电磁场计算题3
- 格式:doc
- 大小:30.50 KB
- 文档页数:1
电磁场理论习题一1、求函数ϕ=xy+z-xyz 在点(1,1,2)处沿方向角πα=3,4πβ=,3πγ=的方向的方向导数.解:由于 M ϕ∂∂x =y -M yz = -1M y ϕ∂∂=2x y -(1,1,2)xz =0 Mzϕ∂∂=2z(1,1,2)xy -=31cos 2α=,cos 2β=,1cos 2γ=所以1cos cos cos =∂∂+∂∂+∂∂=∂∂γϕβϕαϕϕz y x lM2、 求函数ϕ=xyz 在点(5, 1, 2)处沿着点(5, 1, 2)到点(9, 4, 19)的方向的方向导数。
解:指定方向l 的方向矢量为l =(9-5) e x +(4-1)e y +(19-2)e z =4e x +3e y +17e z其单位矢量zy x z y x e e e e e e l 314731433144cos cos cos ++=++=γβα5,10,2)2,1,5(==∂∂==∂∂==∂∂MMMMMxyzxzyyzxϕϕϕ所求方向导数314123cos cos cos =•∇=∂∂+∂∂+∂∂=∂∂ l z y x lMϕγϕβϕαϕϕ3、 已知ϕ=x 2+2y 2+3z 2+xy+3x-2y-6z ,求在点(0,0,0)和点(1,1,1)处的梯度。
解:由于ϕ∇=(2x+y+3) e x +(4y+x-2)e y +(6z-6)e z所以,(0,0,0)ϕ∇=3e x -2e y -6e z(1,1,1)ϕ∇=6e x +3e y4、运用散度定理计算下列积分:2232[()(2)]x y z sxz e x y z e xy y z e ds+-++⎰⎰I=S 是z=0 和 z=(a 2-x 2-y 2)1/2所围成的半球区域的外表面。
解:设:A=xz 2e x +(x 2y-z 3)e y +(2xy+y 2z)e z 则由散度定理Ω∇⎰⎰⎰⎰⎰sA ds=Adv可得2I r dvΩΩΩ=∇==⎰⎰⎰⎰⎰⎰⎰⎰⎰222Adv (z +x +y )dv2244220sin sin aar drd d d d r dr ππππθθϕϕθθ==⎰⎰⎰⎰⎰⎰525a π=5、试求▽·A 和▽×A:(1) A=xy 2z 3e x +x 3ze y +x 2y 2e z(2)22(,,)cos sin z A z e e ρρφρφρφ=+ (3 ) 211(,,)sin sin cos r A r r e e e r r θφθφθθθ=++解:(1)▽·A=y 2z 3+0+0= y 2z 3▽×A=23232(2)(23)x yx y x e xy xy z e ∂∂∂=---∂∂∂x y z23322e e e x y z xy z x z x y(2) ▽·A=()[()]z A A A z φρρρρρφ∂∂∂++∂∂∂1 =33[(cos )(sin )]ρφρφρρφ∂∂+∂∂1=3cos ρφ▽×A=ρφρφρρρφρ∂∂∂∂∂∂z ze e e 1z A A A =221cos 0ρφρρρφρφρφ∂∂∂∂∂∂z e e e z sin=cos 2sin sin ze e e ρφρφρφρφ-+(3) ▽·A=22(sin )()1[sin ]sin r A A r A r r r r φθθθθθφ∂∂∂++∂∂∂ =2322sin cos ()()1(sin )[sin ]sin r r r r r r r θθθθθθφ∂∂∂++∂∂∂ =222212[3sin 2sin cos ]3sin cos sin r r r θθθθθθ+=+▽×A=21sin rr r r rr θφθφθθθφθ∂∂∂∂∂∂e e rsin e A A rsin A =21sin 1sin sin cos rr r r r θφθθθφθθθθ∂∂∂∂∂∂e e rsin e rsin=33cos 2cos cos sin r e e e r r θφθθθθ+-习题二1、总量为q 的电荷均匀分布于球体中,分别求球内,外的电场强度。
