第六章厌氧生物处理
- 格式:ppt
- 大小:4.66 MB
- 文档页数:101
第六章厌氧生物处理工艺第一节厌氧生物处理工艺的发展概况及特征一、厌氧生物处理工艺的发展简史实际上,厌氧生物过程广泛地存在于自然界中,但人类第一次有意识地利用厌氧生物过程来处理废弃物,则是在1881年由法国的Louis Mouras所发明的“自动净化器”开始的,随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污泥(如各种厌氧消化池等)。
这些厌氧反应器现在通称为“第一代厌氧生物反应器”,它们的共同特点是:①水力停留时间(HRT)很长,有时在污泥处理时,污泥消化池的HRT会长达90天,即使是目前在很多现代化城市污水处理厂内所采用的污泥消化池的HRT也还长达20~30天;②虽然HRT相当长,但处理效率仍十分低,处理效果还很不好;③具有浓臭的气味,因为在厌氧消化过程中原污泥中含有的有机氮或硫酸盐等会在厌氧条件下分别转化为氨氮或硫化氢,而它们都具有十分特别的臭味。
以上这些特点使得人们对于进一步开发和利用厌氧生物过程的兴趣大大降低,而且此时利用活性污泥法或生物膜法处理城市污水已经十分成功。
但是,当进入上世纪50、60年代,特别是70年代的中后期,随着世界范围的能源危机的加剧,人们对利用厌氧消化过程处理有机废水的研究得以强化,相继出现了一批被称为现代高速厌氧消化反应器的处理工艺,从此厌氧消化工艺开始大规模地应用于废水处理,真正成为一种可以与好氧生物处理工艺相提并论的废水生物处理工艺。
这些被称为现代高速厌氧消化反应器的厌氧生物处理工艺又被统一称为“第二代厌氧生物反应器”,它们的主要特点有:①HRT大大缩短,有机负荷大大提高,处理效率大大提高;②主要包括:厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等;③HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。
以上这些特点彻底改变了原来人们对厌氧生物过程的认识,因此其实际应用也越来越广泛。
厌氧生物处理的基本原理
厌氧生物处理是一种利用厌氧微生物降解有机废水的生物处理技术。
厌氧生物处理的基本原理是在缺氧或无氧条件下,利用厌氧微生物对有机废水中的有机物进行降解,产生甲烷等气体和沼气,从而达到净化水质的目的。
首先,厌氧生物处理的基本原理是利用厌氧微生物。
厌氧微生物是一类能在缺氧或无氧条件下生存和繁殖的微生物,它们能够利用有机废水中的有机物作为碳源进行代谢活动。
这些厌氧微生物主要包括厌氧菌、产甲烷菌等。
其次,厌氧生物处理的基本原理是利用厌氧微生物对有机废水中的有机物进行降解。
在厌氧条件下,有机废水中的有机物经过厌氧微生物的作用,会被降解成简单的有机物、甲烷等气体和沼气。
这些产物对水质没有污染性,从而达到净化水质的目的。
最后,厌氧生物处理的基本原理是产生甲烷等气体和沼气。
在厌氧生物处理过程中,厌氧微生物降解有机废水中的有机物时,会产生大量的甲烷等气体和沼气。
这些气体可以被收集利用,既能减少污染物的排放,又能够转化成可再生能源,具有双重的环保和经
济效益。
总之,厌氧生物处理的基本原理是利用厌氧微生物对有机废水中的有机物进行降解,产生甲烷等气体和沼气,从而达到净化水质的目的。
这种生物处理技术在污水处理和有机废水处理中具有重要的应用价值,对于改善环境质量、减少污染物排放、提高资源利用率具有重要意义。
厌氧生物处理技术基本原理厌氧生物处理技术是一种利用厌氧菌降解有机废物的生物处理技术。
它通过在缺氧条件下,利用厌氧菌将有机物质降解成更简单的无害物质,从而实现废物的处理和资源化利用。
厌氧生物处理技术已经在污水处理、有机废物处理和生物能源生产中得到广泛应用。
该技术的基本原理是通过一系列生物化学反应来降解有机物质,最终将其转化为甲烷、二氧化碳、水和微生物体。
