2018年四川省眉山市仁寿县中考数学二模试卷含答案解析 精品
- 格式:doc
- 大小:452.85 KB
- 文档页数:24
2018年四川省眉山市仁寿县中考数学二模试卷一、选择题:(每小题3分,共30分)1.﹣的倒数是()A.﹣5 B.C.﹣ D.52.下列事件,是必然事件的是()A.掷一枚六个面分别标有1~6的数字的均匀正方体骰子,骰子停上转动后偶数点朝上B.从一幅扑克牌中任意抽出一张,花色是红桃C.在同一年出生的 367 名学生中,至少有两人的生日是同一天D.任意选择在播放中电视的某一频道,正在播放新闻3.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交 B.相切 C.相离 D.不能确定4.不等式组的最小整数解是()A.0 B.﹣1 C.﹣2 D.35.下列运算中,正确的是()A.3﹣2=﹣6 B. =±6 C.(﹣x)2÷(﹣x)=x D.(﹣2x2)3=﹣8x66.如图中的几何体的左视图是()A. B.C. D.7.2010年上海世博会即将举行,据有关方面统计,到时总共参与人数将达到4640万人次,其中4640万用科学记数法可表示为()A.0.464×109B.4.64×108C.4.64×107D.46.4×1068.已知:如图为二次函数y=ax2+bx+c的图象,则一次函数y=ax+b的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,△ABC内接于⊙O,连接OA、OC,⊙O的半径为3,且sinB=,则弦AC的长为()A. B.5 C.D.10.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.二、填空题(每小题3分,共24分)11.使代数式有意义的x的取值范围是.12.一个口袋中装有4个红球,x个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是,则袋里有个绿球.13.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.16.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为.17.已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是.18.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2015次,点P依次落在点P1,P2,P3,…P2015的位置,则点P2015的横坐标为.三、解答题(19、20每小题9分,共18分)19.先化简,再求值:,其中a=+1,b=﹣1.20.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.四、解答题(本题14分)21.2014年开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有2000人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.五、解答题(22小题12分、23小题12分,共24分)22.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.23.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)求证:△BCD∽△BEC;(3)若tan∠CED=,⊙O的半径为3,求OA的长.六、解答题(本题12分)24.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)七、解答题(本题14分)25.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示),并给出证明.八、解答题(本题14分)26.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.2018年四川省眉山市仁寿县中考数学二模试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.﹣的倒数是()A.﹣5 B.C.﹣ D.5【考点】倒数.【分析】乘积是1的两数互为倒数,由此可得出答案.【解答】解:﹣的倒数为﹣5.故选A.2.下列事件,是必然事件的是()A.掷一枚六个面分别标有1~6的数字的均匀正方体骰子,骰子停上转动后偶数点朝上B.从一幅扑克牌中任意抽出一张,花色是红桃C.在同一年出生的 367 名学生中,至少有两人的生日是同一天D.任意选择在播放中电视的某一频道,正在播放新闻【考点】随机事件.【分析】必然事件就是一定发生的事件,根据定义即可作出判断.【解答】解:A、不一定发生,是随机事件,故选项错误,B、不一定发生,是随机事件,故选项错误,C、是必然事件,故正确,D、不一定发生,是随机事件,故选项错误,故选C.3.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交 B.相切 C.相离 D.不能确定【考点】直线与圆的位置关系.【分析】根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【解答】解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.4.不等式组的最小整数解是()A.0 B.﹣1 C.﹣2 D.3【考点】一元一次不等式组的整数解.【分析】首先解不等式组确定不等式组的解集,即可确定不等式组的最小整数解.【解答】解:解不等式(1)得:x>﹣,则不等式组的解集是:﹣<x≤3,故最小的整数解是:﹣1.故选B.5.下列运算中,正确的是()A.3﹣2=﹣6 B. =±6 C.(﹣x)2÷(﹣x)=x D.(﹣2x2)3=﹣8x6【考点】整式的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂.【分析】直接利用整式除法运算法则以及结合算术平方根和负指数幂的性质分别化简求出答案.【解答】解:A、3﹣2==,故此选项错误,不合题意;B、=6,故此选项错误,不合题意;C、(﹣x)2÷(﹣x)=﹣x,故此选项错误,不合题意;D、(﹣2x2)3=﹣8x6,正确,符合题意.故选:D.6.如图中的几何体的左视图是()A. B.C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:A.7.2010年上海世博会即将举行,据有关方面统计,到时总共参与人数将达到4640万人次,其中4640万用科学记数法可表示为()A.0.464×109B.4.64×108C.4.64×107D.46.4×106【考点】科学记数法—表示较大的数.【分析】先把4 640万表示为用个表示的数,进而用科学记数法表示成a×10n即可.【解答】解:4 640万=46 400 000=4.64×107.故选C.8.已知:如图为二次函数y=ax2+bx+c的图象,则一次函数y=ax+b的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系;二次函数图象与系数的关系.【分析】根据抛物线的开口向上可得:a>0,根据抛物线的对称轴在y轴左边可得:a,b 同号,所以b>0.所以直线y=ax+b不经过第四象限.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴左边,∴a,b同号,即b>0,∴直线y=ax+b不经过第四象限,故选D.9.如图,△ABC内接于⊙O,连接OA、OC,⊙O的半径为3,且sinB=,则弦AC的长为()A. B.5 C.D.【考点】圆周角定理;解直角三角形.【分析】延长AO,交⊙O于点E,根据圆周角定理,∠AEC=∠B,在直角三角形ACE中,由sinB=,求得弦AC的长.【解答】解:延长AO,交⊙O于点E,∴∠AEC=∠B,∵AE是⊙O的直径,∴∠ACE=90°,在直角三角形ACE中,∵sinB=,∴=∵AO=3,∴AE=6,∴AC=5.故选B.10.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【考点】动点问题的函数图象;一次函数的图象;正比例函数的图象;平行四边形的性质;平行线分线段成比例.【分析】根据平行四边形的性质得到OD=OB=BD=3,根据平行线分线段成比例定理得到=和=,代入求出y与x的关系式,根据函数的图象特点即可选出答案.【解答】解:设AC交BD于O,∵四边形ABCD是平行四边形,∴OD=OB=BD=3,当P在OB上时,∵EF∥AC,∴==,∴=,∴y=x,当P在OD上时,同法可得: ==,∴=,∴y=﹣x+8,∵两种情况都是一次函数,图象是直线.故选:C.二、填空题(每小题3分,共24分)11.使代数式有意义的x的取值范围是x>2.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据分式有意义,分母不为0;二次根式的被开方数是非负数进行解答.【解答】解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.12.一个口袋中装有4个红球,x个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是,则袋里有3个绿球.【考点】概率公式.【分析】设袋中有x个绿球,再根据概率公式求出x的值即可.【解答】解:设袋中有x个绿球,∵袋中有红球4个,黄球2个,从中任意摸出一个球是绿球的概率为,∴=,解得:x=3,故答案为:3.13.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为1.【考点】中位数;算术平均数.【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.【解答】解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数的几何意义,可知图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,据此作答.【解答】解:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++=.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.故答案为:.16.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为3.【考点】勾股定理;相似三角形的判定与性质.【分析】根据相似三角形的性质,相似三角形的对应边成比例,即可求GF的长.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB.∴△AEG∽△BFE,从而推出对应边成比例:,又∵AE=BE,∴AE2=AG•BF=2,推出AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3.故答案为:3.17.已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是23°或67°.【考点】圆周角定理.【分析】按点D在直线OC左侧、右侧两种情形分类讨论,利用圆周角定理求解.【解答】解:由题意,①当点D在直线OC左侧时,如答图1所示.连接OD,则∠1=∠2=22°,∴∠COD=180°﹣∠1﹣∠2=136°,∴∠AOD=∠COD﹣∠AOC=136°﹣90°=46°,∴∠ABD=∠AOD=23°;②当点D在直线OC右侧时,如答图2所示.连接OD,则∠1=∠2=22°;并延长CO,则∠3=∠1+∠2=44°.∴∠AOD=90°+∠3=90°+44°=134°,∴∠ABD=∠AOD=67°.综上所述,∠ABD的度数是23°或67°,故答案为:23°或67°.18.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2015次,点P依次落在点P1,P2,P3,…P2015的位置,则点P2015的横坐标为2014.【考点】规律型:点的坐标;旋转的性质.【分析】根据图形的翻转,分别得出P1、P2、P3…的横坐标,再根据规律即可得出各个点的横坐标.【解答】解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,因为2013÷3=671,×3+2.5=2012.5,所以P2013的横坐标为2012.5.P2014、P2015的横坐标是2014.故答案为:2014.三、解答题(19、20每小题9分,共18分)19.先化简,再求值:,其中a=+1,b=﹣1.【考点】分式的化简求值;分母有理化.【分析】本题考查了化简与代值计算,关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式=÷=﹣=﹣;当a=+1,b=﹣1时,原式=﹣=﹣.20.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.【考点】分式方程的应用.【分析】速度分别是:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时;路程:都是15千米,时间表示为:.关键描述语为:“抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地”.等量关系为:抢修车的时间﹣吉普车的时间=.【解答】解:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意得:.解得:x=20.经检验:x=20是原方程的解.∴当x=20时,1.5x=30.答:抢修车的速度为20千米/时,吉普车的速度为30千米/时.四、解答题(本题14分)21.2014年开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有2000人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)首先求出总人数为50人,再计算不愿意去的学生的人数的百分比即可;(2)由C的总人数和总人数作比值再乘以360°,即可得到C所在的扇形圆心角的度数;(3)用2000乘以特别愿意去加油助威的学生所占的百分比即可;(4)列出所有情况,然后求出两次的数字之和大于等于10的情况计算即可.