新苏教版七上数学同步练习:有理数的减法
- 格式:docx
- 大小:90.58 KB
- 文档页数:8
苏教科版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!苏科版初中数学和你一起共同进步学业有成!课题:2.4有理数的加法和减法(1)同步练习姓名一、学以致用:1.计算下列各题:(1)(-180)+(+20)(2)(-15)+(-3)(3)5+(-5)(4)0+(-2)2. 练一练和的符号确定绝对值和(+4)+(+7)(-8)+(-3)(-9)+(+5)(-6)+(+6)(-7)+ 08+(-1)3.利用有理数加法解决问题.某仓库原有粮食80吨,第一天运进粮食54吨,第二天又运出粮食32吨,现在仓库共有粮食多少吨?4.规定扑克牌中的黑色数字为正数,红色数字为负数,且J为11,Q为12,K为13,A 为1,2张JOKER为0,计算下列各组两张牌面数字之和.二、巩固练习一、选择题:1、一个正数与一个负数的和是A、正数B、负数C、零D、以上三种情况都有可能2、绝对值不大于3的所有整数的和为A、6 ,B、-6C、±6D、03、两个有理数的和A、一定大于其中的一个加数B、一定小于其中的一个加数C、大小由两个加数符号决定D、大小由两个加数的符号及绝对值而决定二、判断1.绝对值相等的两个数的和为0( ) 2.若两个有理数的和为负数,则这两个数至少有一个是负数 ( ) 3.如果某数比-5大2,则这个数的绝对值是3 ()三、填空题:1、 ⑴ (+3)+(+7)=______ ⑵ (+3)+(—8)=_______ ⑶ (—12)+(—5)=_________ ⑷ (—37)+22 =_________⑸ 0+(—19) =___________⑹ (—7)+ |—5 |=_________2、 若 | m |= 2, | n | =5 ,且m >n, 则m+n =___________四、计算;⑴(+10)+(—4) ⑵(—15)+(—32)⑶(—9)+ 0⑷(—0. 5)+ 4. 4 ⑸(—1.25)+1⑹+(—1) 141213(7). (8). (9).(-3.8)+(-4.7)75.4523+-)523(322-+(10).(+3.98)+(-8%) (11).(-4.33)+(-1.77) (12).0+(-100%)五、列式解答(1)一个数与-5的差为-8,求这个数 (2)一个数与9的差为-5,求这个数*六、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
§2.5 有理数的加法与减法(4)一、细心选一选1.下列运算中正确的是 ( )A.3.58-(-1.58)=3.5 8+(-1.58)=2B.(-2.6)-(-4)=2.6+4=6.6C.0-25⎛⎫+⎪⎝⎭-75=25⎛⎫+⎪⎝⎭-75=25+75⎛⎫-⎪⎝⎭=-1D.38-451=38+95⎛⎫- ⎪⎝⎭=-57402.一个数加上-3.6的和为-0.36,那么这个数是 ( )A.-2.24 B.-3.96 C.3.24 D,.3.9 63.大堡地区某一天早晨的气温是-7℃,中午的时候上升了11℃,至午夜又降了9℃,那么午夜的气温是( )A.-4℃ B.-5℃ C.-6℃ D.-7℃4.把+3-(+2)-(-4)+(-1)写成省略括号的形式是 ( )A.-3-2+4-1 B.3-2+4-1 C.3-2-4-1 D.3+2-4-15.2008年8月第29届奥运会在北京开幕,5个城市的国际标准时间 (单位:时) 在数轴上表示如图所示,那么北京时间2008年8月8日20时应是 ( )A.伦敦时间2008年8月8日11时 B.巴黎时间2008年8月8日13时C.纽约时间2008年8月8日5 时 D.汉城时间2008年8月8日19时6.若b<0,则a-b,a,a + b的大小关系是 ( )A.a-b<a<a + b B.a<a-b<a + b C.a + b <a-b<a D.a + b<a<a-b二、认真填一填7.-1减去一56与16的和,所得的差是.8.已知a=-2,b=-7,c=6,则a-b+(-c)的值为.9.已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,这个最大值是.10.现有四个有理数3,4,-6,10,运用加减乘除(每个数只能用一次),使其结果为24,运算式.(写一个)11.100个数之和为1 990,把第一个数减1,第二个数加2,第三个数减3……第100个数加100,则所得新数之和为.12.若a,b互为相反数,c,d互为倒数,m的绝对值为2,求代数式m-cd+a bm+= .三、耐心解一解13.计算:(1) -2.8-6.2+(-3.4) -(-5.6);(2) 0-1+2-3+4-5;(3) 16-13⎛⎫+ ⎪⎝⎭-112⎛⎫-⎪⎝⎭;(4) 0-12-(-3.25)+342-127; (5)233⎛⎫- ⎪⎝⎭+(-2.4) -13⎛⎫- ⎪⎝⎭-245⎛⎫- ⎪⎝⎭。
苏科版初一上册 第二章 2.5 有理数的加减法 同步训练一、单选题1.下列说法正确的是( )A. 零减去一个有理数,仍得这个有理数B. 两个有理数之差一定小于它们的和C. 互为相反数的两个数之差为零D. 较小的数减去较大的数所得的差必定为负数2.计算 9−(−3) 的结果是( )A. 6B. 12C. -12D. -33.|1﹣2|+3的相反数是( )A. 4B. 2C. ﹣4D. ﹣24.下列计算中错误的是( )A. (+37)+(−67)=−37B. (−37)+(+67)=−97C. (−37)+(−67)=−97D. (+37)+(−37)=05.绝对值不大于5的所有整数的和是( )A. ﹣1B. 0C. 1D. 66.如图,数轴上点 P 对应的有理数是 a ,若 a +b >0 ,则有理数 b 在数轴上对应的点可能是( )A. EB. FC. MD. N7.若|m|=5,|n|=7,m+n <0,则m ﹣n 的值是( )A. ﹣12或﹣2B. ﹣2或12C. 12或2D. 2或﹣128.若a 、b 表示有理数,且a>0,b <0,a +b <0,则下列各式正确的( )A. -b <-a <b <aB. -a <b <a <-bC. b <-a <-b <aD. b <-a <a <-b9.1−2+3−4+5−6+7−8+...+2019−2020= ( )A. -1010B. -2010C. 0D. -110.若 a +b +c =0 ,且 b <c <0 ,则下列结论:① a +b >0 ;① b +c >0 ;① c +a >0 ;① a −c <0 ,其中正确的有( )A. 1个B. 2个C. 3个 D. 4个二、填空题11.比-3①低6①的温度是________①12.若a 是最大的负整数,b 是绝对值最小的数,则a +b =________.13.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.14.若 =a +d +( − b)+( − c),则的值是________. 15.若 |x +(−3.2)| + |y +5| + |z +315| =0,则x+y+z 的值为________..16.若x 的相反数是3, |y| =6,则x+y 的值为________.17.如图是一个运算程序,若输入的数为 − 10,则输出的数为________.18.对于正数x 规定 f(x)=11+x ,例如: f(3)=11+3=14 , f(15)=11+15=56 ,,则f(2019)+f(2018)+……+f(2)+f(1)+ f(12)+f(13)+⋯+f(12018)+f(12019) =________.三、计算题19.用加法运算律计算:(1)25.7+(−7.3)+(−13.7)+7.3(2)-2.4+(-3.7)+(-4.6)+5.7;(3)-13+13+(-23)+17 ; (4)(-9 13 )+|-4 56 |+|0-5 16 |+(- 23 );20.2017年9月11日,以“绿色生活•从你我做起”为主题的重庆市第四届生态文明知识竞赛活动正式启动.某校组织全校学生参与后,王老师抽取了班上第一大组8名学生的成绩,若以80分为标准,超过的分数用正数表示,不足的分数用负数表示,成绩记录如下:﹣3,+7,﹣12,+18,+6,﹣5,﹣21,+14(1)最高分比最低分多多少分?第一大组平均每人得多少分?(2)若规定:成绩高于80分的学生操行分每人加3分,成绩在60~80分的学生操行分每人加2分,成绩在60分以下的学生操行分每人扣1分,那么第一大组的学生共加操行分多少分?21.已知|a|=4,|b|=2,|c|=5,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c的值22.观察下面的变形规律:11×2=1﹣12;12×3= 12﹣13;13×4= 13﹣14;…解答下面的问题:(1)若n为正整数,请你猜想1n×(n+1)=________;(2)证明你猜想的结论;(3)求和:11×2+ 12×3+ 13×4+…+ 12011×2012.答案解析部分一、单选题1.【答案】 D【考点】有理数的减法解:A 零减去一个有理数,等于这个数的相反数,故A 不符合题意;B 、两个数的差不一定小于它们的和,故B 不符合题意;C 、互为相反数的两数之和为0,之差不一定等于0,故C 不符合题意;D 、较小的数减去较大的数所得的差必定为负数,故D 符合题意;故答案为:D【分析】利用有理数的减法法则:减去一个数等于加上这个数的相反数,对各选项逐一判断,可得答案。
