光学习题 光的衍射2
- 格式:pdf
- 大小:170.25 KB
- 文档页数:11
光学练习题光的干涉和衍射计算光学练习题:光的干涉和衍射计算在光学领域中,干涉和衍射是两个重要的现象。
干涉是指光波的叠加,而衍射是指光波通过一个小孔或者由一些障碍物组成的小孔时所发生的弯曲现象。
本文将通过一些光学练习题来帮助读者更好地理解光的干涉和衍射。
练习题一:单缝衍射假设一束波长为λ的单色光以近似平行的光线通过一个宽度为b的狭缝,距离屏幕的距离为D。
计算在屏幕上距离中央亮纹的距离为y 的位置,光的强度与y的关系。
解答:单缝衍射的衍射角θ可以通过衍射公式求得:sinθ = mλ / b其中,m为整数,表示衍射的级次。
由衍射角可以推导出亮纹间距d:d = y / D = λ / b根据亮纹间距d与y的关系可得:y = mλD / b光的强度与y的关系可以通过振幅叠加原理得到,即所有衍射波的振幅的平方和。
练习题二:双缝干涉考虑一束波长为λ的单色光以近似平行的光线通过一个双缝系统,两个缝的间距为d。
计算在屏幕上距离中央亮纹的距离为y的位置,光的强度与y的关系。
解答:双缝干涉的干涉角θ可以通过干涉公式求得:sinθ = mλ / d其中,m为整数,表示干涉条纹的级次。
由干涉角可以推导出亮纹间距D:D = y / d = λ / d根据亮纹间距D与y的关系可得:y = mλD / d光的强度与y的关系同样可以通过振幅叠加原理得到。
练习题三:杨氏实验杨氏实验是一种通过干涉现象测量光波波长的方法。
实验装置如下图所示:(图略)其中,S为光源,P为偏振器,L为透镜,SS'为狭缝,NN'为接收屏。
在一定条件下,可以观察到一系列等距的干涉条纹。
题目:假设在经过透镜前的光束为平行光,透镜到接收屏的距离为L,狭缝到接收屏的距离为D。
计算干涉条纹间距d与波长λ的关系。
解答:在杨氏实验中,根据几何关系可以推导出干涉条纹间距d与波长λ的关系:d = λL / D这个关系式可以用于测量光波的波长。
练习题四:薄膜干涉当一束光波从一个介质到达另一个介质时,由于介质的折射率不同,导致光波发生反射和透射。
光的衍射一、填空题1. 衍射可分为 和 两大类。
2. 光的衍射条件是_障碍物的限度和波长可比拟____。
3. 光波的波长为λ的单色光,通过线度为L 的障碍物时,只有当___λ>>L_________才能观察到明显的衍射现象。
4. 单色平面波照射到一小圆孔上,将其波面分成半波带.若几点到观察点的距离为1m ,单色光的波长为4900Å,则此时第一半波带的半径为_________。
5. 惠更斯-菲涅尔原理是在惠更斯原理基础上,进一步考虑了__次波相干叠加______________,补充和发展了惠更斯原理而建立起来的。
6. 在菲涅尔圆孔衍射中,单色点光源距圆孔为R ,光波波长为λ,半径为ρ的圆孔露出的波面对在轴线上的距圆孔无限远处可作的半波带数为__λρR /2_______________。
7. 在菲涅尔圆孔衍射中,圆孔半径为 6 mm ,波长为6000οA 的平行单色光垂直通过圆孔,在圆孔的轴线上距圆孔6 m 处可作_____10___个半波带。
8. 在菲涅尔圆孔衍射中,入射光的强度为I 0,当轴线上P 点的光程差为2λ时,P 点的光强与入射光强的比为_____4__________。
9. 在菲涅尔圆孔衍射中,入射光的振幅为A 0,当轴线上P 点恰好作出一个半波带,该点的光强为__________20A ______。
10. 在夫琅禾费单缝衍射中,缝宽为b ,在衍射角为方向θ,狭缝边缘与中心光线的光程差为____________。
11. 在夫琅禾费单缝衍射中,缝宽为b ,波长为λ,在衍射角为方向θ,狭缝两边缘光波的位相差为____________。
12. 在夫琅禾费单缝衍射中,缝宽为b ,波长为λ,观察屏上出现暗纹的条件,衍射角θ可表示为_____________。
13. 夫琅禾费双缝衍射是___________与___________的总效果,其光强表达式中______________是单缝衍射因子,______________是双缝干涉因子。
第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。