【解答】解:(1)25÷50%=50(人),2÷50=4%,不愿意去的学生的人数占被调查总人数的百分比为4%;(2)(10÷50)×360=72°,扇形统计图中C所在的扇形圆心角的度数为72°;(3)2000×50%=1000(人),∴估计特别愿意去加油助威的学生共有1000人;(4)列表如下:2 3 5 6第1次第2次2 (2,2)(3,2)(5,2)(6,2)3 (2,3)(3,3)(5,3)(6,3)5 (2,5)(3,5)(5,5)(6,5)6 (2,6)(3,6)(5,6)(6,6)由表可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次的和大于等于10(记为事件A)的结果有4个,即(5,5),(5,6),(6,5),(6,6),∴P(A)==.五、解答题(22小题12分、23小题12分,共24分)22.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.【考点】解直角三角形的应用-方向角问题.【分析】过点C作CD⊥AD于点D,分别在Rt△CBD、Rt△CAD中用式子表示CD、AD,再根据已知求得BD、CD的长,从而再将CD于9比较,若大于9则无危险,否则有危险.【解答】解:过点C作CD⊥AD于点D,∵∠EAC=60°,∠FBC=30°,∴∠CAB=30°,∠CBD=60°.∴在Rt△CBD中,CD=BD.在Rt△CAD中,AD=CD=3BD=24×0.5+BD,∴BD=6.∴CD=6.∵6>9,∴货船继续向正东方向行驶无触礁危险.23.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)求证:△BCD∽△BEC;(3)若tan∠CED=,⊙O的半径为3,求OA的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OC,如图,根据等腰三角形的性质得OC⊥AB,然后根据切线的判定定理即可得到直线AB是⊙O的切线;(2)根据圆周角定理求得∠ECD=90°,进而求得∠BCD=∠E,根据∠CBD=∠EBC,即可证明△BCD∽△BEC.(3)设BD的长是x,因为△BCD∽△BEC,根据相似三角形的对应边成比例,可求出x 的值,然后根据OB=OA=x+3求解即可.【解答】(1)证明:如图,连接OC.∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线.(2)证明:∵ED是直径,∴∠ECD=90°.∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.(3)解:∵,∴.∵△BCD∽△BEC,∴.设BD=x,则BC=2x.又∵BC2=BD•BE,(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=2+3=5.六、解答题(本题12分)24.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据销售利润y=(每千克销售价﹣每千克成本价)×销售量w,即可列出y与x之间的函数关系式;(2)先利用配方法将(1)的函数关系式变形,再利用二次函数的性质即可求解;(3)先把y=150代入(1)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,则y=﹣2x2+120x﹣1600.由题意,有,解得20≤x≤40.故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;(3)当y=150时,可得方程﹣2x2+120x﹣1600=150,整理,得x2﹣60x+875=0,解得x1=25,x2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x2=35不合题意,应舍去.故当销售价定为25元/千克时,该农户每天可获得销售利润150元.七、解答题(本题14分)25.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示),并给出证明.【考点】解直角三角形;全等三角形的判定;角平分线的性质.【分析】(1)由角平分线的性质可证∠ACB=∠ACD=30°,又由直角三角形的性质,得AB+AD=AC.(2)根据角平分线的性质过点C分别作AM,AN的垂线,垂足分别为E,F,可证AE+AF=AC,只需证AB+AD=AE+AF即可,由△CED≌△CFB,即可得AB+AD=AE+AF.(3)由(2)知ED=BF,AE=AF,在直角三角形AFC中,可求AB+AD=2cos AC.【解答】(1)证明:∵AC平分∠MAN,∠MAN=120°,∴∠CAB=∠CAD=60°,∵∠ABC=∠ADC=90°,∴∠ACB=∠ACD=30°,∴AB=AD=AC,∴AB+AD=AC.(2)解:成立.证法一:如图,过点C分别作AM,AN的垂线,垂足分别为E,F,∵AC平分∠MAN,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,∴AB+AD=AF+BF+AE﹣ED=AF+AE,由(1)知AF+AE=AC,∴AB+AD=AC,证法二:如图,在AN上截取AG=AC,连接CG,∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,∴∠CBG=∠ADC,∴△CBG≌△CDA,∴BG=AD,∴AB+AD=AB+BG=AG=AC;(3)证明:由(2)知,ED=BF,AE=AF,在Rt△AFC中,cos∠CAF=,即cos,∴AF=ACcos,∴AB+AD=AF+BF+AE﹣ED=AF+AE=2AF=2cos AC.把α=60°,代入得AB+AD=AC.八、解答题(本题14分)26.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A,B,C三点代入二次函数解析式即可求得二次函数解析式.(2)把点C的横坐标代入抛物线解析式,可求得纵坐标,把点C、B坐标代入一次函数解析式即可求得一次函数解析式.进而求得OG长.S△OBC=S△OGC+S△OGB(3)两三角形相似,已有两个直角相等,那么夹直角的两边对应成比例;注意对应边的不同可分两种情况进行分析.【解答】解:(1)由题意得:,解得.故抛物线的函数关系式为y=﹣x2+5x;(2)因为C在抛物线上,所以﹣22+5×2=m,所以m=6所以C点坐标为(2,6)因为B,C在直线y=kx+b′上,所以.解得k=﹣3,b′=12直线BC的解析式为y=﹣3x+12设BC与x轴交于点G,则G的坐标为(4,0)所以S△OBC==24(3)存在P,使得△OCD∽△CPE设P(m,n),∵∠ODC=∠E=90°故CE=m﹣2,EP=6﹣n若要△OCD∽△CPE,则要=或=即=或=解得m=20﹣3n或n=12﹣3m又因为(m,n)在抛物线上,.或.解得,即,或,即,故P点坐标为(,)和(6,﹣6).。
仁寿县2018届中考模拟考试(二)数学试卷A卷(共100分)第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的字母填涂在答题卡相应的位置上.1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.1B.﹣1C.﹣3 D.32.下列各式的计算结果中,不正确的是()A.2x2y﹣xy2﹣(x2y﹣3xy2)=x2y+2xy2B.﹣=C.(2a2)3=8a6D.﹣a2•3a=﹣3a33.如图所示的几何体的俯视图是()A.B.C.D.4.生活在海洋中的蓝鲸,又叫长须鲸或剃刀鲸,它的体重达到150多吨,它体重的百万分之一会与()的体重相近.A.大象B.豹C.鸡D.松鼠5.如图是根据某地某段时间的每天最低气温绘成的折线图,那么这段时间最低气温的中位数、众数、平均数依次是()A.4℃、5℃、4℃B.5℃、5℃、4.5℃C.4.5℃、5℃、4℃D.4.5℃、5℃、4.5℃6.已知直角三角形的两条直角边分别为6cm和8cm,则这个直角三角形内切圆的半径是()A.1cm B.2cm C.3cm D.4cm7.在代数式中,则x的取值范围是()A.x≥1B.x≤1且x≠0C.x≥0且x≠1D.x≠0且x≠1 8.在一块矩形地上被踩出两条宽1m(过A,B间任意一点作AD的平行线,被每条小路截得的线段的长度是1m)的小路,如图,小路①的面积记作S1,小路②的面积记作S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2C.S1<S2D.无法确定9.已知a +b=0,a ≠b ,则化简(a +1)+(b +1)得( )A .2aB .2bC .2D .﹣210.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是( )A .20cm 2B .20πcm 2C .10πcm 2D .5πcm 211.已知关于x 的分式方程﹣1= 的解是正数,则m 的取值范围是( )A .m <4且m ≠3B .m <4C .m ≤4且m ≠3D .m >5且m ≠612.如图,在矩形ABCD 中,点E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF , 分析下列四个结论:①△AEF ∽△CAB ;②DF=DC ;③S △DCF =4S △DEF ;④tan ∠CAD= .其中正确结论的个数是( )A .4B .3C .2D .1第Ⅱ卷(非选择题 共64分)二、填空题:本大题共6个小题,每小题3分,共18分.请将正确答案直接填在答题卡相应的位置上.13.因式分解:2y 2+4y+2= . 14.把图中的风筝图案,绕着它的中心O 旋转,旋转角至少为 度时,旋转后的图形能与原来的图形重合.15.已知点M (a ,3)在一次函数y=﹣2x +1的图象上,则点M 到y 轴的距离为 .16.如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD=10cm ,AP :PB=1:5,则⊙O 的半径为 cm .17.阅读下列材料,然后回答问题:(1)以2、3为根的一元二次方程为(x-2)(x-3)=0,得x 2﹣(2+3)x +(2×3)=0, 即x 2﹣5x +6=0;(2)以4、7为根的一元二次方程为(x-4)(x-7)=0,得x 2﹣(4+7)x +(4×7)=0, 即x 2﹣11x +28=0;问题:以2+1、2﹣1为根的一元二次方程为 。
眉山市高中2018届第二次诊断性考试 数学试题卷(理科) 2018.04.9注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米的黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束,将答题卡上交。
参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率为()(1)k k n k n n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中.只有一项是符合题目要求的.1、复数ii ++113的虚部是A .i -B .1-C .iD .1 2、命题“存在00,20x x R ∈≤”的否定是A .不存在00,20x x R ∈> B .存在00,20x x R ∈≥C .对任意的,20x x R ∈≤D .对任意的,20x x R ∈> 3、已知{}n a 为等比数列.若15341a a a =,且4a 与7a 的等差中项为89,则公比qA .2B .4C .12D .144、设a ,b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是 A .,,//a b αβαβ⊂⊥ B .,,//a b αβαβ⊥⊥ C .,//,a b αβαβ⊥⊥ D .,//,a b αβαβ⊂⊥5、设()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<为奇函数,该函数的部分图象如图1所示,EFG ∆是边长为2的等边三角形,则)1(f 的值为A.23- B .26- C .3 D. 3-6、设点M 是半径为R 的圆周上一个定点,其中O 为圆心,连接OM ,在圆周上等可能地取任意一点N ,连接MN ,则弦MN 的长超过的概率为A .14B .12C .23D .347、执行图2的程序框图,若输入的N 是6,则输出p 的值是A .120B .720C .1 440D .5 040图28、已知某几何体的三视图如图3所示,其中正视图、侧视图均是由直角 三角形与半圆构成,俯视图由圆与内接三角形构 成,根据图中的数据可得此几何体的体积为A.132+ B.4136π+16D.2132π+ 9、某高校的8名属“老乡”关系的同学准备拼车回家,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学恰有2名来自于同一年级的乘坐方式共有A .18种 B.24种 C.36种 D.48种 10、函数()f x 的定义域为D,若存在非零实数l 使得对于任意()x M M D ∈⊆,有x l D +∈,且()()f x l f x +≥,则称()f x 为M上的l 高调函数。