苏科版七年级数学上册同步练习2.5有理数的加法与减法(4)一、选择题1.较小的数减去较大的数是 ( )A.正数B.负数C.0D.不能确定正负2.|x|=1,则x 与-3的差为 ( )A.4B.-2C.4或2D.23.下面等式错误的是 ( ) A.21-31-51=21-(31+51);B.-5+2+4=4-(5+2);C.(+3)-(-2)+(-1)=3+2-1;D.2-3-4=-(-2)-(+3)+(-4)4.|a|=1,b=-2,则a-b 的值是 ( ) A.3 B.-1 C.3或-1D.3或1 5.汽车从车站出发向东行使150米后,向西行使60米,又继续向东行使200米,那么汽车此时在 ( )A.车站以东290米处B.车站以西410米处C.车站以东410米处D.车站以西290米处二、填空题6. (1)23-|-6|-(+23)=_______. (2)6.1-3.7-4.9+1.8=7.某地上午气温为5℃,中午气温上升7℃,晚上又下降了16℃,则晚上的气温为______.8.已知|a|=4, |b|=2, 且 a>b 则a-b 的值是9..某水库某周7天内水位的变化情况是:上升1.2米、下降0.5米、下降0.3米、上升0.8米下降0.5米、下降0.4米、下降0.6米,则这一周的总变化情况是10.已知a 是4的相反数,b 比a 的相反数小12,则a 比b 大_________.三、计算题11.(1) 5-(-2)+(-3) (2) (-12)-5+(-14)-(-39)(3) (4)12.某检修小组乘坐一辆汽车沿公路检修线路,约定前进为正,后退为负,他们从出发到收工返回时,走过的路程记录如下(单位:千米)+8, -3, +12, -1, -6 , +4, -7 那么收工时他们距离出发地有多远?是前进还是后退了?13. 10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7.5,-3,5,-8,3.5,4.5,8,-1.5这10名学生的总体重为多少?10名学生的平均体重为多少?★14.某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实际每月生产量与计划量相比情况如下表(增加为正,减少为负).1.生产量最多的一月比生产量最少的一月多生产多少辆?2.半年内总生产量是多少?比计划多了还是少了,增或减多少?。
有理数加减法【知识扫描】1、减去__________________________这个数的相反数。
即a -b=a+( )2、有理数减法操作步骤:(1)化-为+;(2)按加法法则计算。
【基础训练】1、判断下列说法是否正确:(1)减去一个数等于加上这个数的相反数 ( ) (2)如果两个有理数互为相反数,那么它们的差为零 ( ) (3)如果两个数的差是正数,那么被减数是正数 ( ) (4)0减去一个有理数,其差是减数的相反数 ( ) 2、计算(请写出详细的解题过程!)(1)49- (2)(13)22-- (3)0(5)--(4)9(3)--- (5)32.375(2)8-- (6)53()64---(7)23155--- (8)6(37)5----3、(1)温度3℃比-5℃高_________;从海拔11m 到-28m ,下降了___________;(2)比+3的相反数小4的数是________;31的相反数减去-4的差的是____________;(3)从12中减去-2.5与215的和是_______________;(4) 数轴上表示323的点与表示324-的点之间的距离为_______________;(5)(+14)+( )=-37 ; 1(2)3--( )=1;6()5++( )=-0.2 ; 1(5)4-+( )=384-。
4、甲、乙、丙三地的海拔高度分别是18米,-4米,-16米,那么最高的地方比最低的地方高多少米? ( ) A 、 2米 B 、34米 C 、14米 D 、22米5、较小的数减去较大的数,所得的差一定是 ( ) A 、正数 B 、负数 C 、0 D 、不能确定正负6、下列说法中,正确的是 ( ) A 、减去一个数,等于加上这个数 B 、零减去一个数,仍得这个数 C 、一个负数减去一个负数结果还是负数D 、在有理数的减法中,被减数不一定比减数或差大7、下列计算正确的是 ( ) A 、422--=- B 、5(5)0--= C 、10(8)2+-=- D 、53(3)5----=- 8、下列说法中正确的是 ( ) A 、两数之差一定小于被减数 B 、减去一个负数,差一定大于被减数 C 、0减去任何数,差都是负数 D 、减去一个正数,差不一定小于被减数9、某地一周内每天的最高气温(℃)与最低气温记录如下表,其中哪天的温差最大?哪天的温差最小?【拓宽视野】10、已知b<0,则 a ,a b -,a b +中,最大的是 ( ) A 、a B 、a b - C 、a b + D 、不一定 11、(1)已知1a =,2b =,则a b -的值为___________;(2)已知1a =,2b =,且a <b ,则a b -的值为___________。
第8课时 有理数的加法与减法(2)【基础巩固】1.用字母表示.加法交换律:_______;加法结合律:________.2.用简便方法计算:-200.9+28+0. 9+(-8)=_______.3.飞机原在800 m 的高空飞行,现上升150 m ,又下降250 m ,这时飞机飞行的高度是________m .4.五袋大米以每袋50 kg 为准,超过的记为正,不足的记为负,称重记录如下:+4.5,-4,+2.3,-3.5,+2.5,这五袋大米共超过________kg ,总质量是________ kg .5.已知a 是最小的正整数,b 是a 的相反数,c 的绝对值为3,则a +b +c 的值为________.6.有下列说法:①两数相加和为正数时,这两个数均为正数;②两数相加和为负数时,这两个数均为负数;③两个有理数的和可能等于其中的一个加数;④两个有理数的和可能等于0.其中,正确的有 ( )A .1个B .2个C . 3个D .4个7.两个有理数的和的绝对值与它们的绝对值的和相等,则 ( )A .这两个有理数都是正数B .这两个有理数都是负数C .这两个有理数同号D .这两个有理数同号或至少有一个为08.下列说法正确的是 ( )A .同号两数相加,其和比加数大B .两数相加,等于它们的绝对值相加C .异号两数相加,其和为0D .两个正数相加和为正数,两个负数相加和为负数9.足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,则红队、黄队、蓝队的净胜球数分别为 ( )A .2,-2,0B .4,2,1C . 3,-2,0D .4,-2.110.两个数相加的和小于每一个加数,那么一定是 ( )A .两个加数同为正数B .两个加数同为负数C .两个加数的符号不同D .两个加数中有一个是011.计算:(1)3+(-1)+(-3)+1+(-4); (2)()55412969+++-; (3)3557212212⎛⎫⎛⎫⎛⎫⎛⎫-+-+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (4)12556767⎛⎫⎛⎫⎛⎫+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.12.用简便方法计算:(1)(+7)+(-6)+(-7)+(+6);(2)(-2.6)+(-3.4)+(+2.3)+1.5+(-2.3);(3)121233214343⎛⎫⎛⎫⎛⎫⎛⎫-+++++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(4)()1170.125330.25488⎛⎫⎛⎫⎛⎫+++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.13.某食品小卖部在某天中,收支情况如下(收入记为正数):-27. 60元,-15元,+83.80元,-16.2元,-31.9元.试问收支相抵后,合计收入(或亏损)多少元?14.用筐装橘子,以每筐30 kg 为标准,超过的千克数记为正数,不足的千克数记为负数.称重的记录如下(单位:kg):+5,-4,+1,0,-3,-5,+4,-6,+2,+1.试问称得的总重与总标准重相比超过或不足多少千克?10筐橘子实际共重多少千克?【拓展提优】15.(1)绝对值小于4的所有整数的和是_______.(2)绝对值大于2且小于5的所有负整数的和是________.16.用简便方法计算()331530.75414828⎛⎫⎛⎫⎛⎫⎛⎫-+++++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果为 ( ) A .0 B .1 C .12 D .-1217.已知a =1,b =2,c =3,且a>b>c ,求a +b +c 的值.18.计算:111111324354-+-+-+ (1120122011)+-.19.用简便方法计算:(1)(-1.3)+(-2.64)+(+3.3)+(-1.36);(2)()()3143.367.361717⎡⎤⎛⎫⎛⎫++-++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;(3)()()()333317 1.234173344⎛⎫⎛⎫-+++-+-++ ⎪ ⎪⎝⎭⎝⎭;(4)(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100).20.计算:112123233444⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭…1259606060⎛⎫+++ ⎪⎝⎭.参考答案【基础巩固】1.a+b=b+a (a+b)+c=a+(b+c) 2.-1803.700 4.1.8 251.8 5.±3 6.B7.D8.D9.A 10.B 11.(1)-4 (2)56(3)0(4)52112.(1)0(2)-4.5(3)1(4) 7813.亏损6.9元14.不足5 kg 295 kg【拓展提优】15.(1)0 (2)-7 16.C17.-4或-618.1005 201219.(1)-2 (2)5(3)-1.234 (4)-50 20.885。
