制药厂含H 2 S(166.0~891.5 mg/m3)和挥发性VOCs (100.0~1051.1 mg/m3)的混合废气[9].由于复合生物滤塔同时具备了生物滴滤塔(BTF)和生物过滤塔(BF)的优点,在处理含H 2 S和VOCs混合废气时具有高效、节能、低耗等明显优势.2 活性炭吸附VOCs活性炭的炭粒中有细小的孔——毛细管.这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与气体充分接触,当这些气体进入毛细管就很容易被吸附,起净化气体作用.活性炭吸附多为物理吸附,过程可逆.当吸附达到饱和后可用热空气或水蒸气脱附,实现活性炭的循环使用.在实际应用中需根据被吸附分子的大小选择不同孔径的活性炭.吸附过程常采用两个吸附器,当一个进行吸附时,另一个进行脱附,以保证吸附过程的连续[10].活性炭吸附法最适合处理浓度为(300~5000)×10-6的有机废气,但是也有一定的使用限制.部分含酮、醛、脂等高活性物质会与活性炭反应,使得活性炭炭孔堵塞而无法使用.此外,活性炭容易饱和,导致吸附效率低,频繁更换导致的费用增加也限制了它的推广应用.为了克服上述缺点,人们正在寻找行之有效的活性炭表面改性方法.2.1 改性活性炭常用的改性方法有氧化、还原及负载杂原子和化合物等.氧化改性法使用 HNO3,H 2 SO4,HCl,HClO,HF,H 2 O2和O3等强氧化剂处理活性炭表面,提高酸性基团的含量.华东理工大学研究所对蜂窝状活性炭的吸附性能进行了改性研究.研究结果表明,活性炭经盐酸处理后可以提高活性,延长穿透时间.这是因为酸可以去除活性炭中无吸附能力的灰分.但酸的浓度不能太高,否则会破坏活性炭的部分微孔结构,造成吸附性能下降[11].Chiang等人对活性炭进行臭氧氧化后,测定活性炭的比表面积从(783±51)m2/g增加到(851±25)m2/g.还原改性是对活性炭用H 2和N2进行高温处理或氨水浸渍,提高活性炭表面碱性基团的含量.如高尚愚采用还原法对活性炭进行改性,增强了其对苯酚的吸附能力.负载杂原子及化合物则是通过液相沉积的方法在活性炭表面引入特定杂原子和化合物,增强活性炭的吸附性能.Chiang采用Mg(NO3)2和Ba(NO3)2处理活性炭,增加了活性炭对醋酸的吸附容量.为了达到特定的吸附目的,人们还研究出了其它的改性方法.如针对高湿度应用条件,可将活性炭改性为表面疏水.日本的Nakanishi Yoichiro将活性炭用三甲基氯硅烷汽化处理一定时间后,再撤离气氛,然后在真空下加热活性炭,就可制得表面疏水的活性炭.名古屋大学的KATANI MASANOBU等人为了提高活性炭在低温条件下的化学活性,在678~873 K的温度下,加入NaOH和KOH (与活性炭的重量比为1~4),然后再用浓度为1~13 mol/L的硝酸处理12~24 h,最后用水清洗、干燥,获得了在低温条件下具有较高活性的活性炭.为了提高对SO2的吸附容量,大连理工大学对活性炭进行了改性制备.首先对活性炭进行预处理:将杏仁壳活性炭用蒸馏水煮沸1 h,再于90℃下真空干燥3 h.按照等体积浸渍法(1 m L的溶液对应1 g活性炭)将一定量的质量分数分别为2%,5%,8%,10%和12%的改性试剂担载到活性炭上,在110℃下烘4 h.结果表明,将 Na2 CO3,Na HCO3,NaOH 和K2 CO3担载到活性炭上均能有效地提高活性炭的硫容量,其中w(Na2 CO3)=10%的改性活性炭的硫容量最大.扶江、张远等人采用浸渍改性活性炭对SO2废气脱硫进行实验研究,结果表明:分别经过KI,Zn(NO3)2,HNO3 改性的活性炭的吸附效果较好[12].荣海琴等人认为热处理可以脱除活性炭表面的杂原子而在表面留下许多活性位,从而提高吸附容量,实验结果表明,适合的热处理温度为500℃.2.2 活性炭纤维活性炭纤维是20世纪70年代发展起来的一种新型、高效、多功能的纤维状吸附材料[13],它具有大量分布的狭窄和均匀的微孔及巨大的比表面积,对有机物的吸附容量大,吸附效率高,且吸脱附速度快,再生容易,并耐热、耐酸、耐碱,适应性强,导电性和化学稳定性好,且可加工成任何形状,具有广阔的应用前景[14].纤维状活性炭是由各种高分子纤维,如纤维素系、丙烯晴系、酚醛系纤维、沥青系、聚乙烯醇系经碳化、赋活处理而制成.所得活性炭纤维的比表面积为1000~3000 m2/g,单位质量所含细孔体积为0.6~1.9 cm3/g,孔径均一,大部分为适合气体吸附的0.002μm的小孔,因此具有更有效的比表面.活性炭纤维的孔道比普通活性炭的短,使吸附脱附的速率提高[15].据文献记载,活性炭纤维的吸附脱附能力为一般粒状、粉末状活性炭的400倍以上.许多工程实践都证明,活性炭纤维对有机废气的吸附可达92%~98%,而且使用寿命长,在同等条件下,其寿命是普通颗粒活性炭的3~4倍,使设备的年均使用费用大大降低.日本在1993年就申请了合成纤维状活性炭的专利,其中酚醛系活性炭纤维制法是:将酚类和醛类化合物在酸性催化剂作用下反应生成可溶可熔酚醛树脂,纺丝制成尚未硬化的酚醛树脂纤维,在酸性催化剂作用下与甲醛作硬化处理,然后在1100~1200℃下炭化、活化即可制成高性能活性碳纤维.其中炭化条件直接影响到产品的产率和性能,随炭化温度的升高,表面积增大而平均孔径则有所下降.活化反应是使活性碳纤维生成丰富的微孔及形成含氧官能团的主要过程,活化温度对活性炭纤维的性能影响较大,可通过选择合适的前驱体、活化剂、反应条件等来调整孔的结构和比表面的大小.P Navarri等人利用碳纤维材料对二甲苯和乙酸乙酯进行吸附处理,着重研究了不同碳纤维、纤维层数、不同气体以及气体浓度间的关系对吸附效果的影响,取得了一定的成果.孙彤等人用活性炭纤维作为吸附材料,以恒温恒压的空气作载气,考察了温度、气体流速、气体浓度3个因素对吸附量的影响.结果表明,温度对活性炭纤维的平衡吸附量的影响最大,随着温度的升高,活性炭纤维对醋酸丁酯的平衡吸附量下降.对活性炭纤维进行改性,可满足对特定物质的高效吸附转化[8].由于炭的表面原子呈不饱和结构,有其独特的表面化学性能.活性炭纤维在微晶状态下,当温度一定时易于发生氧化反应,使得表面结合羧基、卤素、氮元素等.为了克服高湿度天气的影响,可以通过900℃高温处理来减少活性炭纤维表面的亲水基,提高吸附VOCs的能力.目前,活性炭纤维虽然价格较高,制备工艺还不成熟,但随着研究的深入,活性炭纤维的工艺条件可以得到进一步的完善,从而使它发挥更大的作用.3 结语挥发性有机废气已经越来越严重地影响着人类的生存环境,废气治理的问题已经刻不容缓.相信经过人们的不断努力,日后将会研究出更加先进合理的治理方法.正如美国国家环境保护署(EPA)所指出的,活性炭吸附是去除VOCs“可采用的最好技术”.活性炭作为一种具有强大潜力的吸附剂,经过人们的深入研究,必将在VOCs治理方面发挥更大的作用.参考文献:[1]黎维彬,龚浩.催化燃烧去除VOCs污染物的最新进展[J].物理化学学报.2010(4):885-894.[2]KITTRELL J R,QUINLAN C W,ELDRIDGE J W,et al.Direct catalytic oxidation of halogenated hydrocarbons[J]. Waste Manage Ass-Soc,1991,41(8):1129-1133.[3]岳雷,赵雷洪,滕波涛,等.Pd/Ce0.8Zr0.15La0.05Oδ整体催化剂甲苯催化燃烧性能的研究[J].中国稀土学报.2009(3):327-333.[4]BARBERO B P,COSTA-ALMEIDA L,SANZ O,et al.Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic compounds[J].Chemical Engineering Journal.2008,139(2):430-435.