眉山市2018年初中学业水平暨高中阶段教育学校招生考试模拟试卷2(满分:120分考试时间:120分钟)A卷(100分)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的绝对值是()A.﹣3 B.3C.﹣D.2.2014年2月14日从北京航天飞行控制中心获悉,嫦娥二号卫星再次刷新我国深空探测最远距离记录,达到7000万公里,这是我国航天器迄今为止飞行距离最远的一次“太空长征”.将7000万用科学记数法表示应为()A.7×106B.7×107C.7×108D.0.7×1083.下列运算正确的是()A.a3•a2=a6B.(2a)3=6a3C.(a﹣b)2=a2﹣b2D.3a2﹣a2=2a24.下列方程中,解为x=2的方程是()A.3x﹣2=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.x+1=05.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10 B.10,9 C.8,9 D.9,106.下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等7.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7C.8D.9第7题第8题8.如图是某几何体的三视图及相关数据,则判断正确的是()A.a>c B.b>c C.4a2+b2=c2D.a2+b2=c29.某镇2012年投入教育经费2000万元,为了发展教育事业,该镇每年教育经费的年增长率均为x,预计到2014年共投入9500万元,则下列方程正确的是()A.2000x2=9500B.2000(1+x)2=9500C.2000(1+x)=9500D.2000+2000(1+x)+2000(1+x)2=950010.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°第10题第11题11.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()A.130°B.120°C.110°D.100°12.如图,一次函数y=ax+b与x轴,y轴交于A,B两点,与反比例函数y=相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE,EF.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论个数是()第12题A.1 B.2C.3D.4第II卷非选择题(共64分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.函数y=中,自变量x的取值范围是.14.分解因式:a3﹣4a2+4a=.15.将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为.16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=.第16题17.设x1,x2是方程2x2﹣3x﹣3=0的两个实数根,则的值为.18.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB 交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论:①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是.第18题三、解答题(本大题共6小题,共46分,解答应写出必要的文字说明,证明过程或演算步骤)19.(6分)计算:(3﹣π)0+2tan60°+﹣.20.(6分)先化简,再求值:.其中x为不等式组的整数解.21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.第21题22.(8分)为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.第22题23.(9分)马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B 同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,助船B的西北方向上,船B在船A正东方向140海里处.tan36.5°≈0.75).(1)求可疑漂浮物P到A、B两船所在直线的距离;(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.第23题24.(9分)上海世博会开馆前,某礼品经销商预测甲、乙两种礼品能够畅销,用16500元购进了甲种礼品,用44000元购进了乙种礼品,由于乙种礼品的单价是甲种礼品单价的4倍,实际购得甲种礼品的数量比乙种礼品的数量多100个.(1)求购进甲、乙两种礼品的单价各多少元?(2)如果要求每件商品在销售时的利润为20%,那么甲、乙两种礼品每件的售价各是多少元?(3)在(2)的条件下,如果甲种礼品的进价降低了,但售价保持不变,从而使销售甲种礼品的利润率提高了5%,那么此时每个甲种礼品的进价是多少元?(直接写出结果)(利润=售价﹣进价,利润率=×100%.)B卷(20分)解答题(本大题共2小题,共20分,解答应写出必要的文字说明,证明过程或演算步骤)25.(10分)现有一副直角三角板,已知含45°角的直角三角板的斜边恰与含30°角的直角三角板的较长直角边完全重合(如图①).即△C′DA′的顶点A′、C′分别与△BAC的顶点A、C重合.现在让△C′DA′固定不动,将△BAC通过变换使斜边BC经过△C′DA′的直角顶点D.(1)如图②,将△BAC绕点C按顺时针方向旋转角度α(0°<α<180°),使BC边经过点D,则α=°(2)如图③,将△BAC绕点A按逆时针方向旋转,使BC边经过点D.试说明:BC∥A′C′.(3)如图④,若将△BAC沿射线A′C′方向平移m个单位长度,使BC边经过点D,已知AB=2,求m的值.第25题26.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、C,交y轴于点B,对称轴x=﹣1与x轴交于点D.第26题(1)求该抛物线的解析式和B、C点的坐标;(2)设P点P(x,y)是第二象限内该抛物线上的一个动点,△BD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;(3)点G在x轴负半轴上,且∠GAB=∠GBA,求G的坐标;(4)若此抛物线上有一点Q,满足∠QCA=∠ABO?若存在,求直线QC的解析式;若不存在,试说明理由.眉山市2018年初中学业水平暨高中阶段教育学校招生考试模拟试卷2(参考答案)A卷一、1.D解析:﹣的绝对值是.故选D.2.B解析:7000万=7000 0000=7×107,故选B.3.D解析:a3•a2=a3+2=a5,故A错误;B、(2a)3=8a3,故B错误;(a﹣b)2=a2﹣2ab+b2,故C错误;3a2﹣a2=2a2,故D正确.故选D.4.B解析:A、当x=2时,左边=3×2﹣2=4≠右边,即x=2不是该方程的解.故本选项错误;B、当x=2时,左边=﹣2+6=4,右边=2×2=4,左边=右边,即x=2是该方程的解.故本选项正确;C、当x=2时,左边=4﹣2(2﹣1)=2≠右边,即x=2不是该方程的解.故本选项错误;D、x+1不是方程.故本选项错误;故选B.5.D解析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.6.C解析:平行四边形的对角线互相平分,所以A选项的说法正确;菱形的对角线互相垂直平分,所以B选项的说法正确;矩形的对角线相等且互相平分,所以C选项的说法错误;角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选C.7.D解析:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∴MN=ME+EN,即MN=BM+CN.∵BM+CN=9∴MN=9,故选D.8.D解析:根据勾股定理,a2+b2=c2.故选D.9.D解析:依题意得2013年投入为2000(x+1),2014年投入为2000(1+x)2,∴2000+2000(x+1)+2000(1+x)2=9500.故选D.10.B解析:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选B.11.C解析:∵AB、AC是⊙O的两条切线,B、C是切点,∴∠B=∠C=90°,∠BOC=180°﹣∠A=110°.故选C.12.C解析:设点D的坐标为(x,),则F(x,0).由函数的图象可知:x>0,k>0.∴S△DFE=DF•OF=|x D|•||=k,同理可得S△CEF=k,故S△DEF=S△CEF.若两个三角形以EF为底,则EF边上的高相等,故CD∥EF.①由上面的解题过程可知:①正确;②∵CD∥EF,即AB∥EF,∴△AOB∽△FOE,故②正确;③条件不足,无法得到判定两三角形全等的条件,故③错误;④法一:∵CD∥EF,DF∥BE,∴四边形DBEF是平行四边形,∴S△DEF=S△BED,同理可得S△ACF=S△ECF;由①得:S△DBE=S△ACF.又∵CD∥EF,BD、AC边上的高相等,∴BD=AC,④正确;法2:∵四边形ACEF,四边形BDEF都是平行四边形,而且EF是公共边,即AC=EF=BD,∴BD=AC,④正确;因此正确的结论有3个:①②④.故选C.二、13.x>﹣2解析:根据题意,得x+2>0,解得x>﹣2.14.a(a﹣2)2解析:a3﹣4a2+4a,=a(a2﹣4a+4),=a(a﹣2)2.15.y=﹣2x﹣1解析:将直线y=﹣2x+3向下平移4个单位长度,所得直线的解析式为y=﹣2x+3﹣4,即y=﹣2x﹣1.16.解析:∵DE∥BC,∴△ADE∽△ABC.∵S△ADE=S四边形BCED,∴,∴,17.﹣解析:∵x1,x2是方程2x2﹣3x﹣3=0的两个实数根,∴x1+x2=,x1x2=﹣,则原式=====﹣.18.①②③④解析:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故答案为:①②③④.三、19.解:原式=1+2+3﹣3=4﹣.20.解:原式=[﹣]÷=•=•=,解不等式,由①,得x>﹣1;由②,得x≤2;则不等式的解集为﹣1<x≤2,其整数解为0,1,2;当x=0或x=1时,使得原式及解答过程中的分式分母为0,故x=2;当x=2时,原式==.21.解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0).22.解:(1)根据题意,得15÷10%=150(名).答:在这项调查中,共调查了150名学生;(2)本项调查中喜欢“立定跳远”的学生人数是;150﹣15﹣60﹣30=45(人),所占百分比是:×100%=30%,画图如下:(3)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是=.23.解:(1)过点P作PE⊥AB于点E,由题意,得∠PAE=36.5°,∠PBA=45°,设PE为x 海里,则BE=PE=x海里,∵AB=140海里,∴AE=(140﹣x)海里,在Rt△PAE中,,即,解得x=60,∴可疑漂浮物P到A、B两船所在直线的距离约为60海里;(2)在Rt△PBE中,PE=60海里,∠PBE=45°,则BP=PE=60≈84.8海里,B船需要的时间为84.8÷30≈2.83小时,在Rt△PAE中,=sin∠PAE,∴AP=PE÷sin∠PAE=60÷0.6=100海里,∴A船需要的时间为:100÷40=2.5小时,∵2.83>2.5,∴A船先到达.24.解:(1)设购进甲种礼品的单价为x元,则购进乙种礼品的单价为4x元,由题意,得﹣=100,解这个方程,得x=55,经检验,x=55是所列方程的根.4x=220.所以购进甲、乙两种礼品的单价分别为55元和220元.(2)∵55×20%=11,220×20%=44,∴55+11=66(元),220+44=264(元),所以甲、乙两种礼品的售价分别为66元和264元.(3)设每个甲种礼品的进价是x元,根据题意,得x(1+25%)=66,解得x=52.8,答:此时每个甲种礼品的进价是52.8元.B卷25.解:(1)如图②,α=∠A′C′A=45°﹣30°=15°;(2)如图③,过点A作AH⊥BC于点H,∵∠C=30°,∴AH=AC,∵AD=AC,∴DH==AC,∴AH=DH,∴∠HAD=45°,∴∠HAC′=∠HAD+∠DAC′=90°,∴HA⊥AC′,∴BC∥A′C′;(3)如图④,过点D作DH⊥AC,垂足为H,∵AB=,∴AC=A′C′=2×=6,∴HC′=DH==3,∴HC=3×=3,所以m的值为:HC﹣HC′=3﹣3.26.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0),对称轴为x=﹣1,∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;当y=0时,﹣x2﹣2x+3=0,解得x1=1,x2=﹣3,∴C点的坐标为(﹣3,0);当x=0时,y=3,∴B点的坐标为(0,3);(2)如图,过点P作PE⊥x轴于点E.S=S梯形PEOB﹣S△BOD﹣S△PDE=(y+3)(﹣x)﹣×3×1﹣×y×(﹣1﹣x)=.将y=﹣x2﹣2x+3代入,得S=(﹣x2﹣2x+3)﹣﹣=﹣x2﹣x+﹣﹣=﹣x2﹣x,∵点P(x,y)是第二象限内该抛物线上的一个动点,∴﹣3<x<0,∴S关于x的函数关系式为:S=﹣x2﹣(﹣3<x<0);(3)设G点坐标为(a,0),则a<0.∵∠GAB=∠GBA,∴GB=GA,∴a2+32=(1﹣a)2,解得a=﹣4,∴G点坐标为(﹣4,0);(4)此抛物线上有一点Q,满足∠QCA=∠ABO.∵tan∠ABO==,∴tan∠QCA=,∴直线QC的斜率|k|=,∴k=±.设直线QC的解析式为y=x+n,或y=﹣x+n,将C(﹣3,0)代入,得0=×(﹣3)+n,或0=﹣×(﹣3)+n,解得n=1或﹣1.故直线QC的解析式为y=x+1,或y=﹣x﹣1.。