苏科版七年级上册第二章2.5有理数的加法与减法同步练习一.选择题(共14小题)1.计算﹣3+|﹣5|的结果是()A.﹣2B.2C.﹣8D.82.已知|m|=5,|n|=2,且n<0,则m+n的值是()A.﹣7B.+3C.﹣7或﹣3D.﹣7或33.﹣7的相反数加上﹣3,结果是()A.10B.﹣10C.4D.﹣44.计算:﹣3﹣|﹣6|的结果为()A.﹣9B.﹣3C.3D.95.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>06.如果a、b是有理数,则下列各式子成立的是()A.如果a<0,b<0,那么a+b>0B.如果a>0,b<0,那么a+b>0C.如果a>0,b<0,那么a+b<0D.如果a<0,b>0,且|a|>|b|,那么a+b<07.已知x=4,|y|=5且x>y,则2x﹣y的值为()A.13B.3C.13或3D.﹣13或﹣38.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个9.若一个有理数与它的相反数的差是一个负数,则()A.这个有理数一定是负数B.这个有理数一定是正数C.这个有理数可以为正数、负数D.这个有理数为零10.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2B.﹣2C.2或﹣2D.以上都不对11.把6﹣(+3)﹣(﹣7)+(﹣2)写成省略括号的形式应是()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣212.下列各式可以写成a﹣b+c的是()A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)13.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=()A.﹣1B.0C.1D.214.(2009秋•荔城区期末)去年7月份小明到银行开户,存入1500元,以后每月根据收支情况存入一笔钱,下表为该人从8月份到12月份的存款情况:则截止到去年12月份,存折上共有()元钱.A.9750B.8050C.1750D.9550二.填空题(共9小题)15.一组数:1,﹣2,3,﹣4,5,﹣6,…,99,﹣100,这100个数的和等于.16.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=.17.已知m是6的相反数,n比m的相反数小2,则m﹣n等于.18.已知|a+2|+|b﹣1|=0,则(a+b)﹣(b﹣a)=.19.绝对值不大于2.1的所有整数是,其和是.20.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=.21.我们规定“※”是一种数学运算符号,A※B=(A+B)﹣(A﹣B),那么3※(﹣5)=.22.一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位.23.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.三.解答题(共7小题)24.(1)0﹣11(2)(﹣13)+(﹣8)(3)(﹣2)﹣(﹣9)(4)(﹣4)﹣5(5)23+(﹣17)+6+(﹣22)(6)(﹣)+(﹣)++(﹣)(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)(8)﹣4.2+5.7﹣8.4+10.25.解答下列各题:(1)(﹣3.6)+(+2.5)(2)﹣(﹣3)﹣2(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(4)﹣5﹣(﹣11)﹣(﹣)(5)3﹣(﹣)+(﹣)(6)﹣|﹣1|﹣()﹣(﹣2.75)(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)(8)(﹣4)﹣(+5)﹣(﹣4)26.已知|a|=9,|b|=6,且a+b<0,求a﹣b的值.27.若有理数x、y满足|x|=7,|y|=4,且|x+y|=x+y,求x﹣y的值.28.已知|a|=2,|b|=2,|c|=3,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c 的值.29.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a升/千米,则这次养护共耗油多少升?30.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?2.5有理数的加法与减法参考答案与试题解析一.选择题(共14小题)1.(计算﹣3+|﹣5|的结果是()A.﹣2B.2C.﹣8D.8【分析】先化去绝对值,再进行有理数加法运算,求得计算结果.【解答】解:∵﹣3+|﹣5|=﹣3+5=2,∴计算﹣3+|﹣5|的结果是2.故选B【点评】本题主要考查了有理数的运算,解决问题的关键是掌握有理数的加法运算法则以及绝对值的性质.注意:①一个负数的绝对值是它的相反数;②在进行有理数加法运算时,首先判断两个加数的符号,是同号还是异号.2.已知|m|=5,|n|=2,且n<0,则m+n的值是()A.﹣7B.+3C.﹣7或﹣3D.﹣7或3【分析】先根据绝对值的定义及已知条件n<0,分别求出m与n的值,再代入m+n,即可得出结果.【解答】解:因为|m|=5,|n|=2,所以m=±5,n=±2,又∵n<0,所以n只能取﹣2.当m=5,n=﹣2时,m+n=3;当m=﹣5,n=﹣2时,m+n=﹣7.故选D.【点评】绝对值具有非负性,绝对值是正数的数有两个,且互为相反数.3.﹣7的相反数加上﹣3,结果是()A.10B.﹣10C.4D.﹣4【分析】根据相反数的定义与有理数的加法列出算式,然后进行计算即可得解.【解答】解:根据题意得,﹣(﹣7)+(﹣3)=7﹣3=4.故选C.【点评】本题考查了有理数的加法,相反数的定义,是基础题.4.(计算:﹣3﹣|﹣6|的结果为()A.﹣9B.﹣3C.3D.9【分析】根据绝对值的性质去掉绝对值号,再根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣|﹣6|=﹣3﹣6=﹣9.故选A.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则是解题的关键.5.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>0【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.【点评】本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.6.如果a、b是有理数,则下列各式子成立的是()A.如果a<0,b<0,那么a+b>0B.如果a>0,b<0,那么a+b>0C.如果a>0,b<0,那么a+b<0D.如果a<0,b>0,且|a|>|b|,那么a+b<0【分析】利用有理数的加法法则判断即可得到结果.【解答】解:如果a<0,b>0,且|a|>|b|,那么a+b<0,故选D【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.7.已知x=4,|y|=5且x>y,则2x﹣y的值为()A.13B.3C.13或3D.﹣13或﹣3【分析】根据绝对值的性质求出y,再根据x>y确定出y的值,然后代入代数式进行计算即可得解.【解答】解:∵|y|=5,∴y=5或﹣5,∵x=4,x>y,∴y=﹣5,∴2x﹣y=2×4﹣(﹣5)=8+5=13.故选A.【点评】本题考查了有理数的减法,绝对值的性质,熟记减去一个数等于加上这个数的相反数是解题的关键,易错点在于判断出y的值.8.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个【分析】可用举特殊例子法解决本题.可以举个例子.如①3+(﹣1)=2,得出①、②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以③、④都是正确的.【解答】解:∵①3+(﹣1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥﹣1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C.【点评】本题考查了有理数的加法,有理数的选择题可以用特例法来做,其效果往往是事半功倍的,做题时注意应用.9.若一个有理数与它的相反数的差是一个负数,则()A.这个有理数一定是负数B.这个有理数一定是正数C.这个有理数可以为正数、负数D.这个有理数为零【分析】根据减去一个数等于加上这个数的相反数,负数减正数等于负数加负数,可得答案.【解答】解:若一个有理数与它的相反数的差是一个负数,这个有理数一定是负数,故选:A.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数,注意负数减正数等于负数加负数.10.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2B.﹣2C.2或﹣2D.以上都不对【分析】由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可分别得出a、b、c的值,代入计算可得结果.