[5]MORALES M A R,BARBERO B P,LOPEZ T,et al.Evaluation and characterization of Mn-Cu mixed oxide catalysts supported on TiO2 and Zr O2 for ethanol total oxidation[J].Fuel,2009,88(11):2122-2129.[6]MITSUMA Y,KUMA T,YAMAUCHI H,et al.Advanced honeycomb adsorbent and scaling-up technique for thermal swing adsorptive VOC concentrators[J].Kagaku Kogaku Ronbunshu,1998,24(2):248-253.[7]吴德礼,朱申红.新型吸附剂的发展与应用[J].矿产综合利用,2002(1):36-40.[8]刘亚兰,潘珠玉.纳米TiO2与活性炭纤维复合降解空气中甲醛[J].林业科技,2009,134(11):42-45.[9]於建明,沙昊雷.复合生物滤塔耦合处理含 H 2 S和VOCs废气研究[J].浙江工业大学学报,2008,36(3):254-259.[10]闫勇.有机废气中挥发性有机物的净化回收技术[J].化工进展,1996(5):26-28.[11]李婕,羌宁.挥发性有机物(VOCs)活性炭吸附回收技术综述[J].四川环境,2007,126(16):101-105.[12]扶江,张远.改性活性炭吸附SO2的试验研究[J].贵阳学院学报,2008,3(1):35-38.[13]徐越群,赵巧丽.活性炭吸附技术及其在水处理中的应用[J].石家庄铁路职业技术学院学报,2010,9(1):48-50.[14]李守信,金平,张文智,等.采用活性炭纤维吸附装置回收VOC的优点分析[J].化工环保,2004,24:274-276.[15]杨芬,刘品华.活性炭纤维在挥发性有机废气处理中的应用[J].曲靖师范学院学报,2003,22(6):43-46.*基金项目:广东省自然科学基金重点项目(10251009001000003);中法“蔡元培”交流合作项目(留金欧2010-6050);广州市科技项目(2010Z1-E061)【文献来源】https:///academic-journal-cn_materials-research-application_thesis/0201221535744.html。
一、介绍光氧活性炭-•体机具有节能高效、占地小,自重轻、节约人工和物力、无任何机械动作,无噪音等特色。
光氧活性炭一体机是一款成套的废气处理设备。
光氧活性炭一体机集合了光氧和活性炭的长处组合而成,是一款能有用处理有毒有害气体及恶臭气体的一款环保设备。
光氧活性炭一体机是UV光氧净化器+活性炭箱两种设备的完美结合,利用UV光氧净化器的紫外线光和活性炭吸附箱的吸附效果相结合,对工业废气进行协同净化处理。
二、工作原理
UV光氧催化设备彻底分化的工业VOCs有机废气再进入活性炭吸附箱内部,众所周知活性炭具有很强的吸附才能,能将有机废气牢牢的吸附在活性炭外表。
因为活性炭外表存在着未平衡和未饱满的分子引力或化学键力,因而活性炭与气体接触时,就能吸引气体分子,使其浓聚并保持在固体外表,废气中的污染物被吸附在固体外表上,使其与气体混合物别离,到达净化目的。
正蓝环保的活性炭吸附箱选用蜂窝状的活性炭,具有较大的比外表积,废气吸附效果好,并且还具有较好的通透性。
活性炭光氧一体机废气处理设备,活性炭吸附箱当废气由风机提供动力,负压进入吸附箱后进入活性炭吸附层,由于活性炭吸附剂的表面上存在着未平衡和未饱和分子引力或化学健力,因此当活性炭吸附剂的表面与气体接触时,就能吸引气体分子,使其浓聚并保持在活性炭表面,此现象称为吸附。
利用活性炭吸附剂表面的吸附能力使废气与大表面的多孔性活性炭吸附剂相接触,废气中的污染物被吸附在活性炭表面上,使其与气体混合物分离,净化后的气体高空排放。
Chemical Engineering Science58(2003)929–934/locate/cesA rapid treatment of formaldehyde in a highly tight room using aphotocatalytic reactor combined with a continuous adsorption anddesorption apparatusFumihide Shiraishi∗,Shunsuke Yamaguchi,Yusuke OhbuchiDepartment of Biochemical Engineering and Science,Faculty of Computer Science and Systems Engineering,Kyushu Institute of Technology,Iizuka820-8502,JapanAbstractA novel air-puriÿcation system,consisting of the photocatalytic reactor with a parallel array of blacklight blue uorescent lamps and the continuous adsorption and desorption apparatus with a cylindrical ceramic-paper honeycomb rotor retaining activated carbon or zeolite ÿne particles,was constructed and the performance of this system was investigated for treatment of gaseous HCHO at a concentration level of ppbv(¡1mg m−3)in a10m3highly tight closed room.With the zeolite rotor,it was very di cult to desorb the adsorbed HCHO by exposing the rotor to heated air and then to photocatalytically decompose the desorbed HCHO.In contrast,the activated carbon rotor provided an excellent performance.With this rotor,the indoor HCHO concentration was reduced to the neighborhood of the WHO guideline(0:1mg m−3)in10min and to an almost zero value in90min.Needless to say,this surprisingly high performance is owing to the cooperative work by the activated carbon rotor to adsorb the indoor HCHO and the photocatalytic reactor to rapidly decompose the HCHO desorbed by heating the rotor.This system o ers several other advantages.The adsorption rotor can be used semi-permanently