2018年四川省眉山市仁寿县汪洋镇中中考数学模拟试卷参考答案与试题解读一、选择题:本大题共12个小题.每小题4分;共48分.1.<4分)<2008•德阳)﹣地绝对值是<)由﹣解:∵﹣<|=﹣=2.<4分)<2006•北京)如图,AD∥BC,点E在BD地延长线上,若∠ADE=155°,则∠DBC地度数为<)B C故两枚硬币正面都向上地概率是.5.<4分)<2006•湛江)不等式组:地解集用数轴表示为<)B C解:不等式组可化为:6.<4分)<2006•菏泽)若分式地值为0,则x地值为<)7.<4分)<2007•宁波)与如图所示地三视图对应地几何体是<)B8.<4分)如图,DE与△ABC地边AB,AC分别相交于D,E两点,且DE∥BC.若DE=2cm,BC=3cm,EC=cm,则AC等于<),根据相似三角形地性质,列出比例式cm∴,EC=cm∴,,AC==29.<4分)如图,矩形OABC地边OA在x轴上,O与原点重合,OA=1,OC=2,点D地坐标为<2,0),则直线BD地函数表达式为<)解得10.<4分)如图,已知AD是△ABC地外接圆地直径,AD=13cm,cosB=,则AC地长等于<)ADC=,==,AC==11.<4分)<2018•天桥区三模)在如图所示地5×5方格中,每个小方格都是边长为1地正方形,△ABC 是格点三角形<即顶点恰好是正方形地顶点),则与△ABC有一条公共边且全等地所有格点三角形地个数是<)12.<4分)<2018•大港区一模)已知二次函数y=ax2+bx+c<a≠0)地图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m<am+b)<m≠1地实数).其中正确地结论有<)﹣b b﹣﹣b﹣二、填空题:本大题共5个小题.每小题3分;共15分.214.<3分)<2018•和静县一模)已知反比例函数y=地图象在第二、四象限,则m地取值范围是y=故答案为:m<5.本题考查了反比例函数地性质,对于反比例函数<k≠0),<1)k>0,反比例函数图象在一、三15.<3分)<2018•景德镇二模)用扇形统计图反映地球上陆地与海洋所占地比例时,“陆地”部分对应地部分占地球总面积地比例为=∴宇宙中一块陨石落在地球上,落在陆地地概率是16.<3分)若m<﹣1,则下列函数①y=<x>0);②y=﹣mx+1;③y=mx;④y=<m+1)x中,随x地增大而增大地是y=17.<3分)<2007•南昌)如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度地直尺在图中画出∠AOB地平分线. <请保留画图痕迹).三、解答题:7个小题,57分.18.<7分)<1)化简<2)解方程:.)根据多项式乘单项式法则展开得出×﹣×,求出×﹣×,19.<7分)<1)如图1,在一次龙卷风中,一棵大树在离地面若干M处折断倒下,B为折断处最高点,树顶A落在离树根C地12M处,测得∠BAC=30°,求BC地长.<结果保留根号)<2)如图2,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE地形状并BAC=,再由∠tan,×=420.<8分)<1)解方程组:<2)二次函数图象过A、C、B三点,点A地坐标为<﹣1,0),点B地坐标为<4,0),点C在y轴正半轴上,且AB=OC.①求C地坐标;②求二次函数地解读式,并求出函数最大值.知条件求出a和b地值,即可求出抛物线地解读式,再利用公式法即可求出二次函数地最大值.,y=5,∴原方程组地解为:;<2)①∵点A地坐标为<﹣1,0),点B地坐标为<4,0),,解得,所以二次函数地解读式为=在一起,就得到原方程组地解,用21.<8分)某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日地学习状况,并将得到地数据制成扇形统计图<如图①)和频数分布直方图<如图②).<1)在这个调查中,200名居民双休日在家学习地有120人;<2)在这个调查中,在图书馆等场所学习地居民学习时间地平均数和众数分别是多少?小时地频率是:22.<9分)<2008•南充)某乒乓球训练馆准备购买n副某种品牌地乒乓球拍,每副球拍配k<k≥3)个乒乓球.已知A、B两家超市都有这个品牌地乒乓球拍和乒乓球出售,且每副球拍地标价都为20元,每个乒乓球地标价都为1元.现两家超市正在促销,A超市所有商品均打九折<按原价地90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球地费用,请解答下列问题:<1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?23.<9分)将两块形状大小完全相同地直角三角板按如图1所示地方式拼在一起.它们中较小直角边地长为6cm,较小锐角地度数为30°.<1)将△ECD沿直线AC翻折到如图2地位置,连接CF,图中除了△ABC≌△ECD≌△ECD′外,还有没有全等地三角形?若有,请指出一对并给出证明.<2)以点C为坐标原点建立如图3所示地直角坐标系,将△ECD沿x轴向左平移,使E点落在AB上,请求出点E′地坐标.,所以224.<9分)<2010•呼和浩特)如图,在直角坐标平面内,函数<x>0,m是常数)地图象经过A<1,4),B<a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.<1)若△ABD地面积为4,求点B地坐标;<2)求证:DC∥AB;<3)当AD=BC时,求直线AB地函数解读式.)由函数标为<a,),又由△ABD地面积为4,即a<4﹣)=4,得a=3,所以点B地坐标为<3,);)依题意可证,,<xy=),),为<1,),.由△ABD地面积为4,即a<4﹣)=4,,EC==a且∠①当AD∥BC时,四边形ADCB是平行四边形,由<2)得,,得,解得,解得申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
年四川省眉山市仁寿县汪洋镇中中考数学模拟试卷2018参考答案与试卷解读.48分个小题.每小题4分;共12一、选择题:本大题共)2008?德阳)﹣的绝对值是(1.(4分)( 2 .DC.BA.﹣2.﹣考点:绝对值.专题:计算题.分析:由﹣小于0,根据绝对值的代数意义:负数的绝对值等于它的相反数即可得到结果.解答解:∵∴|﹣|=﹣(﹣)=.故选D点评:此题考查了绝对值的代数意义:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0,掌握绝对值的代数意义是解本题的关键.2.(4分)(2006?北京)如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()155°50°45°25°A.B.C.D.考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:首先根据平角的定义,可以求出∠ADB,再根据平行线的性质可以求出∠DBC.解答:解:依题意得∠ADB=180°﹣∠ADE=180°﹣155°=25°,∵AD∥BC,∴∠DBC=∠ADB=25°.故选D.点评:此题比较简单,主要考查了两条直线平行的性质,利用内错角相等解题.3.(4分)(2006?韶关)点P(5,﹣3)关于原点对称的点的坐标是()A.(﹣5,3)B.(﹣5,﹣3)C.(3,﹣5)D.(﹣3,﹣5)考点:关于原点对称的点的坐标.专题:计算题.分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.解答:解:点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3),故选A.点评:关于原点对称的点坐标的关系,是需要识记的基本问题.)4.(4分)同时抛掷两枚均匀的硬币,则两枚硬币正面都向上的概率是( 1 D..B.C.A列表法与树状图法.考点:利用列举法即可表示出所有可能的情况,利用公式法即可求解.分析:种,解答:解:利用列举法可以得到共有4种不同的等可能的结果,两枚正面向上的情况有1.故两枚硬币正面都向上的概率是.故选A m出现点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A(的概率PA)=.种结果,那么事件?湛江)不等式组:的解集用数轴表示为()5.(4分)(2006A.B.C..D考解一元一次不等式组;在数轴上表示不等式的解集专图表型的取值范围,它们相交的地方就是分析本题应该先对不等式组进行化简,然后在数轴上分别表示等式组的解集.解答:解:不等式组可化为:,在数轴上可表示为:.故选A≤向右画;<,本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥点评:向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的要用实心圆点,“≤”“≥”个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时”要用空心圆点表示.表示;“<”,“>),则x的值为(06.(4分)(2006?菏泽)若分式的值为0 22 或0DB .C.﹣2 .A.分式的值为零的条件.考点:.两个条件需同时具备,缺一不可.据此可以≠)分子=0;(2)分母00分析:分式的值为的条件是:(1 解答本题.2解答:,02解:由题意可得﹣x≠且3x ﹣6x=0 解得x=0..故选A 此题考查的是对分式的值为点评:00的条件的理解,该类型的题易忽略分母不为这个条件.2 / 147.(4分)(2007?宁波)与如图所示的三视图对应的几何体是()A.B.C.D.考点:由三视图判断几何体.专题:压轴题.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:从正视图可以排除C,从左视图可以排除A和D,符合条件的只有B.故选B.点评本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认知能力,可过排除法进行解答8.(4分)如图,DE与△ABC的边AB,AC分别相交于D,E两点,且DE∥BC.若DE=2cm,BC=3cm,EC=cm,则AC等于()2 1D...A B.C考相似三角形的判定与性质专计算题分析:由DE∥BC可知,△ADE∽△ABC,根据相似三角形的性质,列出比例式,又知AC 的长.cm,可求出AE的长,从而求出DE=2cm,BC=3cm,EC= ,DE解:∵∥BC解答:,ADE∽△ABC∴△,∴,即又∵DE=2cm,BC=3cm,EC=cm,∴,∴AE=,∴AC=+=2.故选D.点评:本题考查了相似三角形的判定与性质,要找到相似三角形的对应边,并求出对应边的比.3 / 149.(4分)如图,矩形OABC的边OA在x轴上,O与原点重合,OA=1,OC=2,点D的坐标为(2,0),则直线BD的函数表达式为()y=2x+4 A.y=﹣x+2 B.y=﹣2x+4 C.y=﹣x+3 D.考点:待定系数法求一次函数解读式.分析根据条件易BA的长,就可以求点的坐标,根据待定系数法就可以求出直B的函的解读式解答解:因OA=OC=所BC=AB=所以的坐标是)又∵的坐标是)设直CB的关系式y=kx+把B,D的坐标代入关系式,有,解得.∴直线CD的函数关系式是y=﹣2x+4.故选B.点评:本题主要考查了待定系数法求函数解读式,注意数与形的结合是解决本题的关键.10.(4分)如图,已知AD是△ABC的外接圆的直径,AD=13cm,cosB=,则AC的长等于)(5 cm6 cm 10 cm 12 cm A.B.C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义.专题:计算题.分析:先根据圆周角定理得出∠B=∠ADC,∠ACD=90°,再根据锐角三角函数的定义解答即可.解答:解:∵∠B与∠ADC是同弧所对的圆周角,∴∠B=∠ADC,∴cosB=cos∠ADC=,∵AD是△ABC的外接圆的直径,∴∠ACD=90°,∵在Rt△ACD中,AD=13cm,∴cos∠ADC===,4 / 14 ,∴CD=5=12cm.∴AC== D.故选同圆或等圆中同弧或等弧所对的圆周角本题考查的是圆周角定理及锐角三角函数的定义,熟知在“点评:”是解答此题的关键.相等的正方形,15?天桥区三模)在如图所示的×5方格中,每个小方格都是边长为11.(4分)(2018有一条公共边且全等的所有格点三角ABC△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△)形的个数是(4 2 3 1 .C.DBA..全等三角形的判定考网格型专为AB为公共边的三角形,A为公共边的三角形,分析根据全等三角形的判定分别求出共边的三角形的个数,相加即可为公共边的三角为公共边的三角形个,A解答解:B为公共边的三角形个,AB 有1个,共3+0+1=4个,故选D.点评:本题考查了全等三角形的判定的应用,找出符合条件的所有三角形是解此题的关键.2个结)的图象如图所示,有下列5大港区一模)已知二次函数y=ax+bx+c(a≠0412.(分)(2018?论:的实数).(am+b)(m≠12c4a+2b+c>0;④<3b;⑤a+b>ma+c①abc>0;②b<;③)其中正确的结论有(个D.5.B 3个C.4个A.2个二次函数图象与系数的关系.考点:压轴题;数形结合.专题:轴的交>0;抛物线与y;对称轴在y轴的右侧得到a、b异号,则b分析:观察图象:开口向下得到a<0<,即a+c轴下方得到y=a﹣b+c<010点在x轴的上方得到c>,所以abc<0;当x=﹣时图象在x得=1>0;利用对称轴x=﹣x=2b;对称轴为直线x=1,可得时图象在x轴上方,则y=4a+2b+c有最大值,,所以2c<3b;开口向下,当x=1y<,则﹣﹣﹣到a=b,而ab+c<0b﹣b+c02).mm+bm+ca+b+c>am,即a+b>(am+b)(≠1,得到a+b+c轴的bbay0a 解答:解:开口向下,<;对称轴在轴的右侧,、异号,则>y;抛物线与0轴的交点在x5 / 14 ①不正确;<0,所以上方,c>0,则abc 不正确;,所以<b②﹣b+c<0,即a+c当x=﹣1时图象在x轴下方,则y=a 正确;0,所以③x=2时图象在x轴上方,则y=4a+2b+c>对称轴为直线x=1,则正确;2c<3b,所以④,则﹣a﹣b+c<0b﹣b+c<0,x=﹣=1,则a=﹣b,而22,a+b+c+bm+c,则>am+bm+c有最大值a+b+c;当x=m(m≠1)时,y=am开口向下,当x=1,y ≠1),所以⑤正确.即a+b>m(am+b)(m 故选B.2点评:,开口)的图象,当a>0本题考查了二次函数图象与系数的关系:对于二次函数y=ax≠+bx+c(a0同号,对称ba与向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=﹣,轴的上轴的交点在x0b异号,对称轴在y轴的右侧;当c>,抛物线与y轴在y轴的左侧,a与2 x轴有两个交点.方;当△=b﹣4ac>0,抛物线与分.5个小题.每小题3分;共15二、填空题:本大题共2)(x﹣3)..(133分)(2018?昭通)因式分解:2x﹣18=2(x+3考提公因式法与公式法的综合运用分析提公因,再运用平方差公式因式分解解答)18==x+)解2x ﹣x3).故答案为:2(x+3)(本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用点评:其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.m的取值范围是和静县一模)已知反比例函数14.(3分)(2018?y=的图象在第二、四象限,则.5m<反比例函数的性质.考点:根据反比例函数的性质列式计算即可得解.分析:解答:y=的图象在第二、四象限,解:∵反比例函数,∴m﹣5<0 .解得m<5 m故答案为:<5.点评:,反比例函数图象在一、1)k0>(本题考查了反比例函数的性质,对于反比例函数k≠0),(,反比例函数图象在第二、四象限内.k<0三象限;(2)部分对应陆地”201815.