【解答】解:由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可得a=1,b=﹣1,c=0,所以a﹣b+c=1﹣(﹣1)+0=1+1+0=2,故选:A.【点评】本题主要考查有理数的概念的理解,能正确判断有关有理数的概念是解题的关键.11.把6﹣(+3)﹣(﹣7)+(﹣2)写成省略括号的形式应是()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣2【分析】根据有理数的减法法则即可得到原式=6﹣3+7﹣2.【解答】解:原式=6﹣3+7﹣2.故选C.【点评】本题考查了有理数的加减混合运算:有理数加减法运算统一成加法运算.先转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.12.下列各式可以写成a﹣b+c的是()A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)【分析】根据有理数的加减混合运算的符号省略法则化简,即可求得结果.【解答】解:根据有理数的加减混合运算的符号省略法则化简,得,A的结果为a﹣b﹣c,B的结果为a﹣b+c,C的结果为a﹣b﹣c,D的结果为a﹣b﹣c,故选B.【点评】本题主要考查有理数的加减混合运算,化简即可.去括号法则为+(+)=+,+(﹣)=﹣,﹣(+)=﹣,﹣(﹣)=+.13.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=()A.﹣1B.0C.1D.2【分析】最小的自然数为0,最大的负整数为﹣1,绝对值最小的有理数为0,由此可得出答案.【解答】解:由题意得:a=0,b=﹣1,c=0,∴a﹣b+c=1.故选C.【点评】本题考查有理数的知识,难度不大,根据题意确定a、b、c的值是关键.14.去年7月份小明到银行开户,存入1500元,以后每月根据收支情况存入一笔钱,下表为该人从8月份到12月份的存款情况:则截止到去年12月份,存折上共有()元钱.A.9750B.8050C.1750D.9550【分析】把实际问题转化成有理数的加减法,分别根据上一月的存钱和与上一月的差值求出下一个月的存钱数,然后相加即可.【解答】解:小明从8月份到12月份的存款情况:1500+(1500﹣100)+(1500﹣100﹣200)+(1500﹣100﹣200+500)+(1500﹣100﹣200+500+300)+(1500﹣100﹣200+500+300﹣250)=9550元.故选D.【点评】解决问题的关键是正确列式,细心计算.二.填空题(共9小题)15.一组数:1,﹣2,3,﹣4,5,﹣6,…,99,﹣100,这100个数的和等于﹣50.【分析】将100个相加时,将相邻的两个数相加得﹣1,然后将50个﹣1相加即可得到答案.【解答】解:1﹣2+3﹣4+5﹣6+…+99﹣100=﹣1﹣1﹣1﹣…﹣1=﹣50,故答案为:﹣50.【点评】本题考查了有理数的加法,解题的关键是发现相邻的两个有理数的和等于﹣1.16.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=2或﹣4.【分析】由a、b互为相反数,可得a+b=0;由于不知a、b的正负,所以要分类讨论b的正负,才能利用|a﹣b|=6求b的值,再代入所求代数式进行计算即可.【解答】解:∵a、b互为相反数,∴a+b=0即a=﹣b.当b为正数时,∵|a﹣b|=6,∴b=3,b﹣1=2;当b为负数时,∵|a﹣b|=6,∴b=﹣3,b﹣1=﹣4.故答案填2或﹣4.【点评】本题主要考查了代数式求值,涉及到相反数、绝对值的定义,涉及到绝对值时要注意分类讨论思想的运用.17.已知m是6的相反数,n比m的相反数小2,则m﹣n等于﹣10.【分析】根据相反数的定义求出m的值,再根据n比m的相反数小2列出方程求出n的值,然后代入代数式进行计算即可得解.【解答】解:∵m是6的相反数,∴m=﹣6,∵n比m的相反数小2,∴﹣m﹣n=2,即﹣(﹣6)﹣n=2,解得n=4,所以,m﹣n=﹣6﹣4=﹣10.故答案为:﹣10.【点评】本题考查了相反数的定义,有理数的减法运算,本题容易出错,要注意符号.18.已知|a+2|+|b﹣1|=0,则(a+b)﹣(b﹣a)=﹣4.【分析】利用非负数的性质求出a与b的值,所求式子去括号合并后,将a与b的值代入计算即可求出值.【解答】解:∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,即a=﹣2,b=1,则原式=a+b﹣b+a=2a=﹣4.故答案为:﹣4.【点评】此题考查了有理数的加减混合运算,以及非负数的性质,熟练掌握运算法则是解本题的关键.19.绝对值不大于2.1的所有整数是﹣2,﹣1,0,1,2,其和是0.【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【解答】解:绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=2或0.【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.【解答】解:∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴a=﹣1,b=﹣2,c=﹣3或a=1,b=﹣2,c=﹣3,则a+b﹣c=2或0.故答案为:2或0【点评】此题考查了有理数的加减混合运算,以及绝对值,确定出a,b及c的值是解本题的关键.21.我们规定“※”是一种数学运算符号,A※B=(A+B)﹣(A﹣B),那么3※(﹣5)=﹣10.【分析】根据新运算代数计算即可.【解答】解:∵A※B=(A+B)﹣(A﹣B),∴3※(﹣5)=【3+(﹣5)】﹣【3﹣(﹣5)】=(﹣2)﹣8=﹣10.故答案为:﹣10.【点评】此题考查了有理数的加减混合运算,解答此题的关键是根据所给的式子,找出新运算的运算方法,再用新运算方法计算要求的式子即可.22一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是50个单位.【分析】由题意可知,第1、2次落点处离O点的距离是1个单位,第3、4次落点处离O 点的距离是2个单位,以此类推,找出规律可求.【解答】解:由题意可知,第1、2次落点处离O点的距离是1个单位,第3、4次落点处离O点的距离是2个单位,以此类推,第100次落下时,落点处离O点的距离是50个单位.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是﹣4.【分析】根据数轴的单位长度,判断墨迹盖住部分的整数,然后求出其和.【解答】解:由图可知,左边盖住的整数数值是﹣2,﹣3,﹣4,﹣5;右边盖住的整数数值是1,2,3,4;所以他们的和是﹣4.故答案为:﹣4.【点评】此题的关键是先看清盖住了哪几个整数值,然后相加.三.解答题(共7小题)24.(1)0﹣11(2)(﹣13)+(﹣8)(3)(﹣2)﹣(﹣9)(4)(﹣4)﹣5(5)23+(﹣17)+6+(﹣22)(6)(﹣)+(﹣)++(﹣)(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)(8)﹣4.2+5.7﹣8.4+10.【分析】(1)将减法转化为加法,然后按照加法法则计算即可;(2)利用有理数的加法法则计算即可;(3)将减法转化为加法,然后按照加法法则计算即可;(4)将减法转化为加法,然后按照加法法则计算即可;(5)先将正数和正数相加,负数和负数相加,最后按照加法法则计算;(6)先将互为相反数的两数相加,然后再按照加法法则计算即可;(7)先将算式统一为加法运算,然后再按照加法法则计算即可;(8)先将正数和正数相加,负数和负数相加,最后按照加法法则计算.【解答】解:(1)0﹣11=0+(﹣11)=﹣11;(2)(﹣13)+(﹣8)=﹣(13+8)=﹣21;(3)(﹣2)﹣(﹣9)=﹣2+9=7;(4)﹣=﹣4+(﹣5)=﹣(4+5)=﹣10;(5)23+(﹣17)+6+(﹣22)=23+6+[(﹣17)+(﹣22)]=29+(﹣39)=﹣10;(6)(﹣)+(﹣)++(﹣)=(﹣)++(﹣)+(﹣)=0+(﹣1)=﹣1;(7)0﹣(﹣6)+2﹣(﹣13)﹣(+8)=0+6+2+13﹣8=13;(8)﹣4.2+5.7﹣8.4+10=﹣4.2﹣8.4+5.7+10=﹣12.6+15.7=3.1.【点评】本题主要考查的是有理数的加减混合运算,掌握有理数的加减运算法则是解题的关键.25.解答下列各题:(1)(﹣3.6)+(+2.5)(2)﹣(﹣3)﹣2(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(4)﹣5﹣(﹣11)﹣(﹣)(5)3﹣(﹣)+(﹣)(6)﹣|﹣1|﹣()﹣(﹣2.75)(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)(8)(﹣4)﹣(+5)﹣(﹣4)【分析】有理数加减混合运算的方法:有理数加减法统一成加法,据此求出每个算式的结果是多少即可.【解答】解:(1)(﹣3.6)+(+2.5)=﹣3.6+2.5=﹣1.1(2)﹣(﹣3)﹣2=(﹣2)+(3)=﹣3+4=1(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)=(﹣49﹣91﹣9)+5=﹣149+5=﹣144(4)﹣5﹣(﹣11)﹣(﹣)=﹣5+11+=6+3=9(5)3﹣(﹣)+(﹣)=(3﹣)+()=3+3=6(6)﹣|﹣1|﹣()﹣(﹣2.75)=﹣1﹣2+2.75=0.4+2.75﹣(1+2)=3.15﹣3.75=﹣0.6(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)=﹣7+11﹣9﹣2=11﹣(7+9+2)=11﹣18=﹣7(8)(﹣4)﹣(+5)﹣(﹣4)=(﹣4)+4﹣5=0﹣5=﹣5【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确有理数加减混合运算的方法:有理数加减法统一成加法.26.)