because it is continuously regenerated.In addition,the HCHO adsorbed on the activated carbon rotor is readily released at a desorption temperature of120◦C.Under such a low temperature condition,little loss in the photocatalytic activity was caused.?2003Elsevier Science Ltd.All rights reserved.Keywords:Photocatalytic decomposition of formaldehyde;Continuous adsorption and desorption;Sick-building syndrome;Environment; Photochemistry;Reaction engineering1.IntroductionIn the indoor environment,HCHO exists at a con-centration level of ppbv(usually below300ppbv; 1ppmv=1000ppbv=1:25mg m−3)(Miyazaki,1996; Godish,1998),which makes the photocatalytic decomposi-tion much harder.Actually,if one starts the photocatalytic decomposition with a high concentration,for example, above10ppmv,HCHO is initially decomposed without problems,but when the HCHO concentration drops below 1ppmv,the decomposition is rapidly slowed down and then almost terminated on the way(Toyoda,2000).Two possible reasons are considerable for this unexpected time-transient behavior of HCHO.One is owing to an insuf-ÿcient UV-light intensity per unit surface area(Fukinbara,∗Corresponding author.Tel.:+81-948-29-7827;fax:+81-948-29-7801.E-mail address:fumi@bse.kyutech.ac.jp(F.Shiraishi).Shiraishi,&Nakano,2001).Various kinds of active species that are produced on the TiO2surface under UV-irradiation are greatly responsible for the expression of the photo-catalytic activity.However,these are very unstable,being quickly formed and then immediately decomposed.There-fore,the densities of the active species on the surface of TiO2under continuous UV-irradiation would deÿnitely de-pend on the light intensity.However,since the HCHO con-centration in the indoor environment is on the order of ppbv, the probability that the HCHO molecules encounter the ac-tive species becomes rather low even when they reach the TiO2surface,thereby reducing the occurrence of the reac-tion.The other reason is owing to the presence of large ÿlm-di usional resistance(Fukinbara&Shiraishi,2001). In general,in a gas–solid catalytic reaction,it is common knowledge that theÿlm-di usional resistance is negligible and the pore-di usional resistance alone should be taken into consideration.This may be valid for the case where the re-actant concentration is very high,as carried out in industrial0009-2509/03/$-see front matter?2003Elsevier Science Ltd.All rights reserved. doi:10.1016/S0009-2509(02)00630-9930 F.Shiraishi et al./Chemical Engineering Science58(2003)929–934production,but this is not always valid for the photocatalytic decomposition of harmful substances contained at very low concentrations in the indoor air.Indeed,in the photocatalytic decomposition of HCHO at a concentration below1ppmv, theÿlm-di usional resistance becomes marked because of a small di erence between the reactant concentrations in the bulk uid and on the TiO2surface(Toyoda,2000),which results in a remarkable decrease in the decomposition rate. In the pastÿve years,the authors have intensively exam-ined the relationshipbetween the rate of the p hotocatalytic decomposition and the structure of the photocatalytic reactor (Obuchi,Sakamoto,Nakano,&Shiraishi,1999;Shiraishi, Toyoda,Fukinbara,Obuchi,&Nakano,1999;Xu&Shi-raishi,1999;Fukinbara&Shiraishi,2001;Wang,Shiraishi, &Nakano,2002a,b)and found