大学物理作业解答:5-2量子-第二章 波函数和薛定谔方程
- 格式:ppt
- 大小:171.00 KB
- 文档页数:10
量子力学专题二:波函数和薛定谔方程一、波粒二象性假设的物理意义及其主要实验事实(了解)1、波动性:物质波(matter wave )——de Broglie (1923年)p h =λ实验:黑体辐射2、粒子性:光量子(light quantum )——Einstein (1905年)hE =ν 实验:光电效应二、波函数的标准化条件(熟练掌握)1、有限性:A 、在有限空间中,找到粒子的概率是有限值,即有=⎰ψψτ*d 有限值有限空间 B 、在全空间中,找到粒子的概率是有限值,即有=⎰ψψτ*d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续;3、单值性:2ψ是单值函数(注意:不是说ψ是单值!)三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率);四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解)1、态叠加原理:设1ψ,2ψ是描述体系的态,则2211ψψψC C +=也是体系的一个态。
其中,1C 、2C 是任意复常数。
2、两种表象下的平面波的形式:A 、坐标表象中r d e p r r p i 3/2/3)()2(1)( •⎰=ϕπψ B 、动量表象中p d e r p r p i 3/2/3)()2(1)( •-⎰=ψπϕ 注意:2/3)2( π是热力学中,Maxwell速率分布的一个常数,也可以使原子物理中,一个相空间的大小!五、Schrodinger Equation (1926年)1、Schrodinger Equation 的建立过程(熟练掌握)ψψH ti ˆ=∂∂ 其中,V T H ˆˆˆ+=。
2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解)A 、定态:若某一初始时刻(0=t )体系处于某一能量本征态)()0,(r r E ψψ=,则/)(),(iEt E e r t r -=ψψ说描述的态,叫做定态(stationary state );B 、非定态:由不同能量能量本征态线性叠加而形成的态,叫做非定态(nonstationary state )。
薛定谔方程与量子体系的波函数解析量子力学是描述微观世界的一门科学,而薛定谔方程是量子力学的基石之一。
薛定谔方程描述了量子体系的波函数演化规律,通过对波函数的解析可以揭示微观世界的奥秘。
薛定谔方程是由奥地利物理学家薛定谔于1925年提出的,它是一种描述微观粒子的运动的偏微分方程。
薛定谔方程的一般形式为:iħ∂ψ/∂t = -ħ²/2m∇²ψ + Vψ其中,i是虚数单位,ħ是普朗克常数的约化常数,∂ψ/∂t表示波函数ψ对时间的偏导数,∇²ψ表示波函数ψ对空间的二阶偏导数,m是粒子的质量,V是势能。
薛定谔方程的解析解可以通过求解该方程得到。
量子体系的波函数是描述粒子在空间中的概率分布的函数。
波函数的模的平方表示了粒子在空间中出现的概率密度。
根据薛定谔方程,波函数随时间的演化是由波函数本身和势能共同决定的。
通过对薛定谔方程进行求解,可以得到波函数的解析解,从而揭示了量子体系的性质。
波函数的解析解可以分为定态解和非定态解。
定态解是指波函数不随时间变化的解,它描述了量子体系的基态和激发态。
定态解可以通过薛定谔方程的分离变量法进行求解,将波函数表示为时间和空间的乘积形式,然后将其代入薛定谔方程,得到关于时间和空间的两个偏微分方程。
通过求解这两个方程,可以得到波函数的解析解。
非定态解是指波函数随时间变化的解,它描述了量子体系的演化过程。
非定态解可以通过薛定谔方程的定态展开法进行求解,将波函数表示为定态波函数的线性组合形式,然后将其代入薛定谔方程,得到关于时间的一阶偏微分方程。
通过求解这个方程,可以得到波函数的解析解。
薛定谔方程的解析解不仅可以用于描述量子体系的波函数演化,还可以用于计算量子体系的物理量。
根据波函数的解析解,可以计算出粒子的位置、动量、能量等物理量的期望值。
这些期望值与实验结果的比较可以验证薛定谔方程的有效性,并揭示量子体系的性质。
