2006年全国初中应用物理知识竞赛试题参考答案
- 格式:doc
- 大小:390.50 KB
- 文档页数:4
运动和力一、选择题(2011)7C、原因:北斗星在北极上方,相对地球静止,北斗星在北极侧面,北斗星每一年绕北极星转1周,相当于地球每年绕太阳转一周,所以人们以北斗星的位置定位1年四季,不也就相当于以地球为参照物了么!(2007)2C、解:惯性,力不平衡;(2000)3 B;(2000)7 C;(2000)1 B;解:摩托车飞越高大障碍物时,若前轮先着地,前轮受地面的摩擦力使前轮的速度减小或静止,而摩托车的后轮及其他部分由于惯性还要继续向前运动,导致翻车;因此后轮先着地就可以避免翻车现象的发生.(1999)5A解:当三辆火车同方向,速度不同时,以速度处于中间的车为参照物时,看到另两列火车的关系就是向相反的方向运动,故A选项错误,B、C选项正确;当乘客坐在相对于地面静止的火车中,观察相对于地面向相反方向运动的另外两列火车时,会看到这两列火车向相反方向运动,故D选项正确.(1999)8A解:生鸡蛋的蛋液和蛋壳是两部分,转动时,蛋壳受力开始转动,蛋液由于惯性要保持原来静止的状态,从而给蛋壳一个阻力,所以很快就停下来;熟鸡蛋的蛋液和蛋壳是一个整体,转动时,蛋壳和蛋液都受力开始转动,转动的时间较长.(1994)1 C;(1992)13 B;(1991)2 D;(1991)6 D解:甲同学看到路边树木向东运动,是以他自己为参照物,说明他向西行走;乙看到甲静止不动,是以自己为参照物,他与甲同学之间的位置没有发生变化,说明他与甲同学以相同的速度,同向行走.二、填空题(2008)2解:由题知,客车的长度:L=11m×2.2×17=411.4m,经过的时间t=8s,小明相对于客车的速度:v=v1+v2=v1+108km/h=v1+30m/s,∵L=(v1+v2)t=(v1+30m/s)×8s,即:411.4m=(v1+30m/s)×8s,∴v1≈21.4m/s.故答案为:21.4.(2006)1解:由题意可知,小树、电线杆和村庄在一条直线上,村庄离车最远,所以相对于电线杆向后运动慢一点,人从车里往外看以电线杆为参照物时,村庄看上去是在往前运动;同理,可得出小树相对于电线杆向后运动.所以,村庄和小树绕着电线杆做顺时针转动.故答案为:前;后;顺.(2006)4解:如果轮胎有了磨损,轮半径减小,行驶相同的路程,车轮转动的圈数偏大,所以根据圈数测得的里程数和时速都要偏大;∵v=s/t,∴t=s/v,∵从北京到上海的路程知道(准确),速度表上指示的时速偏大,∴估算的时间比实际用的时间要小.故答案为:小于;小于.(2001)1解:下雨的方向相对于地面来说,雨是做平抛运动,平抛运动可分解为沿水平方向的匀速直线运动和沿竖直方向的自由落体运动,而此时的水平速度大小正好等于18km/h=5m/s,且方向也是由西向东,所以,此时该同学看到的是雨是成竖直状态下落,也就是雨相对于该同学是做自由落体运动了;故答案为:西,5.(2000)3解:虽然有风时雨是斜着下的,但是由于重力的作用,最终落入雨量筒的雨水的量是不受风向的影响的,所以有风的时候雨量筒竖立的方向不必变化,正确的使用方法为图(乙)所示,所以使用图中错误的方法即丙图,测得的雨量比实际降水量要多(因为落入雨量筒中的雨水多了)故正确答案为:乙,多.(1998)3解:由v=s/t得t=s/v=(L1+L2)/(v1+v2)答:两车从遇到离开所需时间为(L1+L2)/(v1+v2).(1998)8解:当车向右开动时,水由于惯性要保持原来的静止状态,故水相对车向后运动,故会将气泡挤向右方;刹车时,水由于惯性要保持原来的运动状态,继续向前运动,所以会将气泡挤向左方;故答案为:右,左,水.(1997)5解:∵s=100米,t=9.86秒∴跑完100米的平均速度是v100=s100/t100=100米/9.86秒=10.1米/秒10米内平均速度最小的是v小=s10/t大=10米/1.88秒=9.2米/秒后20米的平均速度是v=s10/t小=(2×10米)/1.74秒=11.4米/秒10米内平均速度最大的是 v大=s10/t最小=10米/0.85秒=12.0米/秒>11.4米/秒答:刘易斯这次百米赛跑的平均速度是10.1米/秒,他平均速度最小的是第一个10米,他的平均速度最大的是第八个10米.