大学物理公式总结
- 格式:doc
- 大小:938.00 KB
- 文档页数:42
物理公式大全——大学物理篇第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0)1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —g gx 21.22轨迹方程y=xtga —av gx 2202cos 21.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
气体动理论1毫米汞柱等于133.3Pa 1mmHg=133.3Pa1标准大气压等户760毫米汞柱1atm=760mmHg=1.013×105Pa 热力学温度 T=273.15+t3.2气体定律 ==222111T V P T V P 常量 即 TV P =常量 阿付伽德罗定律:在相同的温度和压强下,1摩尔的任何气体所占据的体积都相同。
在标准状态下,即压强P 0=1atm 、温度T 0=273.15K 时,1摩尔的任何气体体积均为v 0=22.41 L/mol3.3 罗常量 N a =6.0221023 mol -13.5普适气体常量R 00T v P ≡国际单位制为:8.314 J/(mol.K)压强用大气压,体积用升8.206×10-2atm.L/(mol.K) 3.7理想气体的状态方程: PV=RT M M mol v=molM M(质量为M ,摩尔质量为M mol 的气体中包含的摩尔数)(R为与气体无关的普适常量,称为普适气体常量) 3.8理想气体压强公式 P=231v mn (n=VN为单位体积中的平均分字数,称为分子数密度;m 为每个分子的质量,v 为分子热运动的速率) 3.9 P=VNn nkT T N R V N mV N NmRT V M MRT A A mol ====(为气体分子密度,R 和N A 都是普适常量,二者之比称为波尔兹常量k=K J N RA/1038.123-⨯= 3.12 气体动理论温度公式:平均动能kT t 23=ε(平均动能只与温度有关)完全确定一个物体在一个空间的位置所需的独立坐标数目,称为这个物体运动的自由度。
双原子分子共有五个自由度,其中三个是平动自由度,两个适转动自由度,三原子或多原子分子,共有六个自由度)分子自由度数越大,其热运动平均动能越大。
每个具有相同的品均动能kT 21 3.13 kT it 2=ε i 为自由度数,上面3/2为一个原子分子自由度 3.14 1摩尔理想气体的内能为:E 0=RT ikT N N A A 221==ε 3.15质量为M ,摩尔质量为M mol 的理想气体能能为E=RT iM M E M M E mol mol 200==υ 气体分子热运动速率的三种统计平均值3.20最概然速率(就是与速率分布曲线的极大值所对应哦速率,物理意义:速率在p υ附近的单位速率间隔内的分子数百分比最大)mkTm kT p 41.12≈=υ(温度越高,p υ越大,分子质量m 越大p υ)3.21因为k=A N R 和mNA=Mmol 所以上式可表示为molmol A p M RTM RT mN RTmkT41.1222≈===υ 3.22平均速率molmol M RTM RT m kT v 60.188≈==ππ 3.23方均根速率molmol M RTM RT v 73.132≈=三种速率,方均根速率最大,平均速率次之,最概速率最小;在讨论速率分布时用最概然速率,计算分子运动通过的平均距离时用平均速率,计算分子的平均平动动能时用分均根热力学基础热力学第一定律:热力学系统从平衡状态1向状态2的变化中,外界对系统所做的功W ’和外界传给系统的热量Q 二者之和是恒定的,等于系统内能的改变E 2-E 14.1 W ’+Q= E 2-E 14.2 Q= E 2-E 1+W 注意这里为W 同一过程中系统对外界所做的功(Q>0系统从外界吸收热量;Q<0表示系统向外界放出热量;W>0系统对外界做正功;W<0系统对外界做负功) 4.3 dQ=dE+dW (系统从外界吸收微小热量dQ ,内能增加微小两dE,对外界做微量功dW 4.4平衡过程功的计算dW=PS dl =P dV 4.5 W=⎰21V V PdV4.6平衡过程中热量的计算 Q=)(12T T C M Mmol- (C 为摩尔热容量,1摩尔物质温度改变1度所吸收或放出的热量)4.7等压过程:)(12T T C M MQ p molp -= 定压摩尔热容量 4.8等容过程:)(12T T C M MQ v molv -=定容摩尔热容量 4.9内能增量E 2-E 1=)(212T T R i M M mol - RdT iM M dE mol 2=4.11等容过程2211 