常见岩石力学参数
- 格式:doc
- 大小:58.50 KB
- 文档页数:2
常用岩石力学参数岩石力学是研究岩石在外力作用下变形和破裂行为的学科,它主要关注岩石的力学性质,包括强度、应力和应变等参数。
以下是一些常用的岩石力学参数。
1. 弹性模量(Young's modulus):弹性模量是衡量岩石对外力响应的能力的指标。
它表示单位应力下岩石的应变程度,通常以帕斯卡(Pa)为单位。
弹性模量越大,岩石的刚度越高,其抵抗变形的能力更强。
2. 柏杨比(Poisson's ratio):柏杨比用于描述岩石在受力作用下体积的变化情况。
它是岩石纵向应变和横向应变的比值,无单位。
柏杨比一般位于0.15到0.40之间,数值越大代表岩石越容易体积收缩。
4. 应力-应变曲线(Stress-strain curve):应力-应变曲线描述了岩石在受力过程中的应力和应变之间的关系。
根据曲线的形状,可以了解岩石的变形特性,如弹性变形阶段、塑性变形阶段和破裂阶段等。
应力-应变曲线是评估岩石稳定性和强度的重要工具。
5. 破裂韧度(Fracture toughness):破裂韧度是衡量岩石抵抗破坏的能力的参数,描述了岩石在外力作用下延伸至破断的能力。
破裂韧度越大,岩石的抗破坏能力越强。
6. 体积压缩模量(Bulk modulus):体积压缩模量是衡量岩石抵抗体积压缩的能力,代表岩石抵抗体积缩小的刚度。
体积压缩模量越大,岩石的抗压能力越强。
7. 粘聚力(Cohesion):粘聚力是指岩石内部颗粒间的粘结力,也被称为内聚力。
粘聚力越大,岩石的抗拉强度就越高。
8. 摩擦角(Friction angle):摩擦角用于描述岩石内颗粒间的摩擦性质。
摩擦角越大,岩石的抗剪强度越高。
9. 泊松比(Poisson ratio):泊松比是衡量岩石在拉伸或压缩过程中横向变形和纵向变形之间关系的参数。
泊松比越大,岩石的收缩性越高。
这些常用的岩石力学参数可以帮助工程师和地质学家了解岩石的力学性质,评估其稳定性和抗破坏能力,在工程设计和地质勘探中起到重要的作用。
基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值东向南向西向北向γφ CBC DE CD EF FA AB填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220常用岩土材料力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.37.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负); 3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服。
(E, ν) 与(K, G )的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7。
2)当ν值接近0。
5的时候不能盲目的使用公式3。
5,因为计算的K 值将会非常的高,偏离实际值很多.最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值.表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7。
1土的弹性特性值(实验室值)(Das ,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23.这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3。
7给出了各向异性岩石的一些典型的特性值.横切各向同性弹性岩石的弹性常数(实验室) 表7.3流体弹性特性—-用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa.其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减.这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n,渗透系数k 以及K f 有如下关系:'f f kK nt ∝∆ (7。
3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K n m k C +=νν (7。