在厌氧条件下,厌氧菌会利用有机物质作为碳源,进行氧化还原反应,产生甲烷和二氧化碳,并释放能量维持自身的生长和代谢。
这个过程主要包括有机物质的水解、酸化、产氢、乙酸化和甲烷发酵等多个步骤。
首先,有机物质进入厌氧生物反应器后,会被一些特定的厌氧菌降解成简单的有机物质和无机物质。
在这个过程中,有机物质将被水解成糖类、脂肪酸、蛋白质等简单的有机物质。
随后,这些有机物质将被厌氧菌进行酸化反应,产生一些低分子量的有机酸,如乙酸、丙酸、丁酸等。
接着,这些有机酸将被更特定的厌氧菌通过产氢和乙酸化反应转化成氢气、二氧化碳和乙醇等物质。
而进一步,这些产生的一系列简单有机物质将继续被其他特定的厌氧菌利用,通过甲烷发酵反应转化为甲烷和二氧化碳。
最终,这些有机物质将被完全转化成甲烷、二氧化碳、水和微生物体。
厌氧生物处理技术有一系列明显的优势。
首先,厌氧生物处理系统处理过程中不需要供氧,因此可以节省大量的能源,比传统的好氧生物处理技术更加节能环保。
另外,厌氧生物处理技术还可以处理高浓度有机废水和高固体废物,对废水处理和有机废物处理过程中的异味和噪声产生较小的影响。
此外,通过厌氧生物处理技术产生的甲烷可以作为一种可再生能源利用,并能够减少温室气体的排放。
然而,厌氧生物处理技术也存在一些挑战。
首先,厌氧生物处理技术的反应速率通常较慢,处理效率较低,需要较长的处理时间。
另外,厌氧生物处理技术的操作和维护成本较高,需要一定的专业知识和技术支持。
此外,在实际应用中,厌氧生物处理技术对于废物的适用范围和废物特性有一定的要求,不同种类的废物要求不同的处理条件和操作方式。
厌氧生物处理第一篇:厌氧生物处理的基本概念和原理厌氧生物处理,指的是将含有有机物的废水、污泥等通过厌氧反应器进行处理,利用厌氧微生物把有机物分解成可溶性有机小分子,然后转化为甲烷、二氧化碳等,从而达到净化处理的目的。
相比于其它处理方式,厌氧生物处理具有处理效果好、能量消耗低、无需氧气供应等优点。
其原理在于,厌氧微生物受到厌氧条件下环境的刺激,通过代谢产生一系列酶和代谢产物,如-甲酸、氢气、酮体等,将废水中的有机物质依次分解成小分子有机物质,然后再进一步转化,产生甲烷、二氧化碳等。
此过程需要一定的温度、PH 值和适宜的微生物菌种才能完成。
厌氧生物处理的主要反应器有两种:厌氧池和厌氧发酵罐。
池式反应器多为流动式的反应器,一般用于处理有机物浓度比较高的工业废水和某些特定的废水,而发酵罐主要用于处理含有大量污泥的污水。
总之,厌氧生物处理是一种经济、实用的污水处理方式,能够有效地减少有机物的释放,减轻对环境的污染。
第二篇:厌氧生物处理设备的选型与设计厌氧生物处理应根据废水的性质和实际情况,选择适宜的反应器类型和处理系统。
一般应考虑以下因素:(1)污水特性:包括COD(化学需氧量)、BOD(生化需氧量)、SS(悬浮物)、TOC(总有机碳)等参数。
(2)处理能力:一般是根据废水的水量以及相应的处理效能来设计设备的容积。
(3)反应器类型:池式反应器多为流动式的反应器,发酵罐主要用于处理含有大量污泥的污水。
(4)运行条件:包括温度、PH值等因素,应根据不同的微生物菌种的需求来调整。
总体来说,厌氧生物处理设备的设计应根据实际情况综合考虑以上因素,确定最佳的处理方案,以达到处理效果最优化。
第三篇:厌氧生物处理的优缺点及发展前景厌氧生物处理具有许多优点,如处理效率高、操作成本低、对水质要求较低等,特别是对于高浓度有机废水的处理有着独特的优势。
相比于其它处理方式,厌氧生物处理存在一些缺点,如对微生物菌种的要求和较为复杂的控制要求等。
厌氧生物处理的基本原理是什么厌氧生物处理是一种利用厌氧微生物降解有机废物的处理技术。
与传统的好氧生物处理相比,厌氧生物处理具有一些独特的优势,例如能够高效处理高浓度、高强度的有机废物,产生的副产物可以用作能源或肥料,以及低能耗等。
以下是厌氧生物处理的基本原理。
厌氧生物处理的基本原理是在无氧条件下利用厌氧微生物(包括细菌、古菌、真菌等)降解有机废物。