已知|a|=9,|b|=6,且a+b<0,求a﹣b的值.【分析】根据绝对值的性质求出a、b,再根据有理数的加法运算法则判断出a、b的对应情况,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|a|=9,|b|=6,∴a=±9,b=±6,∵a+b<0,∴a=﹣9,b=±6,当a=﹣9,b=6时,a﹣b=﹣9﹣6=﹣15,当a=﹣9,b=﹣6时,a﹣b=﹣9﹣(﹣6)=﹣9+6=﹣3,综上所述,a﹣b的值为﹣15或﹣3.【点评】本题考查了有理数的减法,有理数的加法,绝对值的性质,熟记运算法则和性质并判断出a、b的对应情况是解题的关键.27.若有理数x、y满足|x|=7,|y|=4,且|x+y|=x+y,求x﹣y的值.【分析】根据绝对值的性质求出x、y,再判断出x、y的对应情况,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|x|=7,∴x=±7,∵|y|=4,∴y=±4,又∵|x+y|=x+y,∴x+y≥0,∴x=7,y=±4,当x=7,y=4时,x﹣y=7﹣4=3,当x=7,y=﹣4时,x﹣y=7﹣(﹣4)=11.【点评】本题考查了有理数的减法,绝对值的性质,有理数的减法,是基础题,熟记运算法则与性质是解题的关键.28.已知|a|=2,|b|=2,|c|=3,且有理数a,b,c在数轴上的位置如图所示,计算a+b+c 的值.【分析】根据数轴上a、b、c和原点的位置,判断出三个数的取值,然后再代值求解.【解答】解:由数轴上a、b、c的位置知:b<0,0<a<c;又∵|a|=2,|b|=2,|c|=3,∴a=2,b=﹣2,c=3;故a+b+c=2﹣2+3=3.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.能够正确的判断出a、b、c的符号是解答此题的关键.29.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a升/千米,则这次养护共耗油多少升?【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)求出每个记录点得记录数据,绝对值最大的数对应的点就是所求的点;(3)所走的路程是这组数据的绝对值的和,然后乘以a,即可求得耗油量.【解答】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16=+15千米.则在出发点的东边15千米的地方;(2)最远处离出发点有17千米;(3)(17+9+7+15+3+11+6+8+5+16)a=97a(升).答:这次养护共耗油97a升.【点评】本题考查了有理数的加减运算,以及正负数表示一对具有相反意义的量.30.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?【分析】(1)根据题意画出即可;(2)计算2+1即可求出答案;(3)求出每个数的绝对值,相加即可求出答案.【解答】(1)解:能,如图:(2)解:2+|﹣1|=3,答:小彬家距中心广场3千米.(3)解:|2|+|1.5|+|4.5|+|1|=9,答:小明一共跑了9千米.【点评】本题考查了有理数的加减运算,正数和负数,绝对值等知识点的应用,进而此题的关键是能根据题意列出算式,题目比较典型,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题,用数学知识来解决.。
苏科版七年级数学上册《2.4有理数加减法》同步练习题及答案学校:___________班级:___________姓名:___________考号:___________一.选择题1.7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律2.有理数a、b在数轴上对应的点的位置如图所示,则下面结论:①a<0;②|a|>|b|;③a+b>0;④b﹣a>0;其中正确的个数有()个.A.1 B.2 C.3 D.43.某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是()星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃-2℃-3℃A.星期一B.星期二C.星期三D.星期四4.两个数相加,其和小于每个加数,那么这两个数()A.同为负数B.异号C.同为正数D.零或负数5.下面的四个说法:①若a+b=0,则|a|=|b|;②若|a|=﹣a,则a<0;③若|a|=|b|,则a=b;④若|a|+|b|=0,则a=b=0,其中,正确的是()A.①②B.①④C.②③D.③④6.有理数m,n在数轴上的位置如图所示,则下列关系式中正确的有()①m+n<0;②n﹣m>0;③1m >1n;④﹣n﹣m>0.A.1个B.2个C.3个D.4个二.填空题1.利用加法的交换律和结合律,将+327+15-517-317写成______________________________________,可以使运算简便.2.数轴上的点A 、B 分别表示3 、2,则点__________离原点的距离较近(填“A ”或“B ”).3.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位.三.计算 1.计算:(1)(﹣18.35)+(+6.15)+(﹣3.65)+(﹣18.15);(2)(+9)﹣(+10)+(﹣2)﹣(﹣8)+3;(3)(−357)+(+15.5)+(−627)+(−512);(4)334−(−16)−(+212)+(﹣156).四.解答题1.若|a|=2,|b|=3,|c|=6,|a+b|=﹣(a+b),|b+c|=b+c.计算a+b﹣c的值.A B C,回答下列问题:2.如图,在数轴上有三个点,,(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到,A C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.3.如表为本周内某农产品每天的批发价格比前一天的涨跌情况(上周末该农产品的批发价格为2.7元/斤).星期一二三四五六日+0.2 ﹣0.3 +0.5 +0.2 ﹣0.3 +0.4 ﹣0.1 与前一天的价格涨跌情况(元)注:正号表示价格比前一天上涨,负号表示价格比前一天下跌.(1)本周哪天该农产品的批发价格最高,批发价格是多少元/斤?本周哪天该农产品的批发价格最低,批发价格是多少元/斤?(2)与上周末相比,本周末该农产品的批发价格是上升了还是下降了?变化了多少?参考答案一.选择题1.7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律【答案】D【提示】式子由7+(–3)+(–4)+18+(–11)变为(7+18)+[(–3)+(–4)+(–11)]在这个过程中运用了加法的运算定律加法交换律和加法结合律.【详解】7+(–3)+(–4)+18+(–11)=(7+18)+[(–3)+(–4)+(–11)]是应用了加法交换律与结合律.故选D.2.有理数a、b在数轴上对应的点的位置如图所示,则下面结论:①a<0;②|a|>|b|;③a+b>0;④b﹣a>0;其中正确的个数有()个.A.1B.2C.3D.4【分析】根据a<|a|判断①;根据|a|>0,b>0判断②;根据有理数的加法法则判断③;根据有理数的减法法则判断④.【解答】解:∵a<|a|∴a<0,故①符合题意;由题意可知:|a|>0,b>0∴|a|<|b|,故②不符合题意;∵a<0,b>0,|a|<|b|∴a+b>0,故③符合题意;∵a<0,b>0∴b﹣a>0,故④符合题意;综上所述,符合题意的有3个故选:C.3.某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是()星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃-2℃-3℃A.星期一B.星期二C.星期三D.星期四【答案】C【分析】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答.【详解】星期一温差:10﹣3=7℃;星期二温差:12﹣0=12℃;星期三温差:11﹣(﹣2)=13℃;星期四温差:9﹣(﹣3)=12℃;综上,周三的温差最大.故选C.4.两个数相加,其和小于每个加数,那么这两个数()A.同为负数B.异号C.同为正数D.零或负数【分析】根据有理数的加法法则,两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.【解析】两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.例如:(﹣1)+(﹣3)=﹣4,﹣4<﹣1,﹣4<﹣3故选:A.5.下面的四个说法:①若a+b=0,则|a|=|b|;②若|a|=﹣a,则a<0;③若|a|=|b|,则a=b;④若|a|+|b|=0,则a=b=0,其中,正确的是()A.①②B.①④C.②③D.③④【分析】根据有理数的加法的运算方法,以及绝对值的性质和应用,逐项判断即可.【解析】∵若a+b=0,则|a|=|b|∴选项①符合题意;∵若|a|=﹣a,则a≤0∴选项②不符合题意;∵若|a|=|b|,则a=b或a=﹣b∴选项③不符合题意;∵若|a|+|b|=0,则a=b=0∴选项④符合题意∴正确的是:①④.