电磁场与电磁波期末测验题一、判断题:(对的打√,错的打×,每题2分,共20分)1、标量场在某一点梯度的大小等于该点的最大方向导数。
(√)2、真空中静电场是有旋矢量场。
(×)3、在两种介质形成的边界上,电场强度的切向分量是不连续的。
(×)4、当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。
(√)5、在理想导体中可能存在恒定电场。
(×)6、真空中恒定磁场通过任一闭合面的磁通为零。
(√)7、时变电磁场是有旋有散场。
(√)8、非均匀平面波一定是非TEM 波。
(×)9、任意取向极化的平面波可以分解为一个平行极化波与一个垂直极化波的合成 (√)10、真空波导中电磁波的相速大于光速。
(√)二、简答题(10+10=20分)1、简述静电场中的高斯定律及方程式。
答:真空中静电场的电场强度通过任一闭合曲面的电通等于该闭合曲面所包围的电荷量与真空介电常数之比。
⎰=⋅S S E 0d εq2、写出麦克斯韦方程的积分形式。
答:S D J l H d )(d ⋅∂∂+=⋅⎰⎰S l t S B l E d d ⋅∂∂-=⋅⎰⎰S lt 0d =⋅⎰S S Bq S=⋅⎰ d S D三、计算题(8+8+10+10+12+12)1 若在球坐标系中,电荷分布函数为⎪⎩⎪⎨⎧><<<<=-b r b r a a r 0, ,100 ,03ρ试求b r a a r <<<< ,0及b r >区域中的电通密度D 。
解 作一个半径为r 的球面为高斯面,由对称性可知r e D s D 24d rq q s π=⇒=⋅⎰ 式中q 为闭合面S 包围的电荷。
那么在a r <<0区域中,由于q = 0,因此D = 0。
在b r a <<区域中,闭合面S 包围的电荷量为()3333410d a r v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a r -=- 在b r >区域中,闭合面S 包围的电荷量为()3333410d a b v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a b -=- 2 试证位于半径为a 的导体球外的点电荷q 受到的电场力大小为222302232)(4)2(a f f a f a q F ---=πε 式中f 为点电荷至球心的距离。
习题1. 一半径为a 的均匀带电圆环,电荷总量为q ,求:(1)圆环轴线上离环中心o点为z 处的电场强度E题1图2. 半径为a 的圆面上均匀带电,电荷面密度为δ,试求:(1)轴线上离圆心为z 处的场强,(2)在保持δ不变的情况下,当0→a 和∞→a 时结果如何?(3)在保持总电荷δπ2a q =不变的情况下,当0→a 和∞→a 时结果如何?题2图3. 在介电常数为ε的无限大约均匀介质中,有一半径为a 的带电q 的导体球,求储存在介质中的静电能量。
4. 有一同轴圆柱导体,其内导体半径为a ,外导体内表面的半径为b ,其间填充介电常数为ε的介质,现将同轴导体充电,使每米长带电荷λ。
试证明储存在每米长同轴导体间的静电能量为ab W ln 42πελ=5. 已知两半径分别为a 和)(a b b >的同轴圆柱构成的电容器,其电位差为V 。
试证:将半径分别为a 和b ,介电常数为ε的介质管拉进电容器时,拉力为ab V F ln )(20εεπ-=6. 求均匀极化介质圆球的极化电荷分布。
++--题6图 均匀极化介质7. 真空中一半径为R 的圆球空间内,分布有体密度为ρ的电荷,ρ为常量。
试求静电能量。
8. 今有一球形薄膜导体,半径为R ,其上带电荷q 。
求薄膜单位面积上所受膨胀力。
9. 在半径为a 的球体内,均匀分布着电荷,总电荷量为q ,求各点的电场E,并计算电场E的散度和旋度。
题9图 电荷的球体分布10. 已知电场强度如下式所示,求体电荷密度)(ερ电容率e 。
),(0033为常数E a a E ae E r <≤=ρρ11. 真空中有一电荷线密度为l ρ的圆环形均匀带电线,其半径为a 。
试求圆环(a) (b )轴线上任一场点P 处的电场强度。
题11图12. 半径为R 的空心球金属薄壳内,有一点电荷q ,离球小距离为b ,R b <,如图所示。