解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为λθ∆=图12-50 习题3图解:设直径为a ,则有f d aλ=4.利用第三节的结果导出外径和内径分别为a 和b 的圆环(见图12-51)的夫琅和费衍射强度公式,并求出当2ab =时,(1)圆环衍射与半径为a 的圆孔衍射图样的中心强度之比;(2)圆环衍射图样第一个暗环的角半径。
∴P 当(12449416a ca ⎫-=⎪⎭ ∴()()09016aI I = (2)第一暗纹有()()22110a J ka b J kb ka kb θθθθ-= 查表可有 3.144ka θ=4. (1)一束直径为2mm 的氦氖激光(632.8nm λ=)自地面射向月球,已知地面和月球相距33.7610km ⨯,问在月球上得到的光斑有多大?(2)如果用望远镜用作为扩束器将该扩展成直径为4m 的光束,该用多大倍数的望远镜?将扩束后的光束再射向月球,在月球上的光斑为多大? 解:(1)圆孔衍射角半宽度为0.61aλθ=∴传到月球上时光斑直径为(2)若用望远镜扩束,则放大倍数为2000倍。
第15章 光的衍射 习题解答1.为什么声波的衍射比光波的衍射更加显着解:因为声波的波长远远大于光的波长,所以声波衍射比光波显着;2.衍射的本质是什么衍射和干涉有什么联系和区别解:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.3.什么叫半波带单缝衍射中怎样划分半波带对应于单缝衍射第三级明条纹和第四级暗条纹,单缝处波阵面各可分成几个半波带解:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第三级明条纹和第四级暗条纹,单缝处波阵面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a4.在单缝衍射中,为什么衍射角ϕ愈大级数愈大的那些明条纹的亮度愈小 解:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.5.若把单缝衍射实验装置全部浸入水中,衍射图样将发生怎样的变化如果此时用公式),2,1(2)12(sin =+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin n k λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.因ϕsin a 只代表光在水中的波程差.6.单缝衍射暗纹条件与双缝干涉明纹的条件在形式上类似,两者是否矛盾怎样说明解:不矛盾.单缝衍射暗纹条件为k k a 2sin ==λϕ2λ,是用半波带法分析子波叠加问题.相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.7.光栅衍射与单缝衍射有何区别为何光栅衍射的明纹特别明亮而暗区很宽解:光栅衍射是多缝干涉和单缝衍射的总效果.其明条纹主要取决于多缝干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.8. 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明纹缺级12a b a +=;23a b a +=;34a b a +=解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即可知,当k ab a k '+=时明纹缺级. 1a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;2a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;3a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.9.