故选:B.6.有理数m,n在数轴上的位置如图所示,则下列关系式中正确的有()①m+n<0;②n﹣m>0;③1m>1n;④﹣n﹣m>0.A.1个B.2个C.3个D.4个【分析】根据数轴得出n<0<m,|n|>|m|,再根据有理数的加减、乘除法则进行判断即可.【解答】解:由数轴知,n<0<m,|n|>|m|∴m+n<0,n﹣m<0,1m >1n,﹣n﹣m>0∴正确的有:①③④共3个.故选:C.二.填空题1.利用加法的交换律和结合律,将+327+15-517-317写成______________________________________,可以使运算简便.【答案】211+3-3-5777⎛⎫⎪⎝⎭+15.【提示】运用加法交换律和结合律改变运算顺序可以使运算简便.【详解】+327+15-517-317=+327-317-517+15=211+3-3-5777⎛⎫⎪⎝⎭+15.故答案为:211335777⎛⎫+--⎪⎝⎭+15.2.数轴上的点A、B分别表示3-、2,则点__________离原点的距离较近(填“A”或“B”).【答案】B【分析】先求出A、B点所对应数的绝对值,进而即可得到答案.【详解】解:∵数轴上的点A、B分别表示-3、2∵33,22-==,且3>2 ∵点B 离原点的距离较近 故答案是:B .3.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位. 【答案】50 【解析】解:由题意可知,第1、2次落点处离O 点的距离是1个单位,第3、4次落点处离O 点的距离是2个单位,以此类推,第100次落下时,落点处离O 点的距离是50个单位.三.计算1.计算:(1)(﹣18.35)+(+6.15)+(﹣3.65)+(﹣18.15); (2)(+9)﹣(+10)+(﹣2)﹣(﹣8)+3; (3)(−357)+(+15.5)+(−627)+(−512); (4)334−(−16)−(+212)+(﹣156).【分析】(1)利用加法的交换律和结合律,将(﹣18.35)与(﹣3.65),(﹣18.15)与(+6.15)结合先进行计算即可;(2)将正数、负数分别结合在一起先计算即可; (3)将分母相同的分数结合在一起先计算即可; (4)将分母相同的分数结合在一起先计算,使运算简单.【解答】解:(1)原式=[(﹣18.35)+(﹣3.65)]+[(﹣18.15)+(+6.15)] =(﹣22)+(﹣12) =﹣34;(2)原式=9﹣10﹣2+8+3 =9+8+3﹣(10+2)=20﹣12 =8;(3)原式=[(﹣357)+(﹣627)]+[(+15.5)+(﹣512)]=﹣10+10 =0;(4)原式=334−212+(16−156)=114−123=−512.四.解答题1.若|a |=2,|b |=3,|c |=6,|a +b |=﹣(a +b ),|b +c |=b +c .计算a +b ﹣c 的值. 【分析】根据题意可以求得a 、b 、c 的值,从而可以求得所求式子的值. 【解答】解:∵|a |=2,|b |=3,|c |=6 ∴a =±2,b =±3,c =±6 ∵|a +b |=﹣(a +b ),|b +c |=b +c ∴a +b ≤0,b +c ≥0 ∴a =±2,b =﹣3,c =6 ∴当a =2,b =﹣3,c =6时 a +b ﹣c =2+(﹣3)﹣6=﹣7 a =﹣2,b =﹣3,c =6时 a +b ﹣c =﹣2+(﹣3)﹣6=﹣11.2.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.-或7-【答案】(1)1-(2)0.5(3)3【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1∵-1<1<2∵三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上则点E表示的数为-3.3.如表为本周内某农产品每天的批发价格比前一天的涨跌情况(上周末该农产品的批发价格为2.7元/斤).星期一二三四五六日+0.2﹣0.3+0.5+0.2﹣0.3+0.4﹣0.1与前一天的价格涨跌情况(元)注:正号表示价格比前一天上涨,负号表示价格比前一天下跌.(1)本周哪天该农产品的批发价格最高,批发价格是多少元/斤?本周哪天该农产品的批发价格最低,批发价格是多少元/斤?(2)与上周末相比,本周末该农产品的批发价格是上升了还是下降了?变化了多少?【分析】(1)根据有理数的加法,可得每天的价格,根据有理数的大小比较,可得答案;(2)求出本周末的价格即可.【解答】解:(1)星期一的价格:2.7+(+0.2)=2.9(元);星期二的价格:2.9+(﹣0.3)=2.6(元);星期三的价格:2.6+(+0.5)=3.1(元);星期四的价格:3.1+(+0.2)=3.3(元);星期五的价格:3.3+(﹣0.3)=3(元);星期六的价格:3+(+0.4)=3.4(元);星期日的价格:3.4+(﹣0.1)=3.3(元);故本周星期六,该农产品的批发价格最高,批发价格是3.4元;本周星期二,该农产品的批发价格最低,批发价格是2.6元.(2)由(1)可知,星期日的价格为3.3元,3.3>2.7,3.3﹣2.7=0.6(元)答:与上周末相比,本周末该农产品的批发价格是上升了,上升了0.6元.第11页共11页。
2.5有理数的加法与减法一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•仪征市模拟)某城市在冬季某一天的气温为﹣3℃~3℃.则这一天的温差是()A.3℃B.﹣3℃C.6℃D.﹣6℃2.(2019秋•张家港市期末)如图是我市十二月份某一天的天气预报,该天的温差是()A.2℃B.5℃C.7℃D.3℃3.(2019秋•丹徒区月考)下列各式中,正确的是()A.﹣4﹣2=﹣2 B.3﹣(﹣3)=0C.10+(﹣8)=﹣2 D.﹣5﹣4﹣(﹣4)=﹣5 4.(2020•江汉区校级一模)计算﹣3﹣1的结果是()A.2 B.﹣2 C.4 D.﹣45.(2019秋•广陵区校级期中)已知|x|=1,y2=4,且x>y,则x+y值为()A.±3 B.±5 C.+1或+3 D.﹣1或﹣3 6.(2019秋•沭阳县期中)下列说法正确的有()A.﹣a一定是负数B.两个数的和一定大于每一个加数C.绝对值等于本身的数是正数D.最大的负整数是﹣17.(2019秋•南通期中)已知|a|=6,|b|=2,且a>0,b<0,则a+b的值为()A.8 B.﹣8 C.4 D.﹣48.(2019秋•新北区期中)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b 的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1 9.(2019秋•武进区月考)写成省略加号和的形式后为﹣6﹣7﹣2+9的式子是()A.(﹣6)﹣(+7)﹣(﹣2)+(+9)B.﹣(+6)﹣(﹣7)﹣(+2)﹣(+9)C.(﹣6)+(﹣7)+(+2)﹣(﹣9)D.﹣6﹣(+7)+(﹣2)﹣(﹣9)10.(2020春•淮阴区期中)如图,已知表格中竖直、水平、对角线上的三个数的和都相等,则m+n等于()m﹣3 43 1nA.7 B.5 C.﹣1 D.﹣2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•崇川区校级期中)若x是3的相反数,|y|=4,则x﹣y的值是.12.(2019秋•秦淮区期中)把式子﹣2﹣3写成﹣2+(﹣3)的依据是.13.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13=.14.(2019秋•兴化市期中)一天早晨的气温是﹣5℃,中午又上升了8℃,半夜又下降了10℃,则这天半夜的气温是.15.(2019秋•玄武区期中)一个数加﹣0.5等于﹣3,则这个数是.16.(2019秋•东台市期中)a是绝对值最小的数,b的相反数是最大的负整数,则a+b =.17.(2019秋•睢宁县期中)某天中午,泰山山顶的气温由早晨的零下4℃上升了7℃,傍晚下降了5℃,这天傍晚泰山山顶的气温是℃.18.(2019秋•宿豫区期中)若|x|=9,|y|=6,且|x﹣y|=y﹣x,则x+y=.19.(2020春•栖霞区期中)如图是某市连续5天的天气情况,最大的日温差是℃.20.(2019秋•海安市期中)若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=.三、解答题(本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•兴化市校级月考)计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)22.(2019秋•泰兴市校级月考)计算题(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)﹣20+(﹣14)﹣(﹣18)﹣13(3)(4)(﹣3)+12.5+(16)﹣(﹣2.5)(5)0.75+0.125+(﹣2)﹣(﹣12)+(﹣4)23.(2019秋•清江浦区期中)小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:a*b=(a﹣b)﹣|b﹣a|.(1)求(﹣3)*2的值;(2)求(3*4)*(﹣5)的值.24.(2016秋•简阳市期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:解:原式=15=13;(2)计算.25.