(3分)(?景德镇二模)用扇形统计图反映地球上陆地与海洋所占的比例时,“.108的圆心角是°.宇宙中一块陨石落在地球上,落在陆地的概率是0.3考点:几何概率;扇形统计图.专题:计算题.部分占地球总面积的比例,根据这个比例即可求出落在陆地的概”“陆地分析:根据扇形统计图可以得出率.陆地“”部分对应的圆心角是108,°解:∵解答:=”“∴陆地部分占地球总面积的比例为,∴宇宙中一块陨石落在地球上,落在陆地的概率是.=0.36 / 14 .故答案为0.3本题将概率的求解设置于实际生活中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公点评:式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础相应的面积与总面积之比.同时考查了扇形统计图的有关知识.性.用到的知识点为:概率=中,随xm+1)y=mx;④y=(x>0);②y=﹣mx+1;③(16.(3分)若m<﹣1,则下列函数①y= 的增大而增大的是x (填写编号).①②反比例函数的性质;一次函数的性质.:考点本题考查反比例函数、一次函数的图象和性质.分析:,<﹣1解答:解:∵m的增大而增大,故选项正确;随x<0,y①y=(x>0),当m的值增大而增大,故选项正确的值ymx+中,>x的值增大而减小,故选项错误;1,y的值随③y=mx 中,m<﹣x的值增大而减小,故选项错误.,y的值随)(m+1x中,m+1<0④y= ①②.故随x 的增大而增大的是反比例函数性质:点评:0时,图象分别位于第二、四象限.时,图象分别位于第一、三象限;当k<①当k>0的增大x时,在同一个象限,y随随x的增大而减小;当k<0②当k>0时,在同一个象限内,y 而增大.上为增函数、在0x<上同为减函数;0k<0时,函数在k>0时,函数在x<0上为减函数、在x>上同为增函数.>0x的增大而xy随k<0时,中,当k>0时,y随x的增大而增大;当y=kx+b一次函数性质:在直线减小.是矩形.请你边上,四边形AEBF,点E在OB3分)(2007?南昌)如图,已知∠AOB,OA=OB17.((请保留画图痕迹).只用无刻度的直尺在图中画出∠AOB的平分线.矩形的性质;角平分线的性质;等腰三角形的性质.考点:作图题;压轴题.专题:性质,要”“三线合一.根据等腰三角形的OA=OB可联想到连接AB,得到等腰三角形OAB分析:由条件的对角线,根据矩形的AEBFAB是矩形画出∠AOB的平分线,只需作底边AB上的中线,考虑到作的中点,从而过点C的交点C就是AB的中点,只要连接性质,要作出ABEF,那么AB与EF 的平分线.AOB射线OC就可得到∠解:作图如下:解答:OP,2,交点设为P,()如图,连接EF1()连接AB,OA=OB,∵为等腰三角形,所以△OAB AB中点,点为根据矩形中对角线互相平分,知P 性质,“三线合一”故根据等腰三角形的AOBOP即为∠的平分线.7 / 14”性质巧作角平分线.本题考查的是运用等腰三角形“三线合一点评:性质的基本图形与矩形的基本图形进行了有机的组三线合一”命题立意:命题者把等腰三角形“合.本题有两个巧妙之处,一是矩形对角线的交点恰好就是等腰三角形底边的中点,二是等腰三角,为我们作角的平分线提供了一种新方巧妙”形底边上的中线恰好就是顶角的平分线,正是这两个“法.分.7个小题,57三、解答题:)化简1.(7分)(182)解方程:.(解分式方程;单项式乘多项式;整式的混合运算;分式的乘除法;分式的混合运算考计算题专分析:﹣×(1)根据多项式乘单项式法则展开得出),再去括号合并同类项即可;﹣13(a+1)﹣(a×,求出2x1),求出整式方程的解,再代入=x(x﹣)1)得出x﹣2(x﹣1(2)方程两边都乘以x(x﹣1)进行检验即可.(x﹣解答:×,=×﹣(1)解:原式1),)﹣(a﹣=3(a+1 ,=3a+3﹣a+12),﹣1)=x(x11(x﹣)得:x﹣2(x﹣x=2a+4.(2)解:方程两边都乘以22 x.x ﹣2x+2=x﹣去括号得:2.移项合并同类项得:﹣x=﹣.1得:x=2系数化为是原方程的根,经检验x=2 .∴原方程的根为x=2本题考查了解分式方程、解整式方程、分式的乘法、整式的运算等知识点的运用,通过做此题培养点评:了学生的计算能力,注意:解分式方程一定要检验.为折断处最高BM处折断倒下,,在一次龙卷风中,一棵大树在离地面若干分)(19.(71)如图1 的长.(结果保留根号),求BAC=3012MCA点,树顶落在离树根的处,测得∠°BC8 / 14(2)如图2,等腰梯形ABCD中,AD∥BC,点E是AD延长线上一点,DE=BC.判断△ACE 的形状并证明.考点:勾股定理的应用;等腰梯形的性质.专题:应用题.分析:(1)在三角形ABC中,根据tan∠BAC=,再由∠BAC=30°,代入即可得出答案.(2)先判断四边形BCED是平行四边形,再根据等腰梯形的性质可得出AC=BD,AC=EC,继而证出结论.解答:解:(1)∵BC⊥AC,∴∠BCA=90°在直角△ABC中,∵tan,=BC=ACtaBAC=1tan3=1×(2)△ACE是等腰三角形证明:∵AD∥BC,∴DE∥BC.∵DE=BC,∴四边形BCED是平行四边形,∴BD=EC又∵梯形ABCD是等腰梯形,∴AC=BD,∴AC=EC,∴△ACE是等腰三角形.点评:此题考查了勾股定理的证明及等腰梯形的性质,解答本题的关键是掌握直角三角形中斜边的平方等于两直角边的平方和,及等腰梯形的两腰相等,难度一般.20.(8分)(1)解方程组:(2)二次函数图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C 在y轴正半轴上,且AB=OC.①求C的坐标;②求二次函数的解读式,并求出函数最大值.考点:抛物线与x轴的交点;解二元一次方程组;二次函数的最值.分析:(1)利用加减消元法解二元一次方程组即可;2(2)①因为AB=OC,AB=5,即可求出C的坐标;②设二次函数的解读式为y=ax+bx+5,利用已知条件求出a和b的值,即可求出抛物线的解读式,再利用公式法即可求出二次函数的最大值.9 / 14 解答:1),解:(﹣18x9y=﹣9,①×3得:﹣②得:13x=26,③x=2,3 12﹣3y=﹣把x=2代入①得:y=5,0),的坐标为(,0),点B4,∵点;(∴原方程组的解为:2)①A的坐标为(﹣1 ∴AB=5,,,∴OC=5∵AB=OC );(C0,5∴2②设二次函数的解读式为y=ax+bx+5,则,.解得,所以二次函数的解读式为.y==最大方程点评:(1)本题考查了用加减消元法解二元一次方程组,加减法解二元一次方程组的一般步骤:①组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两把两个方程的两边分别相减或相加,消去一个②边,使某一个未知数的系数相等或互为相反数.将求出的未知数解这个一元一次方程,求得未知数的值.④③未知数,得到一个一元一次方程.把所求得的两个未知数的值写⑤的值代入原方程组的任意一个方程中,求出另一个未知数的值.在一起,就得到原方程组的解,用的形式表示;(2)本题考查了用待定系数法求出二次函数的解读式和用公式法求二次函数的最值.名居民,调查社区居民双休日的学习状况,并将得到200.(218分)某社区从不同住宅楼中随机选取了的数据制成扇形统计图(如图①)和频数分布直方图(如图).②120人;名居民双休日在家学习的有)在这个调查中,(1200)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(2 名居民双休日学习时间不少于2 000)估计该社区(34小时的人数.10 / 14 扇形统计图;用样本估计总体;条形统计图;加权平均数;众数.考点:60%,即可得出答案;(1)从扇形统计图中可以看出,双休日在家学习的人占分析:人,进而求出在×30%=6030%,得出在图书馆学习的人数为:200(2)根据在图书馆学习的人数占人,即可得出平均数与众数.16﹣6=24﹣图书馆学习4小时的有60﹣14小时的居民占总体的百分比,然后就可以通过4)首先从图2中计算出双休日学习时间不少于(3 小时的人数.2 000名居民双休日学习时间不少于4样本估计总体,算出该社区(人);200×60%=120 解:(1)在家学习的所占的比例是60%,因而在家学习的人数是:解答:;故答案为:120 ,2)根据在图书馆学习的人数占30%(人,200×30%=60∴在图书馆学习的人数为:人,16﹣6=24小时的有60﹣14﹣∴在图书馆学习4 ,÷60=4.5×4+6×8)6+24∴在图书馆等场所学习的居民学习时间的平均数为:(14×2+16×小时.小时,众数为4∴平均数为4.5=0.71,(3)在家学习时间不少于4小时的频率是0.71=142(人)名居民双休日学习时间不少小时的人数是200该社2 00142人200名居民双休日学习时间不少小时的人数估计该社区此题主要考查了扇形统计图与条形图的综合应用,利用扇形图与条形图得出正确信息是解题关键.点评:)个≥3副某种品牌的乒乓球拍,每副球拍配k(k22.(9分)(2008?南充)某乒乓球训练馆准备购买n元,每20、乒乓球.已知AB两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为付费)销90%1元.现两家超市正在促销,A超市所有商品均打九折(按原价的个乒乓球的标价都为个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:超市买1副乒乓球拍送3售,而B 超市买更合算?)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B(1 时,请设计最省钱的购买方案.(2)当k=12一元一次不等式的应用考应用题;压轴题;方案型专超市所购买乒乓球的费用,列出)本题可根据去超市花的总费购买球拍的费分析的总费用,然后比较这两个总费用,分别得出不同的自变量的取值范围中哪个超市最合算超市同时购买的三种不同情)可分别计算出只超市购买,只超市购买和下,所需的费用,然后比较出最省钱的方案超市20n+k)元,副球拍k个乒乓球的费用0.超市购解答解:)由题意,元[20n+副球拍个乒乓球的费用1),解0.20n+k)20n+),解k=10.20n+k=20n+120n+k)20n+),解0.(超市购买更合算;10时,去A∴当k>、B两家超市购买都一样;k=10当时,去A 12n个乒乓球.)当k=12时,购买n副球拍应配23当≤k<10时,去B超市购买更合算.((元);=28.8n0.9(20n+12n)若只在A超市购买,则费用为(元);3n)=29n12n若只在B超市购买,则费用为20n+(﹣副球拍,然后再在A超市购买不足的乒乓球,B若在超市购买n n=28.1n(元)(12﹣3)20n+0.9则费用为×29n<显然28.1n<28.8n超市按九折个乒乓球,然后在A副球拍同时获得送的∴最省钱的购买方案为:在B超市购买n3n 个乒乓球.购买9n解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.本题要注意根据点评:BA,超市所需的总费用,分情况讨论分别得出合理的选择.11 / 1423.(9分)将两块形状大小完全相同的直角三角板按如图1所示的方式拼在一起.它们中较小直角边的长为6cm,较小锐角的度数为30°.(1)将△ECD沿直线AC翻折到如图2的位置,连接CF,图中除了△ABC≌△ECD≌△ECD′外,还有没有全等的三角形?若有,请指出一对并给出证明.(2)以点C为坐标原点建立如图3所示的直角坐标系,将△ECD沿x轴向左平移,使E点落在AB上,请求出点E′的坐标.考几何变换综合题分析)利用全等三角形的性质可以证明AAC=BC=E,从而证AE=,利AA证AE≌B)RB中,利用三角函数即可求B的长,C的长度可以求得的坐标即可到解答解:AE≌B,ACCECBC.证明:∵AB≌E∴AAC=BC=EAE=B在∴AEB中∴△AEF≌△D′BF(2)在Rt△B′BC′中,BC′=2,所以CC′=6﹣2,所以E′(2﹣6,6).点评:本题考查了全等三角形的判定与性质,求点的坐标的问题一般的思路就是转化为求线段的长度的问题.24.(9分)(2018?呼和浩特)如图,在直角坐标平面内,函数(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.(1)若△ABD的面积为4,求点B的坐标;(2)求证:DC∥AB;(3)当AD=BC时,求直线AB的函数解读式.考点:反比例函数综合题;待定系数法求一次函数解读式.12 / 14:压轴题.专题分析:点的,由已知条件可得B1,4),可求m=4x(1)由函数(>0,m是常数)的图象经过A(,B的坐标为(3a=34,即a(4﹣)=4,得,所以点坐标为(a,),又由△ABD的面积为);;∥AB﹣=a1,,所以DC(2)依题意可证,=a﹣1,是平行四边时,四边形ADCB①当AD∥BCAD=BC(3)由于DC∥AB,当时,有两种情况:B的坐标是形,由(2)得,点的坐标,B的函数解读式为y=kx+b,用待定系数法可以求出解读式(把点A(2,2),设直线AB .2x+6代入),是y=的坐标ADC是等腰梯形,BD=A,可求AB所在直线不平行时,四边),设直A的函数解读,y=﹣x+5.y=kx+b,用待定系数法可以求出解读式(把点A,B的坐标代入),是解答:),(1)解:∵函数y=(x>0,m是常数)图象经过A1,4(.∴m=4∴y=,点的坐),E,a),D点的坐标为(0,,设BDAC交于点E,据题意,可得B点的坐标为(标为(1,),∵a>1,﹣,AE=4.∴DB=a,即由△ABD的面积为4a (4﹣)=4,,得a=30),DE=1,,3B的坐标为(,);(2)证明:据题意,点C的坐标为(1∴点1,>∵a﹣易得EC=,BE=a1,.﹣1,∴=a﹣1=aAEB=∴且∠∠CED,CEDAEB∽△,∴△CDE,ABE=∴∠∠∥AB,DCABDC∴∥;(3)解:∵时,有两种情况:∴当AD=BC 是平行四边形,由(时,四边形BCADCB2)得,∥当①AD,∴a,得1=1﹣a=2.的坐标是(B,22).∴点设直线ABA,把点y=kx+b的函数解读式为B,的坐标代入,13 / 14 得,解得..2x+6故直线AB的函数解读式是y=﹣,BC所在直线不平行时,四边形ADCB是等腰梯形,则BD=AC②当AD与,∴a=44,1).∴点B的坐标是(B的坐标代入,,设直线AB的函数解读式为y=kx+b,把点A,得解得,.﹣x+5的函数解读式是故直线AByy2x+yx+的函数解读式综上所述,所求直AB本题要注意利用一次函数和反比例函数的特点,列出方程,求出未知数的值,用待定系数法从而求点评:得其解读式.主要是注意分类讨论和待定系数法的运用,需学生熟练掌握.14 / 14。