岩性岩石密度(g/cm3) 液限% 塑限% 塑性指数 变形模量(MPa) 孔隙比%碎石(堆积)类土2.65~2.720~400.4~0.6土粒密度黄土类土 干1.3~1.5 23~33 15~20 8~13 新黄土具有湿陷性 0.8~1.1粘性土 1.8~2.05 23~55 16~30 7~25 4~12(压缩模量) 0.7~1.0抗压强度岩性岩石密度(g/cm3)孔隙率 吸水率 软化系数 变形模量(103MPa)泥岩 0.03~0.37(粘土岩) 20.7~59(干粘页岩 2.3~2.62 0.4~10.0 0.5~3.2 0.24~0.7416~20 10~100泥板岩 2.3~2.8 0.1~0.5 0.1~0.3 0.39~0.52 123~199(干板岩)粉砂岩10~32石英砂岩 2.6~2.71 54~58 68~102.517~41 20~200砂岩 2.2~2.71 1.6~28.0 0.2~9.0 0.65~0.97砾岩 2.40~2.66 0.8~10.0 0.3~2.4 0.50~0.96 6.7~16.2(新鲜岩体) 10~150 2~15 8~50 泥灰岩 2.3~2.7 1.0~10.0 0.5~3.0 0.44~0.54 1.3~2.6(新鲜岩体) 3.5~20 /Us+>v g!40~60 0.3~1.4 + /%4E %`9SS2.8~4.2 0.32(新鲜岩体) 37(新鲜岩体) /8]ZUK 灰岩 2.3~2.77 16.0~52 0.1~4.45 0.7~0.94 35~39 50~200 5~20 10~50 35~50 Z白云岩 2.1~2.7 0.3~25.0 0.1~3.0 6.7~32 80~250 15~25 20~50 35~50 zK 1\InP 片岩 2.69~2.92 0.02~1.85 0.1~0.2 0.53~0.69(绿泥石片岩) 44~72 10~100 1~10 1~20 千枚岩 0.4~3.6 0.5~1.8 0.67~0.96 10(石英千枚岩) 10~100 1~10 1~20 26~65 qkc 板岩 2.3~2.75 0.45左右 0.1~0.3 5.0(新鲜岩体) 60~200 7~15 2~20 45~60 JUDZ_c 大理岩 2.6~2.7 0.1~6.0 0.1~1.0 49~67 70~140 2.0~4.0 4.9(裂隙较发育岩体) 52(裂石英岩 2.4~2.8 0.1~8.7 0.1~1.5 0.94~0.96 65~70 150~350 15~30 10~50 50~60 I|Hc 花岗岩 2.3~2.8 0.5~4.0 0.1~4.0 0.72~0.97 30~37 100~250 7~25 14~50 45~60 >2}*L 闪长岩 2.52~2.96 0.2~5.0 0.3~5.0 0.6~0.8 1.5~8.5(具裂隙岩体) 100~250 10~25 10~50 辉长岩 2.55~2.98 0.3~4.0 0.5~4.0 180~300 15~36 10~50 50~55 F U} - .Ki=8p[ (<F=流纹岩 2.5~3.3 180~300 15~30 10~50 45~60安山岩 2.3~2.7 1.1~4.5 0.3~4.5 0.81~0.91 8.3~12.0(具裂隙岩体) 100~250 10~20 10~40\玄武岩 2.5~3.1 0.5~7.2 0.3~2.8 0.3~0.95 83 180~300 15~36 10~50 50~55 n Zx^ej 注:未注明为岩体的数据,均为岩石试验数据。
岩土的物理力学性质指标岩土的物理力学性质指标应根据工程地质划分的扇形区及各区的边坡变形破坏特点,选 取与之有关的试样进行力学试验,测定岩石及软弱夹层物理力学性质指标。
岩石及软弱夹层的物理性质指标详见表 1 至表 7。
表 1 部分岩石的容重容重γ(g/cm 3 )变化范围 平均值—2.28 —2.52 2.3~2.6 2.50 2.08~2.65 2.36 2.51~2.72 2.65—2.64 —2.63容重γ(g/cm 3 ) 变化范围 2.25~2.80 —2.50~3.00 —2.49~2.63 2.72~2.99—岩石名称 花 岗 岩 响 岩 正 长 岩 流 纹 岩 流纹斑岩 闪 长 岩黑云母花岗闪长岩岩石名称 泥质砂岩 粘土质砂岩 页 岩 砂质页岩 粘土质页岩 泥质页岩 煤质页岩平均值 2.65 — 2.79 — 2.60 2.86 2.60辉 长 岩 2.55~3.09 3.00 粘 土 岩 2.24~2.60 2.50 橄 榄 岩 —— 砂质粘土岩 —2.56 石英斑岩 2.56~2.63 2.60 泥 灰 岩 2.32~2.65 2.50 斑 岩 2.60~2.89 2.67 石 灰 岩 2.68~2.84 2.73 粗 面 岩 2.30~2.77 2.58 贝壳灰岩 —— 安 山 岩 2.44~3.10 