总之,薛定谔方程是描述量子体系的波函数演化规律的基本方程。
量子力学中的波函数与薛定谔方程量子力学是一门研究微观粒子行为和性质的科学,它有着广泛的应用,涉及领域包括原子物理、凝聚态物理以及纳米技术等。
在量子力学中,波函数和薛定谔方程是两个核心概念,它们在理解和描述微观粒子的行为中起着重要的作用。
一、波函数的概念及性质波函数是描述微观粒子的状态的数学函数,通常用Ψ表示。
在三维空间中,波函数是位置矢量r和时间t的函数,即Ψ(r, t)。
波函数一般是复数,其绝对值的平方表示粒子出现在某个位置的概率密度。
根据波函数的性质,可以得出以下几点:1. 法波叠加性:如果物理系统同时存在多个可能的状态,波函数可以叠加这些状态,并通过线性组合来描述。
这是量子力学与经典力学的明显区别之一。
2. 规范化条件:波函数必须满足归一化条件,即∫Ψ*(r, t)Ψ(r, t)dV = 1,其中dV表示三维空间的体积元。
3. 相位不确定性:波函数乘以一个常数因子并不改变物理量的概率密度,因此相位的选择并不固定,只有波函数的相位差才是物理可观测的。
二、薛定谔方程的基本原理薛定谔方程是量子力学中最基本的方程之一,描述了波函数随时间演化的规律。
薛定谔方程的一般形式为:iħ∂Ψ(r, t)/∂t = -ħ²/2m∇²Ψ(r, t) + V(r)Ψ(r, t)其中ħ是普朗克常数的约化常数,m是粒子的质量,V(r)是粒子在位置r上的势能。
薛定谔方程是一个偏微分方程,通过求解薛定谔方程可以得到粒子的波函数,从而获得粒子的态信息。
薛定谔方程的解决方法有很多种,常见的包括分离变量法、变换法和数值方法等。
波函数的演化可以用薛定谔方程的解析解或数值解来描述,从而预测粒子的行为和性质。
三、波函数与量子态的关系波函数不仅仅是描述微观粒子的数学函数,它还与量子态有着密切的关系。
量子态可以看作是波函数的集合,表示了物理系统的所有可能状态。
波函数的演化过程中,量子态也相应地发生变化。
例如,一个具有确定能量的量子态会随着时间的推移而演化为多个能量本征态的叠加。
第二章波函数与薛定谔方程第一部分;基本概念与基本思想题目1.试述波函数的统计解释。
2.为什么波函数可以描述微观粒子的微观态?3.如何理解态叠加原理?量子力学中的态叠加原理与经典力学中的态叠加原理有何区别?4.简述动量几率密度的物理意义。
5.试述定态的基本特征。
6.两个能量本征值不同的定态波函数,他们的线性组合是否还是定态?7.何为定态?如何判断一量子态是定态?8.在经典力学中,E=T+U=动能+势能,这个结果对微观粒子是否成立?为什么?9.试写出求解定态薛定谔方程的基本步骤10. 何为束缚态?有何特征?11. 波函数满足的标准条件是什么?12. 实物粒子的波动性为什么很长时间未能发现?13. 试述C(P, t) 物理意义。
第二部分:基本技能训练题1.计算线性谐振子n=4时所对应的经典线性谐振子的振幅A4=?2.证明在定态中,几率流密度与时间无关3. 由下列两定态波函数计算几率流密度(1)ψ1=(1/r )e ikr (2)ψ2=(1/r )e -ikr从所得结果说明ψ1表示向外传播的球面波,ψ1表示向内(即向原点)传播的球面波。
4. 求自由粒子的几率流密度J =?5. 下列波函数中,哪些是定态,哪些不是定态?12312312ix-(i)Et -ix-(i )Et -(i )E t -(i )E t 12-(i)Et (i )Et () (x,t)U(x)e U(x)e () (x,t)U(x)e U(x)e E E () (x,t)U(x)e U(x)e ψψψ=+=+≠=+ 6. 一粒子在一维势场 x 0()0 0x a x a U x ∞<⎧⎪=≤≤⎨⎪∞>⎩中运动,求粒子的能级和对应波函数。
7. 设粒子限制在矩形匣子里,其运动势能为:0 x a, y b, z c, (,,) U x y z ⎧<<<⎪=⎨∞⎪⎩其它 求其本征值与本征函数。
8. 求一维谐振子处于第一激发态时几率最大位置。
量子力学中的薛定谔方程与波函数解析量子力学是一门对于微观世界的描述和研究的科学,而薛定谔方程则是量子力学的核心公式之一。
薛定谔方程的提出不仅改变了科学界对于微观世界的认知,而且对于现代科技的发展也有着深远的影响。