that a parallel array of nine 6-W blacklight blue uorescent lamps,each of which is ÿxed in a Pyrex glass tube whose inside surface is coated with a transparent thinÿlm of TiO2,is very e ective to de-compose HCHO at a ppbv concentration level toward a zero value(Shiraishi et al.,2001;Wang&Shiraishi,2002;Wang et al.,2002b).Since the distance between the light source and photocatalyst in the reactor is only3:5mm,the photocat-alytic surface is exposed to the UV light of a high intensity. In addition,the indoor air containing HCHO,introduced by rotation of the electric fanÿxed just over the parallel array of light sources,passes through the inside of the glass tubes at a very high linear velocity,which makes theÿlm-di usional resistance negligible.When this reactor was used to treat the 1:0m3air containing HCHO at an initial concentration of 0:375mg m−3,the HCHO concentration became below the WHO guideline(80ppbv,or0:1mg m−3)in20min and then reduced to an almost zero value in one hour(Shiraishi et al.,2001).To commercialize this photocatalytic reactor as an air cleaner for spacious houses,however,the treatment capacity must be further increased.In the present work,therefore,the authors constructed a novel air-puriÿcation system,consisting of the photocat-alytic reactor and the continuous adsorption and desorption apparatus equipped with a cylindrical ceramic-paper hon-eycomb rotor retaining activated carbon or zeoliteÿne particles,and investigated the performance of this novel air-puriÿcation system for the treatment of indoor HCHO. In this system,dilute HCHO in the air is once adsorbed on the rotor rotating at a low speed,while a section of the rotor is continuously exposed to heated air to desorb the adsorbed HCHO;as a result,the adsorbent is continu-ously regenerated.Since the desorption is carried out into a loop,HCHO is increasingly concentrated.In parallel,the desorbed HCHO is photocatalytically decomposed in the loop.2.ExperimentalFig.1shows a schematic of the air-puriÿcation system used in the present work.The photocatalytic reactor has a parallel array of nine6-W blacklight blue uorescent lamps(wavelength of UV;300–400nm),each of which isÿxed in a Pyrex glass tube(28mm in internal diame-ter and230mm long)whose inside surface is coated with a transparent thinÿlm of TiO2(total area of the catalytic surface,0:182m2).The coating method is described else-where(Matsuo,Takeshita,&Nakano,1990;Wang et al., 2002a).The distance between the light source and TiO2ÿlm in the reactor is3:5mm and the photocatalytic surface is exposed to the UV light of a high intensity(15 W cm−2 at350nm).By rotation of the electric fanÿxed just over the parallel array of light sources,the indoor air containing HCHO is introduced into the rectangular reactor(215L×215W×295H mm3)at a ow rate of3:0m3min−1andFig.1.A schematic of an air-puriÿcation system consisting of the photocatalytic reactor with a parallel array of nine blacklight blue uorescent lamps and the continuous adsorption and desorption apparatus with a ceramic-paper honeycomb rotor retaining activated carbon or zeoliteÿne particles.F.Shiraishi et al./Chemical Engineering Science58(2003)929–934931allowed to pass through the inside of the glass tubes at a very high linear velocity(12:7m s−1).A cylindrical ceramic-paper rotor(300mm in diameter and50mm