2.62 硅质灰岩 2.81~2.90 — 玢 岩 —— 白云质灰岩 — 2.80 蛇 纹 岩 2.50~2.80 2.65 泥质灰岩 —2.30 玄 武 岩 2.60~3.21 2.90 盐 岩 2.28~2.41 2.60 辉 绿 岩 2.53~3.12 2.94 白 垩 1.20~2.20 1.70 硅长斑岩 2.20~2.74 — 石 膏 —— 安山凝灰集块岩 —2.62 花岗片麻岩 2.30~3.20 2.8 凝灰角砾岩 2.20~2.90 — 片 麻 岩 2.59~3.00 2.78 火山凝灰岩 1.60~1.95 1.80 白 云 岩 2.10~2.90 2.55 凝 灰 岩 0.75~2.40 1.80 板 岩 2.60~2.90 2.75 凝灰质熔岩 —2.64 大 理 岩 2.69~2.87 2.78 砾 岩 1.90~2.80 2.35 云母片岩 2.54~2.97 2.73 砂 岩 2.45~2.72 2.60 绿泥石片岩 2.77~2.78 2.77 粗 砂 岩 — 2.57 粘土质片岩 —— 中 砂 岩 — 2.60 角闪石片岩 2.67~3.05 2.90 细 砂 岩 — 2.65 石 英 岩 2.30~2.70 2.50 粉 砂 岩 —2.59 千 枚 岩2.71~2.862.78石英砂岩2.61~2.702.65表 2 部分岩石的孔隙率与吸水率孔隙率 n (%)变化范围 0.04~2.80 1.10~3.40 0.25~3.00— 0.29~1.13 1.10~4.30 1.00~2.20 0.29~5.10 1.59~2.23 0.90~7.54 0.40~4.10 2.00~5.10岩石名称 花 岗 岩 流纹斑岩 闪 长 岩 正 长 岩 安 山 岩 玄 武 岩 辉 绿 岩 霏 细 岩 凝 灰 岩 火山角砾岩 安山凝灰集块岩砾 岩吸水率ω 1 (%) 0.10~1.70 0.14~1.65 0.18~1.000.48— 0.20~1.00 0.30~0.80 0.20~1.00 0.18~0.35 0.34~2.12 0.14~4.00 0.40~1.00平均值 0.95 2.00 1.25 2.540.70 2.30 1.70 2.20 1.80 3.20 2.10 3.20砂岩 1.04~9.30 5.04 0.14~4.10 砂岩(第三纪) 5.00~20.00 13.00 1.00~9.00 砂岩(白垩纪) 2.20~42.00 15.30 —砂岩(侏罗纪)7.20~37.70 17.10 —砂岩(三迭纪) 4.20~24.60 13.20 —砂岩新鲜的0.60~27.70 19.30 —风化的—21.11 —石英砂岩— 2.26 —石英砂岩新鲜的— 1.71 —风化的— 4.91 —页岩0.70~7.00 — 2.30~6.00 砂质页岩0.80~4.15 ——泥质页岩— 1.35 —煤质页岩— 1.03 —泥灰岩 1.00~52.00 18.00 1.00~5.00 石灰石0.53~27.00 12.00 0.20~6.40 石灰岩(第三纪) —20.00 —石灰岩(中生代) 1.20~26.50 11.65 —石灰岩(古生代) 0.80~27.00 12.00 —白垩 5.00~58.00 26.40 —石膏0.10~4.00 1.70 —硬石膏0.63~6.26 1.65 —片麻岩0.30~2.40 1.35 0.14~0.30 大理岩0.10~6.00 1.00 —白云岩0.30~25.00 7.70 —石英岩0.00~8.70 2.40 0.02~0.28 石英片岩 1.53~2.80 2.000.10~0.30角闪石片岩 — 2.96 0.11 云母片岩 — 0.79 0.08~0.42 绿泥石片岩 — 2.10 0.55~1.12 千 枚 岩 — 3.60 0.54~3.31 板 岩 0.29~3.76 1.30 0.70表 3 不同成因粘土的有关物理力学性质指标(一)表 4 不同成因粘土的有关物理力学性质指标(二)表 5 几种土的渗透系数表表 6 土的平均物理、力学性质指标(一)内聚力 C (× 105Pa) 内摩擦角φ 变形模量 Eo 容重γ(×天然含水量 孔隙比 e 塑限 W P土 类渗透系数 K (以 cm/s) <1.2×10-61.2×10-6 ~6.0×10-5 6.0×10-5 ~6.0×10-4 3.0×10-4 ~6.0×10-4 6.0×10-4 ~1.2×10-3渗透系数 K (以 cm/s) 1.2×10-3 ~6.0×10-3 6.0×10-3 ~2.4×10-2 2.4×10-2 ~6.0×10-2 6.0×10-2 ~1.8×10-1土 类 粘 土 亚 粘 