2018年中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a23.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.化简÷(1+)的结果是()A.B.C.D.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m27.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1968.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.0012410.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.711.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= .22.方程=的解为.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.三、解答题(本题共5小题,48分)25.(8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.27.(10分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB=CB,过程如下:过点C 作CE ⊥CB 于点C ,与MN 交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE .∵四边形ACDB 内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴BD+AB=CB .∴∠EAC=∠BDC 又∵AC=DC , ∴△ACE ≌△DCB , ∴AE=DB ,CE=CB , ∴△ECB 为等腰直角三角形,∴BE=CB .又∵BE=AE+AB , ∴BE=BD+AB .(1)当MN 绕A 旋转到如图(2)和图(3)两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对图(3)给予证明. (2)MN 在绕点A 旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .28.(10分)如图1,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E . (1)求证:△ABF ∽△COE ; (2)当O 为AC 的中点,时,如图2,求的值; (3)当O 为AC 边中点,时,请直接写出的值.29.(12分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2018年中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣【考点】6F:负整数指数幂;17:倒数.【分析】先计算负整数指数幂,再依据倒数的定义可得.【解答】解:∵(﹣)﹣1=﹣,∴(﹣)﹣1的倒数为﹣,故选:C.【点评】本题主要考查负整数指数幂和倒数的定义,熟练掌握负整数指数幂是解题的关键.2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a2+4a2=13a2,不符合题意;B、原式=3a2﹣4a2=﹣a2,符合题意;C、原式=12a3,不符合题意;D、原式=9a4÷4a2=a2,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.3.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】R6:关于原点对称的点的坐标;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先确定出点M在第三象限,然后根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解得到m的取值范围,从而得解.【解答】解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M(1﹣2m,m﹣1)在第三象限,∴,解不等式①得,m>,解不等式②得,m<1,所以,m的取值范围是<m<1,在数轴上表示如下:.故选C.【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系以及一元一次不等式组的解法.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.化简÷(1+)的结果是()A.B.C.D.【考点】6C:分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m2【考点】U3:由三视图判断几何体.【分析】左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.∴左视图面积=1×3=3(m2).故选D.【点评】主视图确定物体的长与高;俯视图确定物体的长与宽.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】AC:由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两家抽到东营港的情况,再利用概率公式求解即可求得答案.【解答】解:用A、B、C表示:东营港、黄河入海口、龙悦湖;画树状图得:∵共有9种等可能的结果,则两家都抽到东营港的有3种情况,∴则两家都抽到东营港的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选:C.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【考点】R2:旋转的性质.【分析】先求出∠ACD=30°,再根据旋转角求出∠ACD1=45°,然后判断出△ACO是等腰直角三角形,再根据等腰直角三角形的性质求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式计算即可得解.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB⊥CO是解题的关键,也是本题的难点.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.【考点】GB:反比例函数综合题.【分析】先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x 轴,BE⊥x轴,CF⊥BE于点F,再设A(3x, x),由于OA=3BC,故可得出B(x, x+4),再根据反比例函数中k=xy为定值求出x【解答】解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x, x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x, x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.【点评】本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm【考点】M4:圆心角、弧、弦的关系;KD:全等三角形的判定与性质;KQ:勾股定理.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径AE,连接BE.得直角三角形ABE.根据圆周角定理可证∠CBD=∠MAO,运用三角函数定义求解.【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.【点评】考查了圆周角定理和三角函数定义.此题首先要观察题目涉及的线段,然后根据已知条件结合定理进行角的转换.15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【分析】由y=mx(m≠0),y随x的增大而减小,推出m<0,可知二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,由此即可判断.【解答】解:∵y=mx(m≠0),y随x的增大而减小,∴m<0,∴二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,故选A.【点评】本题参考二次函数的性质、正比例函数的性质等知识,解题的关键是熟练掌握正比例函数以及二次函数的性质,属于中考常考题型.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】L9:菱形的判定;KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故选:C.【点评】本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据tan∠EFC=,设BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根据tan∠EFC=表示出CE并求出DE,最后在Rt△ADE中,利用勾股定理列式求出x,即可得解.【解答】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°﹣90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵tan∠EFC=,∴设BF=3x、AB=4x,在Rt△ABF中,AF===5x,∴AD=BC=5x,∴CF=BC﹣BF=5x﹣3x=2x,∵tan∠EFC=,∴CE=CF•tan∠EFC=2x•=x,∴DE=CD﹣CE=4x﹣x=x,在Rt△ADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,∴AB=4×4=16cm,AD=5×4=20cm,矩形的周长=2(16+20)=72cm.故选A.【点评】本题考查了矩形的对边相等,四个角都是直角的性质,锐角三角函数,勾股定理的应用,根据正切值设出未知数并表示出图形中的各线段是解题的关键,也是本题的难点.18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x 与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】H4:二次函数图象与系数的关系.【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.【点评】本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= 2(x2+1)(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式即可分解.【解答】解:原式=2(x4﹣1)=2(x2+1)(x2﹣1)=2(x2+1)(x+1)(x﹣1).故答案是:2(x2+1)(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.方程=的解为x=2 .【考点】B3:解分式方程.【分析】方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.【解答】解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为﹣1 .【考点】MO:扇形面积的计算.【分析】首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值.【解答】解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1,在Rt△CDG中,由勾股定理得:DG==,设∠DCG=θ,则由题意可得:S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,∴S=﹣.当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.当r=时,DG=1,∵CG=1,故θ=45°,∴S=﹣=﹣1,故答案为:﹣1.【点评】本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是(﹣×42016,42017).【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标;L5:平行四边形的性质.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n),即可求得C2017的坐标.【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x,∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n),∴C2017的坐标是(﹣×42016,42017).故答案为(﹣×42016,42017).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三、解答题(本题共5小题,48分)25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】G8:反比例函数与一次函数的交点问题;G6:反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;。
2018年中考数学二模试卷一、选择题:每小题3分,共36分。