若以白光垂直入射光栅,不同波长的光将会有不同的衍射角;1零级明纹能否分开不同波长的光2在可见光中哪种颜色的光衍射角最大3不同波长的光分开程度与什么因素有关解:1零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强.2可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞.3对于同一级明纹,波长相差越大条纹分开程度越大;10.为什么天文望远镜物镜的孔径做得很大射电天文望远镜和光学望远镜,哪种分辨率更高 解:光学仪器的最小分辨角为0 1.22D λθ=,它的倒数为分辨率,当D 越大或者λ越小,分辨率就越大,所以用的天文望远镜物镜的孔径很大,提高了分辨率;由于微波的波长比可见光的波长要小,故射电天文望远镜的分辨率更高;11.单缝宽0.40mm,透镜焦距为1m,用600λ=nm 的单色平行光垂直照射单缝;求:1屏上中央明纹的角宽度和线宽度;2单缝上、下端光线到屏上的相位差恰为4π的P 点距离中央明纹中心的距离;3屏上第一级明纹的线宽度;解:1第1级暗条纹中心对应的衍射角1ϕ为故中央明纹的角宽度为而中央明纹的线宽度为2相位差为4π,则对应的光程差为2λ,即故屏上P 点应形成第二级暗纹,它到中央明纹中心的距离为3屏上第一级明纹的线宽度为中央明纹线宽度的1/2,解之得12.在单缝夫琅禾费衍射实验中,用波长1650nm λ=的单色平行光垂直入射单缝,已知透镜焦距2.00f m =,测得第二级暗纹距中央明纹中心33.2010m -⨯;现用波长为2λ的单色平行光做实验,测得第三级暗纹距中央明纹中心34.5010m -⨯.求缝宽a 和波长2λ; 解:1当用1650nm λ=入射时,第二级暗纹对应的衍射角设为1ϕ由暗纹公式得: 11sin 2a ϕλ=而第二级暗纹距中中央明纹中心距离则 9413122650102.008.13103.210a f m m x λ---⨯⨯==⨯=⨯⨯ 2当用2λ入射时,第三级暗纹对应的衍射角设为2ϕ由暗纹公式得: 22sin 3a ϕλ=而第三级暗纹距中央明纹中心距离则 34722 4.5108.1310 6.091060933 2.00x a m m nm f λ---⨯⨯⨯===⨯=⨯ 13.一单色平行光垂直照射一单缝,若其第三级明纹位置正好与600nm 的单色平行光的第二级明纹位置重合,求此单色光的波长;解:单缝衍射的明纹公式为当600=λnm 时,2=kx λλ=时,3=k重合时ϕ角相同,所以有得 6.42860075=⨯=x λnm 14.用橙黄色的平行光垂直照射一缝宽为0.60mm 的单缝,缝后凸透镜的焦距为40.0cm,观察屏幕上形成的衍射条纹;若屏上离中央明纹中心1.40mm 处的P 点为一明纹;求:1入射光的波长;2P 点处条纹的级数;3从P 点看,对该光波而言,狭缝处的波阵面可分成几个半波带解:1由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ 当 3=k ,得600=λnm2 3=k P 点是第3级明纹;3由2)12(sin λϕ+=k a 可知, 当3=k 时,单缝处的波面可分成712=+k 个半波带;15.以白光垂直照射光栅常数d=×10-6m 的透射光栅,在衍射角为30°处会出现什么波长的可见光可见光的波长范围为400~700nm解:由光栅方程:λθk d ±=sin , 3,2,1,0=k讨论:当1=k 时,nm k d 17002==λ 当2=k时,nm k d 8502==λ 当3=k时,nm k d 5672==λ 当4=k时,nm k d 4252==λ 当5=k 时,nm kd 3402==λ 所以,在衍射角为30°处会出现波长为567nm 和425nm 的可见光16.用波长1400nm λ=和2760nm λ=的两种平行光,垂直入射在光栅常数为52.010m -⨯的光栅上,若紧接光栅后用焦距为f =2.0m 的透镜把光会聚在屏幕上;求屏幕上两种平行光第二级主极大之间的距离;解:光栅方程:sin d k ϕλ=±, 3,2,1,0=k屏幕上第k 级主极大的位置为屏幕上两种光第二级主极大之间的距离为17.