T P T P V RM M T P mol ===或常量 4.13 Q v =E 2-E 1=)(12T T C M Mv mol- 等容过程系统不对外界做功;等容过程内能变化4.14等压过程2211 T V T V P RM M T V mol ===或常量 4.15 )()(121221T T R M MV V P PdV W V V mol⎰-=-==4.16 W E E Q P +-=12(等压膨胀过程中,系统从外界吸收的热量中只有一部分 用于增加系统的内能,其余部分对于外部功) 4.17 R C C v p =-(1摩尔理想气体在等压过程温度升高1度时比在等容过程中要多吸收8.31焦耳的热量,用来转化为体积膨胀时对外所做的功,由此可见,普适气体常量R 的物理意义:1摩尔理想气体在等压过程中升温1度对外界所做的功。
第一章 质点运动学和牛顿运动定律平均速度 v =t△△r1.2瞬时速度 v=lim△t →△t △r =dtdr速度v=dtds ==→→lim lim△t 0△t △t△r 平均加速度a =△t△v瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2 速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=gav 2sin 20射高Y=gav 22sin 20飞行时间y=xtga —ggx 2轨迹方程y=xtga —av gx 2202cos 2 向心加速度 a=Rv 2圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。
一、力学1.1 运动学at2位移:x=x0+v0t+12速度:v=v0+at加速度:a=ΔvΔt角速度:ω=ΔθΔt圆周运动的线速度与角速度关系:v=ωr周期:T=2πrv频率:f=1T1.2 动力学牛顿第二定律:F=ma功:W=Fxmv2动能:E k=12势能:E p=mgℎ机械能:E=E k+E p功率:P=Fv冲量:I=Ft动量:p=mv动量守恒定律:p1+p2=p1′+p2′碰撞的恢复系数:e=v′relv rel1.3 刚体运动转动惯量:I=ml2角动量:L=IωIω2转动动能:E k=12二、电磁学2.1 静电学电场强度:E=Fq 电势差:U=Ed高斯定律:∮E⃗S ⋅dA=Q encε0电容:C=QU电势:V=KQr2.2 稳恒电流场欧姆定律:I=UR电阻:R=LσS电阻率:σ=1R⋅S焦耳定律:Q=I2Rt2.3 磁场磁感应强度:B=μ0I2πr安培环路定律:∮B⃗L⋅dl=μ0I enc磁通量:Φ=B⋅A磁通量量子:Φ0=2πℏe磁场对运动电荷的作用力:F=qvB 洛伦兹力:F=q(v×B⃗ )磁矩:μ=I⋅A2.4 电磁感应法拉第电磁感应定律:ε=−dΦdt楞次定律:L dIdt+M⋅B⃗ ×I=F自感:L=N⋅μ0⋅Al互感:M=N⋅μ0⋅Al三、热学3.1 热力学基本定律热力学第零定律:绝对零度不可达到热力学第一定律:dU=TdS−PdV 热力学第二定律:熵增原理克劳修斯定律:dS=qT开尔文-普朗克关系式:E=ℎν3.2 热传导傅里叶定律:J=−kL ⋅dT dx热导率:k=QLm⋅ΔT斯特藩-玻尔兹曼定律:P=σAT43.3 理想气体状态方程四、波动与光学4.1 波动波动方程:y=Asin(kx−ωt+ϕ)波速:v=波长周期相位:ϕ=2πx波长群速度:v g=dωdk衍射公式:sinθ=12波长障碍物尺寸干涉公式:y=2sin(ωt+ϕ0)cos(ωt+ϕ0)=sin(2ωt+2ϕ0)4.2 光学反射定律:入射角等于反射角折射定律:n1sinθ1=n2sinθ2光速:c=2πRT光的波动说:E=ℎν光电效应方程:E k=ℎν−W0旋光性:Δϕ=2α⋅Δλ五、量子力学5.1 基本公式Ψ=ĤΨ薛定谔方程:iℏððt海森堡不确定性原理:ΔxΔp≥ℏ2泡利不相容原理:一个原子中最多有两个电子具有相同的量子态n2能级公式:E n=−m2l25.2 量子态叠加与测量量子态叠加:Ψ=αΨ1+βΨ2测量公式:P(λ)=|⟨λ|Ψ⟩|21.在学习大学物理时,要注重理论知识与实际应用相结合,通过解决实际问题来加深对物理概念的理解。