1.下列计算错误的是()A.•=B.+=C.÷=2 D.=22.﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣3.下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.下列函数,其图象经过点(2,2)的是()A.y=3x B.y=1﹣2x C.y=D.y=x2﹣15.如图所示的几何体的主视图是()A.B. C.D.6.函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠07.有19位同学参加歌咏比赛,成绩互不相同,前10名的同学进入决赛.某同学知道自己的分数后,要判断自己能够进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数 D.方差8.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD 的度数为()A.50°B.60°C.65°D.70°9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥B.x≤3 C.x≤D.x≥310.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π11.下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形12.若不等式组有解,则m的取值范围是()A.m≥2 B.m<1 C.m>2 D.m<2二、填空题:每小题3分,共18分。
13.将0.00305用科学记数法表示为.14.分解因式:x2﹣x+=.15.单项式的系数与次数之积为.16.如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=度.17.已知x、y满足,则x+2y=.18.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D,已知cos∠ACD=,BC=3,则AC的长为.三、解答题:本大题共66分。
四川省眉山市2018年中考数学试题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四川省眉山市2018年中考数学试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四川省眉山市2018年中考数学试题(含答案)(word版可编辑修改)的全部内容。
数学试卷第1页(共6页)数学试卷第2页(共6页)眉山市2018年初中学业水平暨高中阶段学校招生考试数 学 试 卷注意事项:1。
本试卷分A 卷和B 卷两部分,A 卷共100分,B 卷共20分,满分120分,考试时间120分钟.2。
答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
3. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号;答非选择题时,必须使用05毫米黑色签字笔,将答案书写在答题卡规定的位置上;所有题目必须在答题卡上作答,在试题卷上答题无效.4. 不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值.5.凡作图题或辅助线均用签字笔画图.A 卷(共100分) 第Ⅰ卷(选择题共36分)1.绝对值为1的实数共有A .0个B .1个C .2个D .4个答案:C2.据相关报道,开展精准扶贫工作以来,我国约有65000000人摆脱贫困,将65000000用科学记数法表示为 A .65×106B .0.65×108C .6。
5×106D .6.5×107答案:D3.下列计算正确的是A .(x +y )2=x 2+y 2B .(-21xy 2)3=-16x 3y 6C.x6÷x3=x2D.22)( =2答案:D4.下列立体图形中,主视图是三角形的是答案:B5.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是A.45°B.60°C.75°D.85°答案:C6.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于A.27°B.32°C.36°D.54°答案:A7.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的A.众数B.中位数C.平均数D.方差数学试卷第3页(共6页)数学试卷第4页(共6页)答案:B8.若α,β是一元二次方程3x 2+2x -9=0的两根,则βα+αβ的值是 A .274 B .-274C .-2758 D .2758 答案:C9.下列命题为真命题的是A .两条直线被一组平行线所截,所得的对应线段成比例B .相似三角形面积之比等于相似比C .对角线互相垂直的四边形是菱形D .顺次连结矩形各边的中点所得的四边形是正方形 答案:A10.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是 A .8% B .9% C .10% D .11%答案:C11.已知关于x 的不等式组x 2a-32x 3x-2+5⎧⎨⎩>≥()仅有三个整数解,则a 的取值范围是A .21≤a<1 B .21≤a≤1C .21<a≤1D .a <1答案:A12.如图,在ABCD 中,CD =2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连结EF 、BF ,下列结论:①∠ABC =2∠ABF ;②EF =BF ;③S四边形DEBC=2S △EFB ;④∠CFE =3∠DEF ,其中正确结论的个数共有数学试卷第5页(共6页)A .1个B .2个C .3个D .4个答案:D第Ⅱ卷(非选择题共64分)二、填空题:本大题共6个小题,每小题3分,共18分请将正确答案直接填在答题卡相应的位置上13.分解因式:x 3—9x =(3)(3)x x x +-。
2018年四川省眉山市仁寿县中考数学二模试卷一、选择题(.每小题3分,共30分)1.到2008年5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是()A.2.653×105 B.2.653×106 C.2.653×107 D.2.653×1082.﹣的绝对值为()A.﹣2 B.﹣C.D.13.下面的三视图所对应的物体是()A.B.C.D.4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.5.下列运算正确的是()A.a2•a3=a5B.(ab)2=ab2C.(a3)2=a9 D.a6÷a3=a26.已知甲、乙两组数据的平均数分别是=80,=90,方差分别是S甲2=10,S乙2=5,比较这两组数据,下列说法正确的是()A.甲组数据较好 B.乙组数据较好C.甲组数据比较整齐 D.乙组数据的波动较小7.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是()A.12πcm2B.15πcm2C.18πcm2D.24πcm28.已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧;④方程ax2+bx=0一定有两个不相等的实数根.以上说法正确的个数为()A.1 B.2 C.3 D.49.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾、前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往、若部队离开驻地的时间为t(小时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是()A.B.C.D.10.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4 C. D.4.5二、填空题(每小题3分,共24分)11.使代数式有意义的x的取值范围是.12.一个口袋中装有4个红球,x个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是,则袋里有个绿球.13.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.16.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为.17.已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是.18.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2018次,点P依次落在点P1,P2,P3,…P2018的位置,则点P2018的横坐标为.三、解答题(19、20每小题9分,共18分)19.先化简,再求值:,其中a=+1,b=﹣1.20.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.四、解答题(本题14分)21.2018年开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有2000人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.五、解答题(22小题12分、23小题12分,共24分)22.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.23.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)求证:△BCD∽△BEC;(3)若tan∠CED=,⊙O的半径为3,求OA的长.六、解答题(本题12分)24.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)七、解答题(本题14分)25.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示),并给出证明.八、解答题(本题14分)26.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.2018年四川省眉山市仁寿县中考数学二模试卷参考答案与试题解析一、选择题(.每小题3分,共30分)1.到2008年5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是()A.2.653×105 B.2.653×106 C.2.653×107 D.2.653×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:265.3=2 653 000=2.653×106.故选B.2.﹣的绝对值为()A.﹣2 B.﹣C.D.1【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣|=,∴﹣的绝对值为.故选:C.3.下面的三视图所对应的物体是()A.B.C.D.【考点】由三视图判断几何体.【分析】本题可利用排除法解答.从主视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B,C,D.【解答】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D选项,从上面物体的三视图看出这是一个圆柱体,故排除B选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选A.4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x<2,解不等式②,得x>﹣1,所以不等式组的解集是﹣1<x<2,故选C.5.下列运算正确的是()A.a2•a3=a5B.(ab)2=ab2C.(a3)2=a9 D.a6÷a3=a2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂相乘,积的乘方的性质,幂的乘方的性质,同底数幂的除法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a2•a3=a5,正确;B、错误,应为(ab)2=a2b2;C、错误,应为(a3)2=a6;D、错误,应为a6÷a3=a3.故选A.6.已知甲、乙两组数据的平均数分别是=80,=90,方差分别是S甲2=10,S乙2=5,比较这两组数据,下列说法正确的是()A.甲组数据较好 B.乙组数据较好C.甲组数据比较整齐 D.乙组数据的波动较小【考点】方差.【分析】比较两组数值哪组较好,不只要比较平均数,还要比较方差,方差越小数据的波动越小.由此可得出答案.【解答】解:因为甲的方差大于乙的,因此乙组数据波动较小.故选D.7.如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是()A.12πcm2B.15πcm2C.18πcm2D.24πcm2【考点】圆锥的计算.【分析】利用圆锥的底面周长易得圆锥的底面半径,那么利用勾股定理易得圆锥的母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:∵底面周长是6π,∴底面圆的半径为3cm,∵高为4cm,∴母线长5cm,∴S=15πcm2.故选B.8.已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点至少有一个在y轴的右侧;④方程ax2+bx=0一定有两个不相等的实数根.以上说法正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】由a、b、c的符号可判断开口方程,对称轴,顶点坐标,再结合一元二次方程根与系数的关系逐项判断,可得出答案.【解答】解:∵a>0,∴二次函数图象开口向上,故①正确;∵a>0,b>0,c<0,∴﹣<0,<0,∴其顶点坐标一定在第二象限,故②不正确;在y=ax2+bx+c中,令y=0可得ax2+bx+c=0,设该方程的两根分别为x1和x2,由根与系数的关系可知x1x2=<0,∴x1和x2中必有一个为正值,∴二次函数图象与x轴的交点至少有一个在y轴的右侧;故③正确;∵ax2+bx=x(ax+b)=0,∴方程的两根为x=0或x=﹣,∴b≠0,∴﹣≠0,∴方程ax2+bx=0有两个不相等的实数根,故④正确;综上可知正确的有3个,故选C.9.解放军某部接到上级命令,乘车前往四川地震灾区抗震救灾、前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往、若部队离开驻地的时间为t(小时),离开驻地的距离为s(千米),则能反映s与t之间函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】因为前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往,由此即可求出答案.