波长600λ=nm 的单色平行光垂直入射到一光栅上,第二、三级明纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级;求:1光栅常数d ;2光栅上狭缝的最小宽度a ;3在9090ϕ-<<范围内,实际呈现的全部级数;解:1由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:得 6100.6-⨯=+=b a d m2因第四级缺级,故此须同时满足解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m3由λϕk b a =+sin )( 当2πϕ=,对应max k k =∴ 1010600100.696max =⨯⨯=+=--λb a k 因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明纹10±=k 在︒±=90k 处看不到.18.一束平行光含有两种不同波长成份1λ和2λ;此光束垂直照射到一个衍射光栅上,测得波长1λ的第二级主极大与波长2λ的第三级主极大位置相同,它们的衍射角均满足sin 0.3ϕ=;已知nm 6301=λ;1求光栅常数d ;2求波长2λ;3对波长1λ而言,最多能看到第几级明纹解:由光栅方程 λθk d ±=sin , 3,2,1,0=k1光栅常数为m d 61102.4sin 2-⨯==θλ 22132sin λλθ==d 37.6sin 11=≤=λλθd d k最多能看到第6级明纹19.波长范围为400760nm 的白光垂直照射入射某光栅,已知该光栅每厘米刻有5000条透光缝,在位于透镜焦平面的显示屏上,测得光栅衍射第一级光谱的宽度约为56.5mm,求透镜的焦距;解:由题设可知光栅常数为由光栅方程可得波长为400nm 和760nm 的第一级谱线的衍射角分别为第一级光谱的宽度为则有 0.18x f ∆==0.31m 20.在圆孔夫琅禾费衍射中,设圆孔半径为0.10mm,透镜焦距为50cm,所用单色光波长为500nm,求在透镜焦平面处屏幕上呈现的爱里斑半径;解:由爱里斑的半角宽度爱里斑半径53.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 21.已知天空中两颗星相对于一望远镜的角距离为64.8410rad -⨯,它们都发出波长为550nm 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星解:由最小分辨角公式22.已知入射的X 射线束含有从~范围内的各种波长的X 射线,晶体的晶格常数为,当X 射线以45°角入射到晶体时,问晶体对哪些波长的X 射线能产生强反射解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长 当1=k 时, nm 389.045sin 75.22=⨯⨯=︒λ2=k 时,nm 194.0245sin 75.22=⨯⨯=︒λ 3=k 时,nm 13.0389.3==λ 4=k 时, nm 097.0489.3==λ 故只有nm 13.03=λ和nm 097.04=λ的X 射线能产生强反射.。
光的衍射和衍射角练习题衍射是光线通过一个开口或物体边缘后,发生偏折和干涉现象。
在具体的光学问题中,我们经常需要计算衍射角以及处理与衍射有关的各种问题。
下面,我们将提供一些光的衍射和衍射角的练习题,帮助读者更好地理解和应用这一概念。
练习题一:单缝衍射问题描述:一束波长为550nm的单色光垂直照射到一个宽度为0.1mm的狭缝上,屏幕上与狭缝平行的某一点距离为2.5m。
求在该点的衍射角。
解题思路:设狭缝宽度为d,距离屏幕的距离为L,衍射角为θ。
由于衍射角很小,可以使用夫琅禾费衍射公式:sinθ =λ/d将已知数据代入计算:d = 0.1mm = 0.1 × 10^-3 mL = 2.5mλ = 550nm = 550 × 10^-9 msinθ = (550 × 10^-9 m) / (0.1 × 10^-3 m) = 0.0055衍射角θ ≈ sinθ ≈ 0.0055练习题二:双缝干涉问题描述:一个波长为600nm的单色光垂直照射到两个缝宽为0.15mm的狭缝上,两个缝的中心距离为0.6mm。