(2019秋•常州月考)出租车司机小傅某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,行车里程(单位:km)如下:+11,﹣2,+3,+10,﹣11,+5,﹣15,﹣8(1)当把最后一名乘客送到目的地时,小傅距离出车地点的距离为多少?(2)若每千米的营运额为7元,成本为1.5元/km,则这天下午他盈利多少元?26.(2019秋•虎丘区校级期中)探索性问题:已知点A、B在数轴上分别表示m、n.(1)填写下表:m 5 ﹣5 ﹣6 ﹣6 ﹣10n 3 0 4 ﹣4 2A、B两点的距离 2(2)若A、B两点的距离为d,则d与m、n有何数量关系;(3)在数轴上标出所有符合条件的整数点P,使它到3和﹣3的距离之和为6,并求出所有这些整数的和;(4)若点C表示的数为x,当C在什么位置时,|x+2|+|x﹣3|取得值最小?答案解析一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•仪征市模拟)某城市在冬季某一天的气温为﹣3℃~3℃.则这一天的温差是()A.3℃B.﹣3℃C.6℃D.﹣6℃【分析】根据题意列出算式,再利用减法法则计算可得.【解析】3﹣(﹣3)=3+3=6(℃).即这一天的温差是6℃.故选:C.2.(2019秋•张家港市期末)如图是我市十二月份某一天的天气预报,该天的温差是()A.2℃B.5℃C.7℃D.3℃【分析】用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.【解析】该天的温差为5﹣(﹣2)=5+2=7(℃),故选:C.3.(2019秋•丹徒区月考)下列各式中,正确的是()A.﹣4﹣2=﹣2 B.3﹣(﹣3)=0C.10+(﹣8)=﹣2 D.﹣5﹣4﹣(﹣4)=﹣5【分析】直接利用有理数的混合运算法则计算得出答案.【解析】A、﹣4﹣2=﹣6,故此选项不合题意;B、3﹣(﹣3)=6,故此选项不合题意;C、10+(﹣8)=2,故此选项不合题意;D、﹣5﹣4﹣(﹣4)=﹣5,正确,符合题意.故选:D.4.(2020•江汉区校级一模)计算﹣3﹣1的结果是()A.2 B.﹣2 C.4 D.﹣4【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可求解.【解析】﹣3﹣1=﹣3+(﹣1)=﹣(3+1)=﹣4.故选:D.5.(2019秋•广陵区校级期中)已知|x|=1,y2=4,且x>y,则x+y值为()A.±3 B.±5 C.+1或+3 D.﹣1或﹣3【分析】首先根据|x|=1,y2=4,可得:x=±1,y=±2;然后根据x>y,可得:x=±1,y=﹣2,据此求出x+y值为多少即可.【解析】∵|x|=1,y2=4,∴x=±1,y=±2;∵x>y,∴x=±1,y=﹣2,∴x+y=1+(﹣2)=﹣1或x+y=﹣1+(﹣2)=﹣3.故选:D.6.(2019秋•沭阳县期中)下列说法正确的有()A.﹣a一定是负数B.两个数的和一定大于每一个加数C.绝对值等于本身的数是正数D.最大的负整数是﹣1【分析】根据﹣(﹣3)=3可得﹣a不一定是负数;两个负数之和小于每一个加数;非负数的绝对值等于本身,最大的负整数是﹣1可得答案.【解析】A、﹣a一定是负数,说法错误;B、两个数的和一定大于每一个加数,说法错误;C、绝对值等于本身的数是正数,说法错误;D、最大的负整数是﹣1,说法正确;故选:D.7.(2019秋•南通期中)已知|a|=6,|b|=2,且a>0,b<0,则a+b的值为()A.8 B.﹣8 C.4 D.﹣4【分析】根据|a|=6,|b|=2,可得:a=±6,b=±2,再根据a>0,b<0,可得:a=6,b=﹣2,据此求出a+b的值是多少即可.【解析】∵|a|=6,|b|=2,∴a=±6,b=±2,∵a>0,b<0,∴a=6,b=﹣2,∴a+b=6+(﹣2)=4.故选:C.8.(2019秋•新北区期中)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b 的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1【分析】由于八个数的和是4,所以需满足两个圈的和是2,横、竖的和也是2.列等式可得结论.【解析】设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.9.(2019秋•武进区月考)写成省略加号和的形式后为﹣6﹣7﹣2+9的式子是()A.(﹣6)﹣(+7)﹣(﹣2)+(+9)B.﹣(+6)﹣(﹣7)﹣(+2)﹣(+9)C.(﹣6)+(﹣7)+(+2)﹣(﹣9)D.﹣6﹣(+7)+(﹣2)﹣(﹣9)【分析】根据有理数的减法运算,减去一个数等于加上这个数的相反数对各选项进行省略整理即可得解.【解析】A、(﹣6)﹣(+7)﹣(﹣2)+(+9)=﹣6﹣7+2+9,故本选项错误;B、﹣(+6)﹣(﹣7)﹣(+2)﹣(+9)=﹣6+7﹣2﹣9,故本选项错误;C、(﹣6)+(﹣7)+(+2)﹣(﹣9)=﹣6﹣7+2+9,故本选项错误;D、﹣6﹣(+7)+(﹣2)﹣(﹣9)=﹣6﹣7﹣2+9,故本选项正确.故选:D.10.(2020春•淮阴区期中)如图,已知表格中竖直、水平、对角线上的三个数的和都相等,则m+n等于()m﹣3 43 1nA.7 B.5 C.﹣1 D.﹣2【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有3+1+n﹣(m+3)=﹣3+1+n﹣(4+1),即可解出m=2,从而求出n值即可【解析】由题意得竖直、水平、对角线上的三个数的和都相等,则有3+1+n﹣(m+3)=﹣3+1+n﹣(4+1),整理得m=2则有2﹣3+4=﹣3+1+n,解得n=5∴m+n=5+2=7故选:A.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)11.(2019秋•崇川区校级期中)若x是3的相反数,|y|=4,则x﹣y的值是1或﹣7.【分析】分别求出x与y的值,然后代入x﹣y中即可求出答案.【解析】由题意可知:x=﹣3,y=±4,当y=4时,x﹣y=﹣3﹣4=﹣7当y=﹣4时,x﹣y=﹣3+4=1,故答案为:1或﹣7.12.(2019秋•秦淮区期中)把式子﹣2﹣3写成﹣2+(﹣3)的依据是有理数减法法则.【分析】根据有理数减法法则解答即可.【解析】把式子﹣2﹣3写成﹣2+(﹣3)的依据是有理数减法法则.故答案为:有理数减法法则.13.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13=﹣3.【分析】根据有理数的加减法法则计算即可.【解析】﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣34+31=﹣3.故答案为:﹣314.(2019秋•兴化市期中)一天早晨的气温是﹣5℃,中午又上升了8℃,半夜又下降了10℃,则这天半夜的气温是﹣7℃.【分析】根据有理数的加减混合运算列式即可求解.【解析】﹣5+8﹣10=﹣7故答案为﹣7°C.15.(2019秋•玄武区期中)一个数加﹣0.5等于﹣3,则这个数是﹣2.5.【分析】直接利用有理数的加法运算法则得出答案.【解析】∵一个数加﹣0.5等于﹣3,∴这个数是:﹣3﹣(﹣0.5)=﹣2.5.故答案为:﹣2.516.(2019秋•东台市期中)a是绝对值最小的数,b的相反数是最大的负整数,则a+b=1.【分析】首先根据题意确定a、b的值,再进一步根据有理数的运算法则进行计算.【解析】∵a是绝对值最小的数,b的相反数是最大的负整数,∴a=0,﹣b=﹣1,∴b=1,∴a+b=0+1=1.故答案为1.17.(2019秋•睢宁县期中)某天中午,泰山山顶的气温由早晨的零下4℃上升了7℃,傍晚下降了5℃,这天傍晚泰山山顶的气温是﹣2℃.【分析】根据题意列出算式再根据有理数的混合运算即可求解.【解析】根据题意,得﹣4+7﹣5=﹣2所以傍晚泰山山顶的气温零下2°C.故答案为﹣2.18.(2019秋•宿豫区期中)若|x|=9,|y|=6,且|x﹣y|=y﹣x,则x+y=﹣3或﹣15.【分析】由题意利用绝对值的代数意义求出x与y的值,即可求出x+y的值.【解析】∵|x|=9,|y|=6,且|x﹣y|=y﹣x,∴x=±9,y=±6,x﹣y<0,∴x=﹣9,y=6或x=﹣9,y=﹣6,则x+y=﹣3或﹣15,故答案为:﹣3或﹣15.19.(2020春•栖霞区期中)如图是某市连续5天的天气情况,最大的日温差是10℃.【分析】利用有理数的加减运算法则,利用大数减去小数即可得出结果.【解析】25﹣15=10(℃),即最大的日温差是10℃.故答案为:10.20.(2019秋•海安市期中)若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=﹣2.【分析】先根据题意确定a、b、c、d、e的值,再把它们的值代入代数式求值即可.【解析】∵a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,∴a=1,b=0,c=0,d=﹣2,e=﹣1,∴a+b+c+d+e=1+0+0﹣2﹣1=﹣2.故答案为:﹣2.三、解答题(本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•兴化市校级月考)计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)【分析】(1)根据有理数的加减法可以解答本题;(2)先去掉绝对值,然后根据有理数的加减法即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的加减法可以解答本题.【解析】(1)7﹣(﹣4)+(﹣5)=7+4+(﹣5)=6;(2)=6+0.2+(﹣2)﹣1.5=2.7;(3)﹣7.2﹣0.8﹣5.6+11.6=(﹣7.2)+(﹣0.8)+(﹣5.6)+11.6=﹣2;(4).