【解答】解:根据题意:分为3个阶段:1、前进一段路程后,位移增大;2、部队通过短暂休整,位移不变;3、部队步行前进,位移增大,但变慢;故选A.10.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.∠ADC=30°,AD=3,BD=5,则CD的长为()A. B.4 C. D.4.5【考点】等边三角形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】首先以CD为边作等边△CDE,连接AE,利用全等三角形的判定得出△BCD≌△ACE,进而求出DE的长即可.【解答】解:如图,以CD为边作等边△CDE,连接AE.∵∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,∴在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.又∵∠ADC=30°,∴∠ADE=90°.在Rt△ADE中,AE=5,AD=3,于是DE=,∴CD=DE=4.故选:B.二、填空题(每小题3分,共24分)11.使代数式有意义的x的取值范围是x>2.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据分式有意义,分母不为0;二次根式的被开方数是非负数进行解答.【解答】解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.12.一个口袋中装有4个红球,x个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是,则袋里有3个绿球.【考点】概率公式.【分析】设袋中有x个绿球,再根据概率公式求出x的值即可.【解答】解:设袋中有x个绿球,∵袋中有红球4个,黄球2个,从中任意摸出一个球是绿球的概率为,∴=,解得:x=3,故答案为:3.13.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为1.【考点】中位数;算术平均数.【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.【解答】解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数的几何意义,可知图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,据此作答.【解答】解:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++=.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.故答案为:.16.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为3.【考点】勾股定理;相似三角形的判定与性质.【分析】根据相似三角形的性质,相似三角形的对应边成比例,即可求GF的长.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB.∴△AEG∽△BFE,从而推出对应边成比例:,又∵AE=BE,∴AE2=AG•BF=2,推出AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3.故答案为:3.17.已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是23°或67°.【考点】圆周角定理.【分析】按点D在直线OC左侧、右侧两种情形分类讨论,利用圆周角定理求解.【解答】解:由题意,①当点D在直线OC左侧时,如答图1所示.连接OD,则∠1=∠2=22°,∴∠COD=180°﹣∠1﹣∠2=136°,∴∠AOD=∠COD﹣∠AOC=136°﹣90°=46°,∴∠ABD=∠AOD=23°;②当点D在直线OC右侧时,如答图2所示.连接OD,则∠1=∠2=22°;并延长CO,则∠3=∠1+∠2=44°.∴∠AOD=90°+∠3=90°+44°=134°,∴∠ABD=∠AOD=67°.综上所述,∠ABD的度数是23°或67°,故答案为:23°或67°.18.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2018次,点P依次落在点P1,P2,P3,…P2018的位置,则点P2018的横坐标为2018.【考点】规律型:点的坐标;旋转的性质.【分析】根据图形的翻转,分别得出P1、P2、P3…的横坐标,再根据规律即可得出各个点的横坐标.【解答】解:观察图形结合翻转的方法可以得出P1、P2的横坐标是1,P3的横坐标是2.5,P4、P5的横坐标是4,P6的横坐标是5.5…依此类推下去,因为2018÷3=671,×3+2.5=2018.5,所以P2018的横坐标为2018.5.P2018、P2018的横坐标是2018.故答案为:2018.三、解答题(19、20每小题9分,共18分)19.先化简,再求值:,其中a=+1,b=﹣1.【考点】分式的化简求值;分母有理化.【分析】本题考查了化简与代值计算,关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式=÷=﹣=﹣;当a=+1,b=﹣1时,原式=﹣=﹣.20.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.【考点】分式方程的应用.【分析】速度分别是:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时;路程:都是15千米,时间表示为:.关键描述语为:“抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地”.等量关系为:抢修车的时间﹣吉普车的时间=.【解答】解:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意得:.解得:x=20.经检验:x=20是原方程的解.∴当x=20时,1.5x=30.答:抢修车的速度为20千米/时,吉普车的速度为30千米/时.四、解答题(本题14分)21.2018年开始辽宁足球队把盘锦辽滨锦绣体育场作为了自己的主场,小球迷“球球”对自己学校部分学生对去赛场为辽宁队加油助威进行了抽样调查,根据收集到的数据绘制了如下不完整的统计图表.调查情况(说明:A:特别愿意去;B:愿意去;C:去不去都行;D:不愿意去)(1)求出不愿意去的学生的人数占被调查总人数的百分比;(2)求出扇形统计图中C所在的扇形圆心角的度数;(3)若该校学生共有2000人,请你估计特别愿意去加油助威的学生共有多少人?(4)大赛组委会为了鼓励大众到体育场为球队加油助威的热情,进行了“玩游戏,赠门票”的活动,一个被等分成4个扇形的圆形转盘,分别标有数字2,3,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).若转两次的数字之和大于等于10则赠送一张门票,请用“列表法”或“画树形图”的方法求出获赠门票的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)首先求出总人数为50人,再计算不愿意去的学生的人数的百分比即可;(2)由C的总人数和总人数作比值再乘以360°,即可得到C所在的扇形圆心角的度数;(3)用2000乘以特别愿意去加油助威的学生所占的百分比即可;(4)列出所有情况,然后求出两次的数字之和大于等于10的情况计算即可.【解答】解:(1)25÷50%=50(人),2÷50=4%,不愿意去的学生的人数占被调查总人数的百分比为4%;(2)(10÷50)×360=72°,扇形统计图中C所在的扇形圆心角的度数为72°;(3)2000×50%=1000(人),∴估计特别愿意去加油助威的学生共有1000人;4大于等于10(记为事件A)的结果有4个,即(5,5),(5,6),(6,5),(6,6),∴P(A)==.五、解答题(22小题12分、23小题12分,共24分)22.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.【考点】解直角三角形的应用-方向角问题.【分析】过点C作CD⊥AD于点D,分别在Rt△CBD、Rt△CAD中用式子表示CD、AD,再根据已知求得BD、CD的长,从而再将CD于9比较,若大于9则无危险,否则有危险.【解答】解:过点C作CD⊥AD于点D,∵∠EAC=60°,∠FBC=30°,∴∠CAB=30°,∠CBD=60°.∴在Rt△CBD中,CD=BD.在Rt△CAD中,AD=CD=3BD=24×0.5+BD,∴BD=6.∴CD=6.∵6>9,∴货船继续向正东方向行驶无触礁危险.23.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)求证:△BCD∽△BEC;(3)若tan∠CED=,⊙O的半径为3,求OA的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OC,如图,根据等腰三角形的性质得OC⊥AB,然后根据切线的判定定理即可得到直线AB是⊙O的切线;(2)根据圆周角定理求得∠ECD=90°,进而求得∠BCD=∠E,根据∠CBD=∠EBC,即可证明△BCD∽△BEC.(3)设BD的长是x,因为△BCD∽△BEC,根据相似三角形的对应边成比例,可求出x的值,然后根据OB=OA=x+3求解即可.【解答】(1)证明:如图,连接OC.∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线.(2)证明:∵ED是直径,∴∠ECD=90°.∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.(3)解:∵,∴.∵△BCD∽△BEC,∴.设BD=x,则BC=2x.又∵BC2=BD•BE,(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=2+3=5.六、解答题(本题12分)24.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据销售利润y=(每千克销售价﹣每千克成本价)×销售量w,即可列出y与x之间的函数关系式;(2)先利用配方法将(1)的函数关系式变形,再利用二次函数的性质即可求解;(3)先把y=150代入(1)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,则y=﹣2x2+120x﹣1600.由题意,有,解得20≤x≤40.故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;(3)当y=150时,可得方程﹣2x2+120x﹣1600=150,整理,得x2﹣60x+875=0,解得x1=25,x2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x2=35不合题意,应舍去.故当销售价定为25元/千克时,该农户每天可获得销售利润150元.七、解答题(本题14分)25.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示),并给出证明.【考点】解直角三角形;全等三角形的判定;角平分线的性质.【分析】(1)由角平分线的性质可证∠ACB=∠ACD=30°,又由直角三角形的性质,得AB+AD=AC.(2)根据角平分线的性质过点C分别作AM,AN的垂线,垂足分别为E,F,可证AE+AF=AC,只需证AB+AD=AE+AF即可,由△CED≌△CFB,即可得AB+AD=AE+AF.(3)由(2)知ED=BF,AE=AF,在直角三角形AFC中,可求AB+AD=2cos AC.【解答】(1)证明:∵AC平分∠MAN,∠MAN=120°,∴∠CAB=∠CAD=60°,∵∠ABC=∠ADC=90°,∴∠ACB=∠ACD=30°,∴AB=AD=AC,∴AB+AD=AC.(2)解:成立.证法一:如图,过点C分别作AM,AN的垂线,垂足分别为E,F,∵AC平分∠MAN,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,∵∠CED=∠CFB=90°,∴△CED≌△CFB,∴ED=FB,∴AB+AD=AF+BF+AE﹣ED=AF+AE,由(1)知AF+AE=AC,∴AB+AD=AC,证法二:如图,在AN上截取AG=AC,连接CG,∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,∴∠CBG=∠ADC,∴△CBG≌△CDA,∴BG=AD,∴AB+AD=AB+BG=AG=AC;(3)证明:由(2)知,ED=BF,AE=AF,在Rt△AFC中,cos∠CAF=,即cos,∴AF=ACcos,∴AB+AD=AF+BF+AE﹣ED=AF+AE=2AF=2cos AC.把α=60°,代入得AB+AD=AC.八、解答题(本题14分)26.已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,﹣6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A,B,C三点代入二次函数解析式即可求得二次函数解析式.(2)把点C的横坐标代入抛物线解析式,可求得纵坐标,把点C、B坐标代入一次函数解析式即可求得一次函数解析式.进而求得OG长.S△OBC=S△OGC+S△OGB(3)两三角形相似,已有两个直角相等,那么夹直角的两边对应成比例;注意对应边的不同可分两种情况进行分析.【解答】解:(1)由题意得:,解得.故抛物线的函数关系式为y=﹣x2+5x;(2)因为C在抛物线上,所以﹣22+5×2=m,所以m=6所以C点坐标为(2,6)因为B,C在直线y=kx+b′上,所以.解得k=﹣3,b′=12直线BC的解析式为y=﹣3x+12设BC与x轴交于点G,则G的坐标为(4,0)所以S△OBC==24(3)存在P,使得△OCD∽△CPE设P(m,n),∵∠ODC=∠E=90°故CE=m﹣2,EP=6﹣n若要△OCD∽△CPE,则要=或=即=或=解得m=20﹣3n或n=12﹣3m又因为(m,n)在抛物线上,.或.解得,即,或,即,故P点坐标为(,)和(6,﹣6).2018年6月2日。