巳知球壳为个性,即壳内外表面总电荷为零。
求壳内外的电场。
电磁场期末考试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是()。
A. 3×10^8 m/sB. 2×10^8 m/sC. 1×10^8 m/sD. 4×10^8 m/s答案:A2. 电场强度的定义式为E=()。
A. F/qB. F/QC. Q/FD. F/C答案:A3. 磁场强度的定义式为B=()。
A. F/IB. F/iC. F/qD. F/Q答案:B4. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 电势D. 电势差答案:A5. 电磁波的波长、频率和波速之间的关系是()。
B. λ = f/cC. λ = c*fD. λ = f^2/c答案:A6. 两个点电荷之间的静电力与它们之间的距离的平方成()。
A. 正比B. 反比C. 无关D. 一次方答案:B7. 根据洛伦兹力公式,带电粒子在磁场中运动时,受到的力与磁场强度的关系是()。
A. 正比C. 无关D. 一次方答案:A8. 电容器的电容与两极板之间的距离成()。
A. 正比B. 反比C. 无关D. 一次方答案:B9. 根据楞次定律,当线圈中的磁通量增加时,感应电流产生的磁场方向是()。
A. 增加磁通量B. 减少磁通量D. 增加或减少磁通量答案:B10. 根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率的关系是()。
A. 正比B. 反比C. 无关D. 一次方答案:A二、填空题(每题2分,共20分)1. 电场中某点的电势为V,将单位正电荷从该点移到无穷远处,电场力做的功为________。
2. 两个点电荷q1和q2之间的静电力常数为k,它们之间的距离为r,则它们之间的静电力大小为________。
答案:k*q1*q2/r^23. 磁场中某点的磁感应强度为B,将单位电流元i放置在该点,电流元与磁场方向垂直时,受到的磁力大小为________。
答案:B*i4. 根据麦克斯韦方程组,变化的电场会产生________。
电磁场与电磁波计算题题解例1 在坐标原点附近区域内,传导电流密度为:25.1/10m A r a J r c -=求:① 通过半径r=1mm 的球面的电流值。
② 在r=1mm 的球面上电荷密度的增加率。
③ 在r=1mm 的球内总电荷的增加率。
解:①Amm r rmm r d d d r rd J I c 97.31401sin 105.02025.1=====⋅=⎰⎰⎰πϕθθθππ② 因为 5.25.1225)10(1--==⋅∇r r r rd d r J c 由电流连续性方程,得到:38/1058.111m A mm mmr t ⨯-==∇-==∂∂ρ③ 在r=1mm 的球内总电荷的增加率A I td d 97.3-=-=θ例2 在无源的自由空间中,已知磁场强度m A z t a y /)10103(cos 1063.295-⨯⨯=-求位移电流密度d J 。
解:由于0=c J ,麦克斯韦第一方程成为t∂∂=⨯∇ ∴ H tJ d ⨯∇=∂∂=yy H y a ∂∂=294/)10103sin(1063.2m A z t a zH a x y x-⨯⨯-=∂∂=-例3 在无源的区域中,已知调频广播电台辐射的电磁场的电场强度m v z a y /)9.201028.6sin(1092-⨯=-求空间任一点的磁感强度B 。
解:由麦克斯韦第二方程E t⨯-∇=∂∂yy E y a ∂∂=z E a y x∂∂= )9.201028.6cos(109.2092z t a x -⨯⨯-=- 将上式对时间t 积分,若不考虑静态场,则有 )9.201028.6cos(109.2092z t a t d tB x -⨯⨯-=∂∂=⎰⎰- T z t a t d x )9.201028.6sin(1033.3911-⨯⨯-=- 例4 已知自由空间中,电场强度表达式为)(cos z t w a E x β-=;求磁场强度的H 表达式。