大学物理公式汇总目录1力学31.1运动学 (3)1.2牛顿运动定律 (3)1.3动量和冲量 (3)1.4力的合成与分解 (4)1.5摩擦力 (4)1.6重力 (4)1.7弹力 (4)2功和能52.1功 (5)2.2功率 (5)2.3动能 (5)2.4重力势能 (5)2.5弹性势能 (5)2.6机械能守恒定律 (5)3转动动力学63.1角速度和角加速度 (6)3.2转动惯量 (6)3.3转动动能 (6)3.4转动定律 (6)3.5角动量 (6)3.6角动量守恒定律 (6)4流体力学74.1流体静力学 (7)4.2流体动力学 (7)5热力学75.1理想气体状态方程 (7)5.2热力学第一定律 (7)5.3热力学第二定律 (7)5.4卡诺循环 (8)6电磁学86.1静电场 (8)6.2恒定电流 (8)6.3磁场 (8)6.4电磁感应 (9)7光学9 8现代物理基础98.1狭义相对论 (9)8.2量子力学 (10)9原子物理与核物理109.1原子模型 (10)9.2核反应 (10)1力学1.1运动学位移、速度和加速度v=dxdt(1.1)速度v是位移x对时间t的导数。
a=dvdt=d2xdt2(1.2)加速度a是速度v对时间t的导数,等于位移x的二阶导数。
1.2牛顿运动定律牛顿第一定律(惯性定律)如果没有外力作用,物体将保持静止或匀速直线运动状态。
牛顿第二定律ìF=mìa(1.3)物体的加速度ìa与作用力ìF成正比,与物体的质量m成反比,加速度的方向与作用力的方向相同。
牛顿第三定律ìF作用=−ìF反作用(1.4)作用力和反作用力大小相等,方向相反。
1.3动量和冲量动量ìp=mìv(1.5)动量ìp是物体的质量m与速度ìv的乘积。
冲量ìJ=∫ìF dt(1.6)冲量ìJ是力ìF对时间t的积分。
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理公式大全大学物理公式大全(上)1. 运动学公式1.1 一维运动公式- 平均速度(v):v = Δx / Δt- 匀变速直线运动:v = v0 + at,x = v0t + (1/2)at^2,v^2 = v0^2 + 2aΔx- 重力加速度(g):g = 9.8 m/s^21.2 二维运动公式- 向心加速度(a):a = v^2 / r- 圆周运动速度(v):v = 2πr / T- 圆周运动周期(T):T = 2πr / v- 圆周运动角度(θ):θ = s / r2. 力学基本公式1.3 牛顿定律- 牛顿第一定律:物体静止或匀速直线运动时,合力 F = 0- 牛顿第二定律:物体的加速度与作用力成正比,反比于质量,F = ma- 牛顿第三定律:作用力与反作用力大小相等,方向相反,分别作用于两个物体1.4 摩擦力公式- 静摩擦力(fs):fs ≤μsN(µs为静摩擦因数,N为垂直于接触面的合力)- 动摩擦力(fd):fd = μdN(µd为动摩擦因数,N为垂直于接触面的合力)1.5 弹力公式- 弹簧定律:F = -kx(k为弹簧劲度系数,x为弹簧伸长量)3. 动量和能量1.6 动量公式- 动量(p):p = mv(m为质量,v为速度)- 冲击力(F):F = Δp/Δt1.7 动能公式- 动能(K):K = (1/2)mv^21.8 动能定理- 动能定理:W = ΔK = FΔx(W为外力所做的功,ΔK为动能变化量,F为力,Δx为力的位移)4. 旋转运动1.9 角度和弧度- 弧长(s)与半径(r)的关系:s = rθ(θ为角度)- 角度与弧度(rad)的转换关系:θ(rad) = θ(°) x (π/180)1.10 角速度公式- 角速度(ω):ω = ∆θ / ∆t1.11 角加速度公式- 角加速度(α):α = ∆ω / ∆t大学物理公式大全(下)5. 静电学1.12 库仑定律- 库仑定律(静电力):F = k |q1q2| / r^2(q1、q2为电荷,r为距离,k 为库仑常数)1.13 电场强度- 电场强度(E):E = F / q(F为电场力,q为测试电荷)1.14 电势能- 电势能(U):U = k |q1q2| / r(U为电势能,q1、q2为电荷,r为距离,k为库仑常数)6. 电磁感应1.15 法拉第电磁感应定律- 法拉第电磁感应定律:ε = -dΦ / dt(ε为感应电动势,Φ为磁通量,t 为时间变化率的负值)1.16 洛伦兹力公式- 洛伦兹力(F):F = q(v x B)(q为电荷,v为电荷的速度,B为磁场的磁感应强度)7. 光学1.17 折射公式- 折射定律:n1sinθ1 = n2sinθ2(n1、n2为介质的折射率,θ1、θ2为入射角和折射角)1.18 薄透镜公式- 薄透镜公式:1/f = 1/do + 1/di(f为透镜焦距,do为物距,di为像距)1.19 光的干涉- 杨氏双缝干涉:dsinθ = mλ(d为缝宽,θ为干涉角,m为干涉级次,λ为波长)8. 热学1.20 热传导公式- 热传导定律:Q = kA (∆T / L)(Q为传热量,k为导热系数,A为截面积,∆T为温差,L为长度)1.21 热膨胀公式- 线膨胀公式:∆L = αL∆T(∆L为长度变化,α为线膨胀系数,L为初始长度,∆T为温差)以上是大学物理的一些基本公式,希望对你的学习有所帮助。