屏幕上与狭缝平行的某一点距离为1.5m。
求在该点的衍射角。
解题思路:设两个狭缝的中心距离为d,缝宽为a,距离屏幕的距离为L,衍射角为θ。
由于这是双缝干涉,根据干涉条件和几何关系,衍射角可计算为:sinθ = mλ / a将已知数据代入计算:d = 0.6mm = 0.6 × 10^-3 ma = 0.15mm = 0.15 × 10^-3 mL = 1.5mλ = 600nm = 600 × 10^-9 msinθ = (1 × 600 × 10^-9 m) / (0.15 × 10^-3 m) = 0.004衍射角θ ≈ sinθ ≈ 0.004练习题三:衍射光栅问题描述:一个光栅的槽宽为0.3mm,槽数为600。
第十二章 光的衍射1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。
解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0aλθ∆=∴亮纹半宽度290035010500100.010.02510r f f m a λθ---⨯⨯⨯=⋅∆===⨯ (2)第一亮纹,有1sin 4.493a παθλ=⋅= 9134.493 4.493500100.02863.140.02510rad a λθπ--⨯⨯∴===⨯⨯ 21150100.02860.014314.3r f m mm θ-∴=⋅=⨯⨯==同理224.6r mm =(3)衍射光强20sin I I αα⎛⎫= ⎪⎝⎭,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0II0 0 11 4.493 0.047182 7.725 0.01694 . . . . . . . . .2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为20sin[(sin sin )](sin sin )a i I I a i πθλπθλ⎧⎫-⎪⎪=⎨⎬⎪⎪-⎩⎭式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a iλθ∆=证明:(1))即可(2)令(sin sin ai πθπλ==± ∴对于中央亮斑 sin sin i aλθ-=3. 在不透明细丝的夫琅和费衍射图样中,测得暗条纹的间距为1.5mm ,所用透镜的焦距为30mm ,光波波长为632.8nm 。
光学练习题光的干涉与衍射光栅计算光学练习题:光的干涉与衍射光学是研究光的传播和相互作用规律的科学。
其中,干涉与衍射是光学中的重要现象。
通过解决光学练习题,我们可以更好地理解和运用干涉与衍射的原理。
本文将介绍一些光学练习题,并给出相应的计算方法。
第一题:单缝衍射已知一狭缝对于波长为λ的光的衍射产生一级主极大时,入射角为θ。
现请计算:1.1 当入射角为θ时,一级主极大和二级主极大的夹角是多少?1.2 当入射角为θ时,两级主极大的角宽度分别是多少?解答:1.1 根据单缝衍射的相关公式,夹角的计算公式为:d⋅sinθ = n⋅λ,其中d为狭缝宽度,n为级数,λ为波长。
对于一级主极大,n = 1,所以有:d⋅sinθ = λ。
对于二级主极大,n = 2,所以有:d⋅sinθ₁ = 2⋅λ。
两个方程联立解得:sinθ₁ = 2⋅sinθ,即:θ₁ = arcsin(2⋅sinθ)。
1.2 对于一级主极大,角宽度可以用下式表示:Δθ = λ/d。
对于二级主极大,角宽度为两个一级主极大之间的夹角,即:Δθ₁= θ - θ₁。
将1.1中计算得到的θ₁代入上式,可得:Δθ₁= θ - arcsin(2⋅sinθ)。
第二题:杨氏双缝干涉二次干涉模式中,两狭缝间距为d,光源到两狭缝的距离为L。
已知波长为λ的光通过双缝造成的主极大次序为n时,请计算:2.1 主极大干涉线与中央重点的夹角θ的大小。
2.2 若主极大的宽度定义为两个相邻极小之间的距离A,计算A与d、λ的关系式。
解答:2.1 根据杨氏双缝干涉的相关公式,主极大的位置可以用下式表示:d⋅sinθ = n⋅λ。
将其改写为弧度制,即:d⋅sinθ = n⋅λ/2π。