本文将探讨薛定谔方程的内容以及与之相关的波函数解析。
首先,我们需要了解薛定谔方程的基本形式。
薛定谔方程是一个描述粒子在量子力学中运动的方程,它的一般形式可以写作:iħ∂ψ/∂t = Ĥψ其中,ψ是波函数,t是时间,ħ是普朗克常数,Ĥ是哈密顿算符。
薛定谔方程的这种形式被称为时间-相关薛定谔方程,它描述了波函数随时间演化的规律。
在解析波函数之前,我们首先需要了解波函数的物理意义。
波函数的平方模的绝对值的平方在某一点上的积分值,也就是密度波,表示了在这一点上找到粒子的概率。
因此,波函数可以看作是描述粒子在空间中分布的函数。
解析波函数是指通过薛定谔方程求得波函数的具体形式。
对于简单的系统,如自由粒子、势垒和谐振子等,可以通过求解薛定谔方程的定态解来得到波函数的具体形式。
定态解是指波函数不随时间变化的解,可以表示为:ψ(r,t) = Σ C_n ψ_n(r) e^(-iE_n t/ħ)其中,C_n是展开系数,ψ_n(r)是波函数的空间部分,E_n是能量。
对于不定态解,即波函数随时间变化的解,我们可以将波函数按能量本征态(定态解)展开。
这样,就可以得到波函数的解析表达式。
波函数的具体形式与实际问题密切相关。
对于一维自由粒子,其波函数的解析表达式为ψ(x,t) = A e^(ikx-ωt),其中A是归一化常数,k是波数,ω是角频率。
这个解析表达式描述了自由粒子在空间中传播的波动性质。
对于势垒问题,波函数的解析解也可以通过求解薛定谔方程得到。
在势垒的两侧,波函数可以分别表示为反射波和透射波。
量子力学中的概率幅分布的特点使得粒子在势垒处发生反射和透射现象。
在实际的研究中,波函数的解析解不仅提供了精确的理论描述,还为物理定律的验证和应用提供了基础。
量子力学第二章波函数和薛定谔方程山东大学期末考试知识点复习量子力学第二章波函数和薛定谔方程山东大学期末考试知识点复习山东大学期末考试知识点述评第二章波函数和薛定谔方程1.微粒运动状态描述(1)波函数波函数ψ(r,t)是描述微观粒子状态的复值函数,波函数需要满足的标准条件为单值性、连续性和有界性,实际体系的波函数满足平方可积条件,即(2)波函数的意义波函数的模平方给出t时刻粒子出现在位置r邻域单位体积内的概率,即概率密度。
因此,标准的波函数应该是归一化的,即满足归一化条件非标准化波函数可以通过乘以标准化因子进行标准化。
(3)波函数的性质波函数ψ(r,t)满足叠加原理,如果ψi(r,t),i=1,2,…为微观粒子的可能状态,则这也是一种可能的状态。
山东大学期末考试知识点复习2.微态演化(1)薛定谔方程状态ψ(r,t)随时间演化满足薛定谔方程在…之间称为哈密顿算符,u(r,t)是势能,若已知初始状态ψ(r,0),由薛定谔方程可求出任意时刻t的状态ψ(r,t)。
(2)连续性方程由薛定谔方程可以推出连续性方程在…之间称为概率流密度,即沿着给定方向单位时间通过单位截面的概率,连续性方程是概率守恒定律的定域表现。
(3)定态薛定谔方成若体系的哈密顿不显含时间,即势场u不含t时,薛定谔方程可以分离变量,得到定态波函数解其中e是能量本征值,ψe(R)是相应的本征函数,满足稳态薛定谔方程山东大学期末考试知识点复习3.一维束缚稳态问题的描述(1)一维束缚定态问题由下面的方程和边界条件组成束缚态能量满足条件e<U(±∞). (2)束缚定态解的性质束缚定态中的能量取值不连续,形成能级,同一能级只对应一个本征函数,无简并现象,第n个能级en,n∈n对应的本征函数ψn(x)有n个内部零点(不包括边界)。
束缚态本征函数ψN(x)可以归一化,且归一化本征函数满足正交归一化本征函数集合具有完备性,任何平方可积函数ψ(x)都可以展开为归一化本征函数的线性组合,即其中膨胀系数为(3)典型实例:一维简谐振子一般的解析势阱在其极小值附近都可以近似为简谐振子势,其标准形式为在上述势场中,粒子作束缚运动,能级为山东大学期末考试知识点复习相应的本征函数为简谐振子的本征函数满足递推关系4.一维散射问题(1)问题描述以能量e>u(±∞)自左边向势场u(x)入射的粒子满足下面的方程和边界条件(2)问题的重要性(3)典型实例:粒子对方势垒的透射山东大学期末考试知识点述评能量为e的粒子入射到一个宽度为a,高度为u0的方形势垒反射系数和透射系数分别为。