△t lim t →0v 0△ 第一章 质点运动学和牛顿运动定律△r1.1 平均速度 v =△ t△r dr1.2 瞬时速度 v= lim = △t →0dsv 21.23 向心加速度 a=R1.24 圆周运动加速度等于切向加速度与法向加速度矢量和 a=a t +a n1.25 加速度数值 a=1.26 法向加速度和匀速圆周运动的向心加速度相同 a n =1. 3 速度 v=△t →0 t △v= l △im = dt v 2 R1.6 平均加速度 a =△tdv 1.27 切向加速度只改变速度的大小 a t = △v dvdsd Φdt1.7 瞬时加速度(加速度)a= lim △t →0dv d 2r 1.8 瞬时加速度 a= =dt dt 21.11 匀速直线运动质点坐标 x=x 0+vt 1.12 变速运动速度 v=v 0+at= t dt1.28 v = = R= R ω dt dtd φ1.29 角速度 ω=dt1.30 角加速度 α=d ω =d 2φdt dt 211.31 角加速度 a 与线加速度 a n 、a t 间的关系1.13 变速运动质点坐标 x=x 0+v 0t+ at 2v 2(R ω)2dvd ω2 2 2 a n =R == R ω2a t = = R = R α1.14 速度随坐标变化公式:v -v =2a(x-x )Rdt dt 1.15 自由落体运动 1.16 竖直上抛运动⎧ v = gt ⎪ y = 1 at 2⎧ v = v 0 - gt ⎪ y = v t - 1 gt 2 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
⎨ 2 ⎨ 0 2 牛顿第二定律:物体受到外力作用时,所获得的加 ⎪ v 2 = 2gy ⎪v 2= v 2 - 2gy速度 a 的大小与外力 F 的大小成正比,与物体的质量 m⎩ ⎩成反比;加速度的方向与外力的方向相同。
大学物理公式总结第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dtdr1.3速度v=dt ds==→→lim lim△t 0△t △t △r1.6 平均加速度a =△t△v 1.7瞬时加速度(加速度)a=lim 0△t →△t△v=dtdv1.8瞬时加速度a=dtdv =22dt r d1.11匀速直线运动质点坐标x=x 0+vt1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0)1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gyv at y gtv 22122⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gtt v y gt v v 2212022001.17 抛体运动速度分量⎩⎨⎧-==gta v v av v y x sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=ga v 2sin 201.20射高Y=ga v 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 21.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22nt a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2 1.27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dt d R dt ds v === 1.29角速度 dt φωd =1.30角加速度22dt dtd d φωα==1.31角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR RR R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线1.39 F=G221 r mm G为万有引力称量=6.67×10-11N•m2/kg21.40 重力P=mg (g重力加速度)1.41 重力P=G2rMm1.42有上两式重力加速度g=G2rM(物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变) 1.43胡克定律F=—kx (k是比例常数,称为弹簧的劲度系数)1.44 最大静摩擦力f最大=μN (μ0静摩擦系数)1.45滑动摩擦系数f=μN (μ滑动摩擦系数略小于μ0) 第二章守恒定律2.1动量P=mv2.2牛顿第二定律F=dtdPdtmvd=)(2.3 