in thickness)consists of honeycomb laminates (corrugation pitch,3mm),on which zeolite(ZSM-5)or ac-tivated carbon(coconut husk)ÿne particles are loaded.The indoor air was supplied to5/6of the surface area of the cylindrical rotor to adsorb HCHO,while heated air was to 1/6of the surface area to desorb the HCHO adsorbed on the rotor.All the experiments were performed in a10m3highly tight room,unless otherwise noted.The adsorption and des-orption experiment was carried out by connecting the ad-sorption and desorption apparatus circularly with a0:09m3 small box,as shown in Fig.1.Since the heated air was re-circulated through a section of the rotor belonging to the loop,the HCHO desorbed from the rotor was increasingly concentrated in the loopuntil the system came to equilib-rium.The simultaneous operation of the adsorption and des-orption apparatus and the photocatalytic reactor was carried out by placing the photocatalytic reactor in the small box. The indoor air was su ciently mixed with two electric funs, placed at two distant positions in the highly tight room.A certain amount of the indoor air was bubbled into a distilled water to collect HCHO and its concentration was measured by the AHMT method.3.Results and discussionparison of adsorption performancesThe air containing HCHO at an initial concentration of 0:625mg m−3was treated using air-puriÿcation system equipped with either zeolite or activated carbon rotor.The desorption temperature for both the rotors was set at180◦C because at the temperature less than180◦C,it was unable to su ciently desorb the HCHOÿrmly adsorbed on zeo-lite.With the zeolite rotor,the HCHO concentration in the highly tight room was rapidly decreased to0:313mg m−3 in10min,but the decomposition was slowed down and then stopped around at0:125mg m−3.There was little di erence in the HCHO concentration whether or not the photocatalytic reactor was operated.Such a variation in the HCHO concentration was re ected by the time-transient behavior of the HCHO concentration in the small box. That is,the HCHO concentration wasÿrst increased up to3:13mg m−3after10min and then decreased slowly. From the result of other experiment,it was found that the HCHO released from the zeolite rotor is photocatalytically undegradable.This is considered due to the occurrence of some chemical change in HCHO molecules,for example, the polymerization of HCHO.With the activated carbon rotor,a similar behavior in the HCHO concentration was ob-served in the highly tight room when the photocatalytic re-actor was switched-o .When the photocatalytic reactor was operated,on the other hand,the HCHO concentration was rapidly decreased to the WHO guideline and subsequently reduced toward a zero value(Fig.2).The HCHO concen-tration in the small box was decreased in the same manner as the zeolite rotor when the photocatalytic reactor was switched-o ,while it reached a maximum of2:38mg m−3 after10min and then decreased rapidly under operation of the photocatalytic reactor.The experimental results ob-tained here clearly indicate that the activated carbon rotor must be used in the adsorption and desorption apparatus.3.2.Performance of each apparatus for removal of HCHO from indoor airFigs.2(a)and(b)represent the time courses of the HCHO concentration in the highly tight room and small box, respectively,when