土 轻亚粘土 黄 土 粉 砂土 细 中 粗 砾类 砂 砂 砂 砂土 类下蜀系粘性土 一般粘性土 新近沉积粘性土淤泥或游泥质 土 沿海内陆山区云贵红粘土容许承载力 R(× 105Pa)30>8010>45 8>14 4>10 5>11 3>8 10>32压缩模量 E(× 105Pa) >150 40~150 20~75 10~50 20~50 10~60 50~160内聚力 C(× 105Pa) 0.4~1.0 0.1~0.5 0.1~0.2 0.05~0.15 0.3~0.8内摩擦角φ(°) 22~30 15~22 7~15 4~10 5~10土 类 下蜀系粘性土 一般粘性土 新近沉积粘性土淤泥或游泥质 土 沿海内陆山区云贵红粘土含水量 W (%)15~25 15~30 24~36 36~70 30~50液限 W L (%) 25~40 25~45 30~45 30~65 50~90液性指数 I L <0.8 0~1.0 0.25~1.2 >1.0 0~0.4塑性指数 I p10~18 5~20 6~48 10~25 >17孔隙比 e 0.6~0.90.55~1.0 0.7~1.2 1.0~2.0 1.0~1.9表 7 土的平均物理、力学性质指标(二)注: 1.平均比重取:砂为 2.65; 轻亚粘土为 2.70;亚粘土为 2.71;粘土 2.74。
常用的岩土和岩石物理力学参数岩土和岩石物理力学参数是指描述岩土和岩石力学性质的一些重要参数,对于工程和地质领域的研究和实践具有重要意义。
以下是一些常用的岩土和岩石物理力学参数。
1.密度:岩土和岩石的密度是指单位体积的质量。
岩土和岩石的密度是其成分和结构的重要表征,常用单位是千克/立方米。
2.孔隙度:岩土和岩石内部的空隙或孔隙的体积与总体积的比值。
孔隙度是描述岩土和岩石中孔隙性质的重要参数,通常用百分比表示。
3.孔隙水压力:岩土和岩石中存在的地下水与孔隙水压力是一种重要的物理力学参数。
孔隙水压力对岩土和岩石的稳定性、渗透性和强度等产生重要影响。
4.饱和度:饱和度是指岩土和岩石中孔隙所含的水的含量与孔隙容量的比值。
饱和度是衡量岩土和岩石中含水情况的一项指标。
5.孔隙比:孔隙比是指岩土和岩石中孔隙体积与固体体积的比值。
孔隙比是岩土和岩石的一个重要参数,它关系到其渗透性、存储性以及力学性质等。
6.孔隙率:岩土和岩石中孔隙的比例,描述含孔岩体的空间特征的参数。
7.饱和度指数:饱和度指数是指岩土和岩石中各向同性材料,当孔隙度小于50%时,饱和度指数与孔隙度有关,其表征了岩土和岩石中孔隙数量和大小对其力学性质的影响。
8.波速:岩土和岩石中机械波传播的速度是一项重要的物理力学参数。
根据波速可以推算岩土和岩石的弹性模量和泊松比等力学参数。
9.阻尼比:用来描述岩土和岩石中振动能量的衰减情况,是衡量动力响应特性的一个重要参数。
10.岩石强度参数:包括抗拉强度、抗压强度、抗剪强度等,是衡量岩石材料抵抗各种力学载荷的重要参数。
11.几何参数:岩土和岩石中的几何参数包括颗粒形状、颗粒大小分布、颗粒间隙度等,对岩土和岩石的物理力学性质具有重要影响。
总之,岩土和岩石的物理力学参数是描述其物理性质和力学性质的重要参数,对于工程和地质领域的研究和实践具有重要意义。
不同的参数描述了岩土和岩石在不同方面的力学性质,研究者和工程师需要根据具体情况选择合适的参数进行分析和计算。
(E , ν) 与(K , G )的转换关系如下:)1(2ν+=EG ()当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表和分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表土的弹性特性值(实验室值)(Das,1980) 表各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。
纯净水在室温情况下的K f 值是2 Gpa 。
其取值依赖于分析的目的。
分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。
这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。
在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f k K nt ∝∆ () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。
f'K n m k C +=νν ()其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。