=4.22.(2019秋•泰兴市校级月考)计算题(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)﹣20+(﹣14)﹣(﹣18)﹣13(3)(4)(﹣3)+12.5+(16)﹣(﹣2.5)(5)0.75+0.125+(﹣2)﹣(﹣12)+(﹣4)【分析】根据有理数的加法法则一一计算即可解决问题.【解析】(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=﹣(2.4+3.7+4.6)+5.7=﹣5 (2)﹣20+(﹣14)﹣(﹣18)﹣13=﹣(20+14+13)+18=﹣29(3)(4)(﹣3)+12.5+(16)﹣(﹣2.5)=1315=28(5)0.75+0.125+(﹣2)﹣(﹣12)+(﹣4)=﹣2﹣4+12623.(2019秋•清江浦区期中)小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:a*b=(a﹣b)﹣|b﹣a|.(1)求(﹣3)*2的值;(2)求(3*4)*(﹣5)的值.【分析】(1)根据题中给出的例子列出有理数相加减的式子,再进行计算即可;(2)先计算出3*4的值,再代入原式进行计算即可.【解析】(1)(﹣3)*2=(﹣3﹣2)﹣|2﹣(﹣3)|=﹣5﹣5=﹣10;(2)∵3*4=(3﹣4)﹣|4﹣3|=﹣2,(﹣2)*(﹣5)=[(﹣2)﹣(﹣5)]﹣|﹣5﹣(﹣2)|=0,∴(3*4)*(﹣5)=0.24.(2016秋•简阳市期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:解:原式=15=13;(2)计算.【分析】首先分析(1)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解析】原式=(﹣205)+400(﹣204)+()+(﹣1)+()=(400﹣205﹣204﹣1)+()=﹣10.25.(2019秋•常州月考)出租车司机小傅某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,行车里程(单位:km)如下:+11,﹣2,+3,+10,﹣11,+5,﹣15,﹣8(1)当把最后一名乘客送到目的地时,小傅距离出车地点的距离为多少?(2)若每千米的营运额为7元,成本为1.5元/km,则这天下午他盈利多少元?【分析】(1)可以把出车地看做0,然后根据题意列式,即可推出结果,(2)根据司机下午的总营运路程,由每千米的营运额为7元,成本为1.5元/km,推出每千米的盈利,用每千米的盈利乘以总营运路程即可推出这天下午他的总盈利.【解析】(1)设出发地为0,∴根据题意列式:+11﹣2+3+10﹣11+5﹣15﹣8=﹣7,∵|﹣7|=7,答:距离出发地点7km,(2)根据题意列式得:11+2+3+10+11+5+15+8=65,∵每千米的营运额为7元,成本为1.5元/km,∴盈利为:65×(7﹣1.5)=357.5(元),答:当天下午盈利357.5元.26.(2019秋•虎丘区校级期中)探索性问题:已知点A、B在数轴上分别表示m、n.(1)填写下表:m 5 ﹣5 ﹣6 ﹣6 ﹣10n 3 0 4 ﹣4 2A、B两点的距离 2(2)若A、B两点的距离为d,则d与m、n有何数量关系;(3)在数轴上标出所有符合条件的整数点P,使它到3和﹣3的距离之和为6,并求出所有这些整数的和;(4)若点C表示的数为x,当C在什么位置时,|x+2|+|x﹣3|取得值最小?【分析】(1)观察数轴,得出A、B两点的距离;(2)通过观察表格,写出一般规律;(3)充分运用数轴这个工具,表示整数点P;(4)在(2)(3)的启发下,结合数轴,回答题目的问题.【解析】(1)见表格;m 5 ﹣5 ﹣6 ﹣6 ﹣10n 3 0 4 ﹣4 2A、B两点的距离 2 5 10 2 12 (2)d=|m﹣n|;(3)符合条件的整数点P有7个,如图;所有这些整数和为:﹣3﹣2﹣1+0+1+2+3=0.(4)|x+2|表示点C到点﹣2的距离,|x﹣3|表示点C到点3的距离,当点C在点﹣2和点3之间时,|x+2|+|x﹣3|的值最小,此时﹣2≤x≤3.。
第3课时 有理数的减法
知识点 1 有理数的减法法则
1.在下列括号内填上适当的数.
(1)(-7)-(-3)=(-7)+________=________;
(2)(-5)-4=(-5)+________=________;
(3)0-(-2.5)=0+________=________.
2.2017·苍溪县二模计算(-3)-(-9)的结果等于(
) A .12 B .-12 C .6 D .-6
3.2017·孝感模拟比-3小1的数是( )
A .2
B .-2
C .4
D .-4
4.2017·赤峰|(-3)-5|等于( )
A .-8
B .-2
C .2
D .8
5.下列计算中,错误的是( )
A .2-(+5)=-3
B .6-(-6)=0
C .(-2)-(-23)=21
D .(+0.21)-(-0.05)=0.26
6.两个数的差是负数,则这两个数一定是( )
A .被减数是正数,减数是负数
B .被减数是负数,减数是正数
C .被减数是负数,减数也是负数
D .被减数比减数小
7.2017·贵港计算:-3-5=________.
8.(1)1减去-56与-16的和,所得的差是________;
(2)-4,5这两个数的绝对值的差是________.
9.若数轴上的两点A ,B 分别表示数-2和3,则A ,B 两点间的距离是________.
10.计算:(1)11-(-6);
(2)(-3.8)-(+10.5);
(3)2-⎝⎛⎭
⎫-43;
(4)⎝⎛⎭⎫-312-⎝⎛⎭
⎫-812.
11.两个加数的和是-10,其中一个加数是-1012
,则另一个加数是多少?
知识点 2 有理数减法的实际应用
12.冰箱冷冻室的温度为-6 ℃,此时房间内的温度为20 ℃,则房间内的温度比冰箱冷冻室的温度高( )
A .26 ℃
B .14 ℃
C .-26 ℃
D .-14 ℃
13.2017·呼和浩特我市冬季里某一天的最低气温是-10 ℃,最高气温是5 ℃,这一天的温差为( )
A .-5 ℃
B .5 ℃
C .10 ℃
D .15 ℃
14.已知甲、乙、丙三地的海拔高度分别为30 m ,-15 m ,-9 m ,那么最高的地方比最低的地方高多少?
15.下列四句话:①如果两个数的差是正数,那么这两个数都是正数;②减去一个数,等于加上这个数的相反数;③如果两个数互为相反数,那么它们的差为0;④0减去任何有理数,其差是减数的相反数.其中正确的有()
A.1个B.2个C.3个D.4个
16.有理数a,b在数轴上的对应点的位置如图2-5-2所示,则()
图2-5-2
A.a+b<0 B.a+b>0
C.a-b=0 D.a-b<0
17.2017·如东模拟已知a=5,|b|=8,且满足a+b<0,则a-b的值为()
A.13 B.-13 C.3 D.-3
18.北京、纽约等5个城市的国际标准时间(单位:时)可在数轴上表示如图2-5-3,如果将两地国际标准时间的差简称为时差,那么()
图2-5-3
A.首尔与纽约的时差为13小时
B.首尔与多伦多的时差为13小时
C.北京与纽约的时差为14小时
D.北京与多伦多的时差为14小时
19.填空:(-6)+________=15,23-________=-4.
20.已知a=12,b比a的相反数小-2,求a-b的值.
21.甲、乙、丙三家商场都以8万元购进了同一种货物,一周后全部售完.结果甲、乙、丙收回资金分别为10万元、7.8万元、8.2万元,若记盈利为“+”.
(1)分别用正负数表示三家的盈利情况;
(2)哪家商场的效益最好?哪家最差?相差多少万元?
22.回答下列问题:
(1)数轴上表示-3的点与表示4的点相距多少个单位长度?
(2)数轴上表示2的点先向右移动2个单位长度,再向左移动5个单位长度,最后到达的点表示的数是多少?
(3)数轴上若点A表示的数是2,点B与点A间的距离为3,则点B表示的数是多少?
(4)若|a-3|=2,|b+2|=1,且数a,b在数轴上表示的点分别是点A,点B,则A,B两点间的最大距离是多少?最小距离是多少?
1.(1)(+3) -4 (2)(-4) -9
(3)(+2.5) 2.5
2.C 3.D
4.D 5.B6.D 7.-8
8.(1)2 (2)-1
9.5 10.解:(1)11-(-6)=11+(+6)=17.
(2)(-3.8)-(+10.5)
=(-3.8)+(-10.5)=-14.3.
(3)2-⎝⎛⎭⎫-43=2+43=313
. (4)⎝⎛⎭⎫-312-⎝⎛⎭⎫-812=⎝⎛⎭⎫-312+812
=5. 11.解:另一个加数是(-10)-⎝
⎛⎭⎫-1012=12. 12.A.
13.D
14.解:∵30>-9>-15,
∴30-(-15)=45(m).
即最高的地方比最低的地方高45 m.
15. B 16.B.
17.A
18.B.
19. 21 27
20. 解:b =-12-(-2)=-10,则a -b =12-(-10)=22.
21.
解:(1)甲:+2万元;乙:-0.2万元;
丙:+0.2万元.
(2)甲商场的效益最好,乙商场的效益最差.
2-(-0.2)=2.2(万元),相差2.2万元.
22.解:(1)数轴上表示-3的点与表示4的点相距|-3-4|=7(个)单位长度.
(2)数轴上表示2的点先向右移动2个单位长度,再向左移动5个单位长度,最后到达的点表示的数是2+2-5=-1.
(3)数轴上若点A表示的数是2,点B与点A间的距离为3,则点B表示的数是2-3=-1或2+3=5.
(4)因为|a-3|=2,|b+2|=1,所以a为5或1,b为-1或-3,则A,B两点间的最大距离是8,最小距离是2.。