动量定理的微分形式Fdt=mdv=d(mv)F=ma=mdtdv2.4 ⎰21ttFdt=⎰21)(vvmvd=mv2-mv12.5 冲量 I= ⎰21t t Fdt2.6 动量定理 I=P 2-P 12.7 平均冲力F 与冲量 I= ⎰21t t Fdt=F (t 2-t 1)2.9 平均冲力F =12t t I -=1221t t Fdtt t -⎰=1212t tmv mv--2.12 质点系的动量定理 (F 1+F 2)△t=(m 1v 1+m 2v 2)—(m 1v 10+m 2v 20)左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量2.13 质点系的动量定理:∑∑∑===-=ni ni i i ni ii iv m v m t F 111△作用在系统上的外力的总冲量等于系统总动量的增量2.14质点系的动量守恒定律(系统不受外力或外力矢量和为零)∑=ni ii v m 1=∑=ni i i v m 1=常矢量2.16mvRR p L =•=圆周运动角动量 R 为半径 2.17mvdd p L =•= 非圆周运动,d 为参考点o 到p 点的垂直距离 2.18 φsin mvr L = 同上2.21φsin Fr Fd M == F 对参考点的力矩 2.22 Fr M •= 力矩2.24dtdL M =作用在质点上的合外力矩等于质点角动量的时间变化率 2.26⎪⎭⎪⎬⎫==常矢量L dtdL 0如果对于某一固定参考点,质点(系)所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变。
质点系的角动量守恒定律 2.28∑∆=iii r m I 2刚体对给定转轴的转动惯量 2.29αI M = (刚体的合外力矩)刚体在外力矩M 的作用下所获得的角加速度a 与外合力矩的大小成正比,并于转动惯量I 成反比;这就是刚体的定轴转动定律。
2.30⎰⎰==vmdvr dm r I ρ22 转动惯量(dv 为相应质元dm 的体积元,p 为体积元dv 处的密度) 2.31 ωI L = 角动量2.32dtdLIa M == 物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量2.33 dL Mdt =冲量距 2.34 000ωωI I L L dL Mdt L L t t -=-==⎰⎰2.35常量==ωI L2.36 θcos Fr W = 2.37rF W •=力的功等于力沿质点位移方向的分量与质点位移大小的乘积 2.38 dsF dr F dW W b L a b L a b L a abθcos )()()(⎰=•⎰=⎰=2.39nn b L a b L a W W W dr F F F dr F W +++=•++⎰=•⎰= 2121)()()(合力的功等于各分力功的代数和 2.40 tWN ∆∆=功率等于功比上时间 2.41 dtdWt W N t =∆∆=→∆0lim2.42v F v F tsF N t •==∆∆=→∆θθcos cos lim 0瞬时功率等于力F 与质点瞬时速度v 的标乘积 2.4320221210mv mv mvdv W v v -=⎰=功等于动能的增量 2.44 221mv E k =物体的动能 2.45k k E E W -=合力对物体所作的功等于物体动能的增量(动能定理) 2.46 )(b a abh h mg W-=重力做的功2.47)()(ba b a ab r GMmr GMm dr F W ---=•⎰=万有引力做的功 2.48222121b a b a ab kx kx dr F W -=•⎰=弹性力做的功 2.49pp p E E E W b a ab ∆-=-=保势能定义 2.50 mghE p =重力的势能表达式 2.51r GMm E p -=万有引力势能2.52221kx E p =弹性势能表达式2.53 0k k E E W W-=+内外质点系动能的增量等于所有外力的功和内力的功的代数和(质点系的动能定理) 2.54 0k k E E W W W-=++非内保内外保守内力和不保守内力2.55 pp p E E E W∆-=-=0保内系统中的保守内力的功等于系统势能的减少量 2.56 )()(00p k p k E E E E W W +-+=+非内外2.57pk E E E +=系统的动能k 和势能p 之和称为系统的机械能 2.58 0E E W W-=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和(功能原理) 2.59常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律。