电磁场练习题计算电场和磁场的能量电磁场的能量是物理学中的重要概念,用于描述电场和磁场中的能量分布和传递。
在电磁场的计算中,我们常常需要求解电场和磁场的能量。
一、电场的能量计算电场能量的计算公式如下:W = 1/2 * ε0 * ∫(E^2)dV其中,W表示电场的能量,ε0为真空介电常数,E为电场强度,dV 为体积元。
根据电场的分布情况,我们可以通过积分的方式计算其能量。
以简单的点电荷为例,假设有一个点电荷Q位于原点,电场强度为E,则其能量可以通过下述方法计算:W = 1/2 * ε0 * ∫(E^2)dV= 1/2 * ε0 * ∫(1/4πε0 * Q/r^2)^2 * 4πr^2dr= Q^2 / (8π * ε0) * ∫(1/r^2)dr= Q^2 / (8π * ε0) * (-1/r)|0到∞= Q^2 / (8π * ε0) * (0-(-1))= Q^2 / (8π * ε0)这个结果表示了一个点电荷的电场能量。
对于其他电场分布情况,我们可以根据具体情况进行积分计算。
二、磁场的能量计算磁场的能量计算公式如下:W = 1/2 * μ0 * ∫(B^2)dV其中,W表示磁场的能量,μ0为真空磁导率,B为磁场强度,dV 为体积元。
同样地,我们可以根据磁场的分布情况,通过积分的方式计算其能量。
以无限长直导线产生的磁场为例,假设导线电流为I,则其能量可以通过下述方法计算:W = 1/2 * μ0 * ∫(B^2)dV= 1/2 * μ0 * ∫(μ0 * I/2πr)^2 * 2πrdr= μ0 * I^2 / 2 * ∫(1/r)dr= μ0 * I^2 / 2 * ln|r| |0到∞= ∞这个结果告诉我们,无限长直导线产生的磁场的能量为无穷大。
这是因为无限长直导线的磁场具有无限范围,而能量正比于磁场的强度和范围,因此无限长直导线的磁场能量也是无穷大的。
三、电磁场的能量守恒电磁场的能量守恒是电磁学中的基本原理,表示了在物质中电场和磁场之间相互转化的能量守恒关系。
电磁场与电磁波计算题题解例1 在坐标原点附近区域内,传导电流密度为:25.1/10m A r a J r c -=求:① 通过半径r=1mm 的球面的电流值。
② 在r=1mm 的球面上电荷密度的增加率。
③ 在r=1mm 的球内总电荷的增加率。
解:①Amm r rmm r d d d r rs d J I c 97.31401sin 105.02025.1=====⋅=⎰⎰⎰πϕθθθππ② 因为 5.25.1225)10(1--==⋅∇r r r rd d r J c 由电流连续性方程,得到:38/1058.111m A mm r J mmr t c ⨯-==⋅∇-==∂∂ρ③ 在r=1mm 的球内总电荷的增加率A I td d 97.3-=-=θ例2 在无源的自由空间中,已知磁场强度m A z t a H y /)10103(cos 1063.295-⨯⨯=-求位移电流密度d J 。
解:由于0=c J ,麦克斯韦第一方程成为tDH ∂∂=⨯∇ ∴ H tDJ d ⨯∇=∂∂=yz y x H z y x a a a ∂∂∂∂∂∂=294/)10103sin(1063.2m A z t a zH a x y x-⨯⨯-=∂∂=-例3 在无源的区域中,已知调频广播电台辐射的电磁场的电场强度m v z a E y /)9.201028.6sin(1092-⨯=-求空间任一点的磁感强度B 。
解:由麦克斯韦第二方程E tB⨯-∇=∂∂0yzy x E z y x a a a ∂∂∂∂∂∂-=z E a y x∂∂= )9.201028.6cos(109.2092z t a x -⨯⨯-=- 将上式对时间t 积分,若不考虑静态场,则有 )9.201028.6cos(109.2092z t a t d tBB x -⨯⨯-=∂∂=⎰⎰- T z t a t d x )9.201028.6sin(1033.3911-⨯⨯-=- 例4 已知自由空间中,电场强度表达式为)(cos z t w a E x β-=;求磁场强度的H 表达式。
重要习题例题归纳第二章 静电场和恒定电场一、例题:1、例2.2.4(38P )半径为0r 的无限长导体柱面,单位长度上均匀分布的电荷密度为l ρ。