由此可得:sinθ = n⋅λ/(2πd),进一步化简得:θ = arcsin(n⋅λ/(2πd))。
2.2 主极大的宽度可以用下式计算:A = λ⋅L/d。
这是由于主极大宽度等于相邻两个主极小之间的距离,而主极小之间的距离可近似视为d。
光的衍射与色散现象练习题在光学的世界里,光的衍射与色散现象是非常重要的知识点。
为了帮助大家更好地理解和掌握这两个概念,我们来一起做一些相关的练习题。
一、选择题1、下列现象中,属于光的衍射现象的是()A 雨后天空出现彩虹B 通过狭缝看日光灯,看到彩色条纹C 泊松亮斑D 阳光下肥皂泡上出现彩色条纹答案:BC解析:A 选项雨后天空出现彩虹是光的色散现象;B 选项通过狭缝看日光灯,看到彩色条纹,是光的衍射现象;C 选项泊松亮斑是光的衍射现象的有力证明;D 选项阳光下肥皂泡上出现彩色条纹是光的干涉现象。
2、对于光的衍射现象,下列说法正确的是()A 只有障碍物或孔的尺寸很小的时候才会发生衍射现象B 衍射现象是光波叠加的结果C 光的衍射现象否定了光的直线传播规律D 光的衍射现象为光的波动说提供了有力的证据答案:BD解析:A 选项,障碍物或孔的尺寸比光的波长小或者跟光的波长相差不多时就会发生明显的衍射现象,但并不是只有尺寸很小的时候才会发生衍射,尺寸较大时也能发生衍射,只是不明显;B 选项,衍射现象是光波在传播过程中遇到障碍物或小孔时,光波发生叠加的结果;C 选项,光的衍射现象没有否定光的直线传播规律,只是说明光在一定条件下会偏离直线传播;D 选项,光的衍射现象表明光具有波动性,为光的波动说提供了有力的证据。
3、下列关于光的色散现象的说法中,正确的是()A 光的色散现象是由于不同颜色的光在同种介质中的折射率不同B 白光通过三棱镜后,红光的偏折程度最大C 光的色散现象说明白光是由各种色光混合而成的D 光的色散现象可以用光的直线传播来解释答案:AC解析:A 选项,光的色散现象是由于不同颜色的光在同种介质中的折射率不同,导致折射时偏折程度不同;B 选项,白光通过三棱镜后,紫光的偏折程度最大;C 选项,光的色散现象说明白光是由各种色光混合而成的;D 选项,光的色散现象不能用光的直线传播来解释,而是由于光的折射和不同色光的折射率不同导致的。
光学练习题光的干涉与衍射现象在光学领域中,干涉与衍射是两个重要的现象,它们展示了光的波动性质。
通过进行一系列的练习题,可以进一步加深对光的干涉与衍射现象的理解和应用。
练习题一:双缝干涉设有一平行光束垂直照射到一均匀单色光源通过的双缝上,双缝的间距为d,并且缝宽极窄。
屏幕距离双缝为L。
试回答以下问题:1. 当光源波长为λ、缝宽为a时,在屏幕上的干涉图案特征是怎样的?2. 缝宽增大,即a增大,会对干涉图案有何影响?3. 双缝间距增大,即d增大,会对干涉图案有何影响?4. 若将一透明薄片放置在其中一个缝口前,会对干涉图案有何影响?练习题二:单缝衍射假设平行光束通过的是一个宽度为a、高度为b的矩形孔。
矩形孔的中央垂直方向上有一个很细小的缝。
试回答以下问题:1. 当光源波长为λ时,矩形孔对通过的光的衍射图案特征是怎样的?2. 矩形孔的宽度和高度增大,会对衍射图案有何影响?3. 若将一较宽的单缝替换原来很细的缝,会对衍射图案有何影响?练习题三:光的多缝干涉考虑一平行光束通过的是N个相距相等、缝宽为a的狭缝。
试回答以下问题:1. 当光源波长为λ、缝宽为a时,在屏幕上的干涉图案特征是怎样的?2. 缝宽和缝距减小,即a和d减小,会对干涉图案有何影响?3. 双缝干涉的特征与多缝干涉的特征有何区别?练习题四:菲涅尔衍射假设光源通过一个直径为D的圆孔,并沿其垂直方向发出单色平行光束。
试回答以下问题:1. 当光源波长为λ时,圆孔对通过的光的衍射图案特征是怎样的?2. 圆孔的直径增大,会对衍射图案有何影响?3. 圆孔替换为方形孔,会对衍射图案有何影响?通过以上的练习题,我们可以深入了解光的干涉与衍射现象。
这些现象的应用广泛,例如在光学中的干涉仪、衍射光栅等装置中都有重要作用。
进一步学习和掌握光学相关知识,将有助于我们更好地理解自然界中的光现象,并为技术和科学的发展做出贡献。
总结通过以上的练习题,我们对光学中的干涉与衍射现象进行了探讨和分析,深入了解了其中的特征和影响因素。