2.6002022121mgh mv mgh mv +=+重力作用下机械能守恒的一个特例 2.6120202221212121kx mv kx mv +=+弹性力作用下的机械能守恒第三章 气体动理论 1毫米汞柱等于133.3Pa1mmHg=133.3Pa 1标准大气压等户760毫米汞柱1atm=760mmHg=1.013×105Pa热力学温度 T=273.15+t 3.2气体定律==222111T V P T V P 常量即TV P =常量阿付伽德罗定律:在相同的温度和压强下,1摩尔的任何气体所占据的体积都相同。
在标准状态下,即压强P 0=1atm 、温度T 0=273.15K 时,1摩尔的任何气体体积均为v 0=22.41 L/mol 3.3 罗常量 N a =6.0221023mol -13.5普适气体常量R 000T v P ≡ 国际单位制为:8.314 J/(mol.K)压强用大气压,体积用升8.206×10-2 atm.L/(mol.K) 3.7理想气体的状态方程:PV=RTM Mmolv=molM M (质量为M ,摩尔质量为M mol 的气体中包含的摩尔数)(R 为与气体无关的普适常量,称为普适气体常量)3.8理想气体压强公式P=231v mn (n=VN为单位体积中的平均分字数,称为分子数密度;m 为每个分子的质量,v 为分子热运动的速率) 3.9P=VNn nkT T N R V N mVN NmRTV MMRT A Amol====(为气体分子密度,R 和N A 都是普适常量,二者之比称为波尔兹常量k=KJ NRA/1038.123-⨯=3.12 气体动理论温度公式:平均动能kT t23=ε(平均动能只与温度有关)完全确定一个物体在一个空间的位置所需的独立坐标数目,称为这个物体运动的自由度。
双原子分子共有五个自由度,其中三个是平动自由度,两个适转动自由度,三原子或多原子分子,共有六个自由度)分子自由度数越大,其热运动平均动能越大。
每个具有相同的品均动能kT 21 3.13kTit 2=ε i 为自由度数,上面3/2为一个原子分子自由度3.14 1摩尔理想气体的内能为:E 0=RT i kT N NA A 221==ε3.15质量为M ,摩尔质量为M mol 的理想气体能能为E=RT i M M E M M Emol mol 200==υ气体分子热运动速率的三种统计平均值3.20最概然速率(就是与速率分布曲线的极大值所对应哦速率,物理意义:速率在pυ附近的单位速率间隔内的分子数百分比最大)mkTm kT p41.12≈=υ(温度越高,pυ越大,分子质量m 越大pυ)3.21因为k=AN R 和mNA=Mmol 所以上式可表示为molmol Ap M RTM RT mN RTmkT41.1222≈===υ 3.22平均速率molmol M RTM RT m kT v 60.188≈==ππ3.23方均根速率molmol M RTM RT v 73.132≈=三种速率,方均根速率最大,平均速率次之,最概速率最小;在讨论速率分布时用最概然速率,计算分子运动通过的平均距离时用平均速率,计算分子的平均平动动能时用分均根第四章 热力学基础热力学第一定律:热力学系统从平衡状态1向状态2的变化中,外界对系统所做的功W ’和外界传给系统的热量Q 二者之和是恒定的,等于系统内能的改变E2-E14.1 W’+Q= E2-E14.2 Q= E2-E1+W 注意这里为W同一过程中系统对外界所做的功(Q>0系统从外界吸收热量;Q<0表示系统向外界放出热量;W>0系统对外界做正功;W<0系统对外界做负功)4.3 dQ=dE+dW(系统从外界吸收微小热量dQ,内能增加微小两dE,对外界做微量功dW 4.4平衡过程功的计算dW=PS dl=P dV4.5 W= 21VVPdV4.6平衡过程中热量的计算1摩尔物质温度改变1度所吸收或4.7等压过程:)(12T T C MM Q p molp-=4.8等容过程:)(12T T C M MQ v molv-=容摩尔热容量4.9内能增量E2-E1=)(212T T R iM M mol 4.11等容过程4.124.13 Q v =E 2-E 1=外界做功;等容过程内能变化4.14等压过程11 T V P RM M T V mol ==或常量4.154.16 W E E QP+-=12(等压膨胀过的热量中只有一部分用于增加系统的内能,其余部分对于外部功) 4.17 RC Cv p=- (1摩尔理想气体在等压过程温度升高1度时比在等容过程中要多吸收8.31焦耳的热量,用来转化为体积膨胀时对外所做的功,由此可见,普适气体常量R 的物理意义:1摩尔理想气体在等压过程中升温1度对外界所做的功。