这些微生物可以在缺氧环境中生存和繁殖,并利用废物中的有机物作为能源进行生长。
在厌氧生物处理过程中,有机废物首先进入处理系统,通常称为厌氧反应器。
厌氧反应器设计成密封的系统,以确保无氧环境维持稳定。
当有机废物进入厌氧反应器后,厌氧微生物将开始降解废物。
这个过程涉及到三个主要的阶段:好氧解聚、酸化乙酸化和甲烷发酵。
在好氧解聚阶段,微生物首先降解废物中的易降解有机物,例如蛋白质、糖类和脂肪。
这些有机物被微生物分解为较小的有机物分子,例如氨基酸、糖醛酸和脂肪酸。
这个过程产生了一些中间产物,例如氨氮和挥发性脂肪酸。
在酸化乙酸化阶段,挥发性脂肪酸被厌氧微生物进一步代谢为乙酸、丙酸和丁酸等短链挥发性脂肪酸。
这些短链挥发性脂肪酸作为微生物的有机碳源进一步降解。
在甲烷发酵阶段,乙酸、丙酸和丁酸等短链挥发性脂肪酸通过厌氧微生物的共同代谢途径被转化为甲烷和二氧化碳。
这个过程称为甲烷发酵,产生的甲烷可用作能源或燃料。
厌氧生物处理过程中,微生物种类和数量的选择对处理效果至关重要。
厌氧微生物种群通常比好氧微生物种群更复杂多样,能够降解更广泛的有机物。
在厌氧反应器中保持适当的微生物种群组成和活性是确保处理系统高效运行的关键。
此外,厌氧生物处理过程还涉及到温度、Ph值、有机负载和水力负荷等操作参数的控制。
这些操作参数的优化可以提高有机废物降解效率和甲烷产量。
综上所述,厌氧生物处理是一种利用厌氧微生物降解有机废物的处理技术。
其基本原理包括好氧解聚、酸化乙酸化和甲烷发酵阶段。
通过控制微生物组成和活性,以及调节操作参数,可以实现高效的有机废物降解和甲烷产生。
共享知识分享快乐废水的厌氧生物处理技术厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。
1厌氧生物处理的基本原理1.1两阶段理论在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。
第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇类、CO2和H2等为主的产物。
第二阶段则被称为产甲烷阶段或碱性发酵阶段,所发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO2和H2等为基质,并最终将其转为CH4和CO2。
1.2三阶段理论三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。
有机物首先通过发酵细菌的作用生成乙醇、丙酸、丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH4和CO2。
产氢产乙酸菌和产甲烷菌之间存在着互营共生的关系。
该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。
1.3四阶段理论几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。
与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria), 该菌群的代谢特点是能将H2/CO2合成为乙酸。
但是研究结果表明,这一部分乙酸的量较少,一般可以忽略不计。
目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。
2厌氧生物处理的优缺点卑微如蝼蚁、坚强似大象共享知识分享快乐厌氧生物处理技术与好氧生物处理技术比较,有如下优缺点。
(1)厌氧法的主要优点:①应用范围较广:适用于处理污泥及有机废水;可处理好氧法难降解的有机物,也可处理含有毒有害物质较高的有机废水。
②运行成本与能耗较低:厌氧处理的污泥产率低;厌氧法所需营养成分较少,一般可不必投加营养分;厌氧法不需要供氧设备,因而能耗较少。