the air containing HCHO at an initial concentration of0.56–0:59mg m−3was treated by the photocatalytic reactor alone,the adsorption and desorp-tion apparatus alone,and both of these apparatuses.In the treatment by the photocatalytic reactor alone,the HCHO concentration was decreased gradually but steadily.How-ever,this treatment system is not practical because it takes a long time to reach the WHO guideline.In the treatment by the adsorption and desorption apparatus alone,on the other hand,the HCHO concentration was decreased to the neighborhood of the WHO guideline in15min,but subsequent change was quickly slowed down andÿnally stopped.In parallel,the HCHO concentration in the small box indicated a maximum of3:2mg m−3at15min and then remained almost unchanged.This is probably because the HCHO concentration reached an adsorption equilibrium state among the highly tight room,the small box,and the activated carbon rotor.In principle,one cannot expect that the HCHO concentration is further decreased by use of the adsorption and desorption apparatus alone.When this apparatus was combined with the photocatalytic reactor, on the other hand,the HCHO concentration was initially decreased quickly and then steadily decreased toward a zero value.The initial stage of the decrease in the indoor HCHO is obviously owing to the adsorption of HCHO on the activated carbon rotor.Taking into consideration that the HCHO concentration in the small box passed through a maximum of2:5mg m−3at5min and then decreased at a relatively high speed,the last stage of the decrease in the indoor HCHO is owing to the photocatalytic decomposition of HCHO successively released from the activated carbon rotor.3.3.E ect of temperatureIn the above experiments,the desorption temperature was set at180◦C.To economize on electric power,however,the desorption temperature should be lowered.Also,operation at such a high temperature should be avoided because un-known substances liberated from the activated carbon rotor932 F.Shiraishi et al./Chemical Engineering Science 58(2003)929–934H C H O c o n c . [m g m -3]Time [min]H C H O c o n c . [m g m -3]Time [min]Fig.2.Time courses of HCHO concentration when air containing HCHO was treated by a photocatalytic reactor alone,an adsorption and desorption apparatus alone,and both of these apparatuses;(a)10m 3highly tight room,and (b)0:09m 3small box.H C H O c o n c . [m g m -3]Time [min]050100150H C H O c o n c . [m g m -3]Time [min]Fig.3.E ect of desorption temperature on time courses of HCHO concentration when air containing HCHO was treated with an adsorption and desorption apparatus alone;(a)10m 3highly tight room,and (b)0:09m 3small box.were strongly adsorbed on the glass surface,which led to a marked loss in the photocatalytic activity.Although the photocatalytic activity was recovered by washing the glass tube with a dilute hydrochloric acid solution,this certainly becomes a serious problem in practical application.There-fore,the same experiments were conducted at lower tem-peratures,120◦C and 150◦C.Figs.3(a)and (b)represent the e ect of desorption tem-perature on the time courses of the HCHO concentration in the highly tight room and small box,respectively,when the air containing HCHO was treated with the adsorption and desorption apparatus alone.The most rapid decrease