试计算空间中各点的电场强度。
解:作一与导体柱面同轴、半径为r 、长为l 的闭合面S ,应用高斯定律计算电场强度的通量。
当0r r <时,由于导体内无电荷,因此有0=⋅⎰→→SS d E ,故有0=→E ,导体内无电场。
当0r r>时,由于电场只在r 方向有分量,电场在两个底面无通量,因此2ερπl rl E dS E dS a a E S d E l r Sr r Sr r r r S=⋅=⋅=⋅=⋅⎰⎰⎰→→→→则有:r E l r 02περ=2、例2.2.6(39P )圆柱坐标系中,在m r2=与m r 4=之间的体积内均匀分布有电荷,其电荷密度为3/-⋅m C ρ。
利用高斯定律求各区域的电场强度。
解:由于电荷分布具有轴对称性,因此电场分布也关于z 轴对称,即电场强度在半径为r 的同轴圆柱面上,其值相等,方向在r 方向上。
现作一半径为r ,长度为L 的同轴圆柱面。
当m r20≤≤时,有02=⋅=⋅⎰→→rL E S d E r Sπ,即0=r E ;当m rm 42≤≤时,有)4(1220-=⋅=⋅⎰→→r L rL E S d E r Sπρεπ,因此,)4(220-=r rE r ερ;当m r 4≥时,有L rL E S d E r Sπρεπ0122=⋅=⋅⎰→→,即r E r 06ερ=。
3、例2.3.1(41P )真空中,电荷按体密度)1(220ar -=ρρ分布在半径为a 的球形区域内,其中0ρ为常数。
试计算球内、外的电场强度和电位函数。
解:(1)求场强:当a r >时,由高斯定律得2224επQ E r S d E S==⋅⎰→→而Q 为球面S 包围的总电荷,即球形区域内的总电荷。
300242002158)(44)(a dr a r r dr r r Q aaπρπρπρ=-==⎰⎰因此20302152r a a E rερ→→=当a r <时)53(44)(1425300020121a r r dr r r E r S d E rS -===⋅⎰⎰→→επρπρεπ因此)33(23001a r r a E r-=→→ερ (2)球电位;当a r >时,取无穷远的电位为零,得球外的电位分布为ra r d E r r03022152)(ερ=⋅=Φ⎰∞→→当a r =时,即球面上的电位为20152ερa S =Φ 当a r <时)1032(2)(24220011a r r a r d E r a rS +-=⋅+Φ=Φ⎰→→ερ4、例2.4.1(48P )圆心在原点,半径为R 的介质球,其极化强度)0(≥=→→m r a P m r 。
电磁场计算题3
1.如图所示,高h=0.8m的绝缘水平桌面上方的区域Ⅰ中存在匀强电场,场强E的方向与区域的某一边界平行,区域Ⅱ中存在垂直于纸面的匀强磁场B.现有一质量m=3.0×10﹣3kg,带电荷量q=+1.0×10﹣3C 的小球从A点以v0=5.0m/s的初速度水平向右运动,匀速通过区域Ⅱ后落在水平地面上的B点,已知小球与水平桌面间的动摩擦因数μ=0.1,L=1.0m,x=1.6m,取g=10m/s2.试求:
(1)小球在区域Ⅱ中的速度;
(2)区域Ⅱ中磁感应强度B的大小及方向;
(3)区域Ⅰ中电场强度E可能的大小及方向.
【解答】解:(1)小球离开磁场后做平抛运动,设小球在磁场中匀速运动的速度为v,则有
…①
x=vt …②
联立①②解得:v=4m/s …③
(2)由于小球在磁场中作匀速运动,只能受重力和洛仑兹力作用
f=mg …④
又f=qvB …⑤
联立④⑤解得:…⑥
代入数值得:B=7.5T …⑦
根据左手定则可判断磁感应强度B的方向垂直纸面向里.
(3)由于v<v0,所以小球在电场中作减速运动.电场方向有两种可能
(i)电场方向水平向左.
小球在电场中,由动能定理
…⑧
解得E=7.5N/C …⑨
(ii)电场方向竖直向下.
小球在电场中,由动能定理
…⑩
解得E=75N/C.
答:(1)小球在区域Ⅱ中的速度2m/s;
(2)区域Ⅱ中磁感应强度B的大小7.5T,方向垂直纸面向里;
(3)区域Ⅰ中电场强度E可能的大小7.5N/C方向水平向左或者75N/C,方向竖直向下.。