in the HCHO concentration in the highly tight room was found at 180◦C.Also,the highest concentration of the HCHO des-orbed into the small box was obtained at this temperature,indicating that the higher the desorption temperature,the more largely the HCHO adsorbed on the activated carbon rotor is desorbed.From a standpoint of practical application,however,it can be considered that there is no remarkable di erence in the variation of the HCHO concentration in the range from 120◦C to 180◦C.Figs.4(a)and (b)represent the e ect of desorption tem-perature on the time courses of the HCHO concentration in the highly tight room and small box,respectively,when the air containing HCHO was treated with the photocatalytic re-actor combined with the adsorption and desorption apparatus that were operated at the same desorption temperature as in Fig.4.Unexpectedly,the lower the desorption temperature,F.Shiraishi et al./Chemical Engineering Science 58(2003)929–934933H C H O c o n c . [m g m -3]Time [min]H C H O c o n c . [m g m -3]Time [min]Fig.4.E ect of desorption temperature on time courses of HCHO concentration when air containing HCHO was treated with a photocatalytic reactor combined with an adsorption and desorption apparatus;(a)10m 3highly tight room,and (b)0:09m 3small box.the more rapidly the HCHO concentration in the highly tight room was decreased.This is probably due to the degree of deactivation in TiO 2.That is,the desorption at 180◦C pro-vides the highest HCHO concentration in the small box,but reduces the photocatalytic activity more rapidly as described above,which results in a slower decomposition of HCHO.At every temperature,the HCHO concentration in the small box was lowered owing to the photocatalytic reaction.The HCHO concentrations in the small box were decreased more rapidly at 120◦C and 150◦C than at 180◦C,which caused more rapid decreases in the HCHO concentration in the highly tight room.Taking into consideration the energy sav-ing,operation should be made at 120◦C.At this temperature,little loss in the photocatalytic activity was caused.3.4.Concentration of an intermediateIn the photocatalytic decomposition of HCHO,there is a possibility that formic acid is formed as an intermediate.To clarify the extent of this formation,HCHO was pho-tocatalytically decomposed in a 0:06m −3container.First,the decomposition experiment was carried out at an indoor HCHO concentration level,but no formic acid was detected.Therefore,the HCHO concentration was increased upto 1130mg m −3(2700times of the HCHO concentration in the actual indoor environment).As a result,formic acid of 0:425mg m −3at maximum was detected.From this result,it is estimated that the present photocatalytic reactor system decomposes HCHO quickly to CO 2via formic acid.4.ConclusionsIn the present work,a novel air-puriÿcation system,con-sisting of the photocatalytic reactor with a parallel array ofnine blacklight blue uorescent lamps and the continuous adsorption and desorption apparatus with a ceramic-paper honeycomb rotor retaining activated carbon or zeolite ÿne particles,was constructed and the performance of this sys-tem was investigated by treating HCHO artiÿcially gener-ated at a concentration level of ppbv (¡1mg m −3)in a 10m 3highly tight room.As a result,it was found that the HCHO concentration can be decreased to the neighborhood of the WHO guideline in 10min and to an almost zero value in 1h.As far as the authors know,this is the ÿrst fruits in which dilute HCHO contained in such a large amount of air was decomposed to an almost zero value in such a short time.Needless to say,this surprisingly high performance is based on the cooperative work by the activated carbon ro-tor to rapidly adsorb the indoor HCHO and the photocat-alytic reactor to e ciently decompose HCHO in the small box.The air-puriÿcation system provides several other ad-vantages.The adsorbent can be used over a long period of time because it is continuously regenerated by exposing the rotor to heated air.Also,the use of the activated carbon rotor makes the system more practical because the HCHO adsorbed is readily desorbed at 120◦C,which contributes greatly to energy saving.At such a low temperature,the photocatalytic activity was satisfactorily stable.ReferencesFukinbara,S.,&Shiraishi,F.(2001).Characteristics of the photocatalytic reactor with an annular array of glass tubes surrounding a light source:2.Kinetic analysis.CELSS Journal ,13,11–23.Fukinbara,S.,Shiraishi,F.,&Nakano,K.(2001).Characteristics of the photocatalytic reactor with an annular array of glass tubes surrounding a light source:1.Selection of a light source and photocatalyst support.CELSS Journal ,13,1–10.Godish,T.(1998).Sick buildings deÿnition,diagnosis and mitigation .Florida:CRC Press.934 F.Shiraishi et al./Chemical Engineering Science58(2003)929–934Matsuo,K.,Takeshita,T.,&Nakano,K.(1990).Formation of thinÿlms by the treatment of amorphous titania with H2O2.Journal of Crystal Growth,99,621–624.Miyazaki,T.(1996).Formaldehyde concentration in a private home. Seikatsu Eisei,40,353–361.Obuchi, E.,Sakamoto,T.,Nakano,K.,&Shiraishi, F.(1999). Photocatalytic decomposition of acetaldehyde over TiO2=SiO2catalyst. Chemical Engineering Science,54,1525–1530.Shiraishi,F.,Ohbuchi,Y.,Yamaguchi,S.,Yamada,K.,Yamauchi,H.,& Okano,H.(2001).A rapid treatment of indoor formaldehyde at a very low concentration in a photocatalytic reactor system combined with a continuous adsorption and desorption technique.Chemical Ingenier Technica,73,601–602.Shiraishi,F.,Toyoda,K.,Fukinbara,S.,Obuchi,E.,&Nakano,K. (1999).Photolytic and photocatalytic treatment of an aqueous solution containing microbial cells and organic compounds in an annular- ow reactor.Chemical Engineering Science,54,1547–1552.Toyoda,K.(2000).A study on the photocatalytic decomposition of volatile organic compounds in a closed ecological system.Master’s thesis,Kyushu Insititute of Technology.Wang,S.,&Shiraishi,F.(2002).Decompositions of formic acid in two types of photocatalytic reactors:E ects ofÿlm-di usional resistance and penetration of UV light on decomposition rates.Eco-Engineering, 14(2),9–17.Wang,S.,Shiraishi,F.,&Nakano,K.(2002a).A synergistic e ect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution.Chemical Engineering Journal,87,261–271. Wang,S.,Shiraishi,F.,&Nakano,K.(2002b).Decomposition of formic acid in a photocatalytic reactor with a parallel array of four light sources.Journal of Chemical Technology and Biotechnology,77,805–810.Xu,J.-H.,&Shiraishi,F.(1999).Photocatalytic decomposition of acetaldehyde in air over titanium dioxide.Journal of Chemical Technology and Biotechnology,74,1096–1100.。