(1996)1解:汽车和汽车的像之间距离没有发生改变,方位没有发生改变,以汽车为参照物,汽车的像是静止的,相对速度为0.故答案为:0.(1996)8解:由题意可知甲比乙所走的路程多2个船距,即多走20m,s乙=v乙t乙=7m/s×80s=560m,所以,s甲=s乙+20m=560m+20m=580m,因此,v甲=s甲/t=580m/80s=7.25m/s.故填:7.25.(1993)2解:火车的速度v2=180km/h=50m/s,由公式s=vt得:列车鸣笛后3s时间内声音传播的路程为:s1=V1t=340m/s×3s=1020m;3s内列车前进的距离为:s2=V2t=50m/s×3s=150m;根据关系式:2s=s1+s2;列车鸣笛时距隧道口距离为:s=s1+s22=(1020m+150m)/2=585m.答:列车鸣笛时距隧道口距离为585m.(1991)1解:货物的质量:m=G/g=4.9N/(9.8N/kg)=0.5kg;过物体的重心作竖直向上的拉力和竖直向下的重力.如图所示(1991)3解:v=(N-1)L/t三、简答下列各题(2011)3、(1)①C所在部位。
十六届全国初中应用物理知识竞赛试题注意事项:1.首先填写所在地区、学校、姓名和考号。
2.用蓝色或黑色钢笔、圆珠笔书写。
3.本试卷共有八个大题。
一、选择题以下各小题给出的四个选项只有一个是正确的,把正确选项前面的字母填在题后的括号内(每小题3分,共15分)1.小亮同学从超市买来一个玻璃瓶装的铁皮盖罐头,想把瓶盖打开,可是怎么也拧不动。
小亮的哥哥用螺丝刀沿瓶盖的边轻轻撬了几下,一拧就打开了。
这主要是因为用螺丝刀撬瓶盖可以[]A.增大瓶盖直径,减小瓶盖侧壁对瓶的压力B.减小瓶盖与瓶口的接触面积C.减小瓶内外气体的压力差D.由于撬了盖的一边,而增大了盖的另一边的压力2.高压输电线路的铁塔顶端有一条(或两条)比下面输电线细的金属线(如图1~图2 ),它的作用是[]A.加强铁塔的稳定性B传输零线的电流C.防雷电起到避雷针的作用D.作为备用线,供输电线断开时应急使用3.用普通照相机拍照时,要按被照物体距相机镜头的远近进行“调焦”,使用起来不太便捷。
有一种“傻瓜”相机,只要把想拍摄的景物全部纳入取景器内,不论远处还是近处的物体,在照片上都比较清晰,从而使拍照的过程变得十分快捷。
这种“傻瓜”相机不用“调焦”的奥秘是[]A.采用了长焦距的镜头,使远近不同的物体成像的位置相差不大B采用了短焦距的镜头,使远近不同的物体成像的位置相差不大C.采用了长焦距的镜头,使远近不同的物体成像的位置相同D采用了短焦距的镜头,使远近不同的物体成像的位置相同4.磁带录音机既可以录音,也可用以放音,其主要部件为运行的磁带和绕有线圈的磁头。
录音时,磁带上的磁粉被由声音信号转化而来的电流产生的磁场所磁化,这样便将声音信号转化为磁信号记录在磁带上;放音时,再把磁带上的磁信号通过磁头转化为电信号使扬声器发声。
对于录音机录音、放音过程的基本原理,下列各种说法中正确的是[]A.录音的基本原理是电磁感应,放音的基本原理是电流的磁效应B.录音的基本原理是电流的磁效应,放音的基本原理是电磁感应C.录音和放音的基本原理都是电流的磁效应D.录音和放音的基本原理都是电磁感应5.王勇同学在宾馆饭店看到一种自动门,当有人靠近时,门会实现自动开闭。
1992年全国初中应用物理知识竞赛一、选择题(共42分,每小题3分)下列各题所列答案中只有一个是正确的。
把正确答案前面的字母填在题后的括号内。
1.30牛顿可能是下列哪个物体所受的重力?[ ]A.一个小学生。
B.一辆汽车。
C.一支铅笔。
D.一个装满书本的书包。
2.夏天,打开冰箱门,常可看到白雾。
这是[ ]A.冰箱内原有的水蒸气。
B.冰箱内食物中的水分遇到高温空气后,蒸发形成的水蒸气。
C.空气中的水蒸气降温形成的小冰晶。
D.空气中的水蒸气降温形成的小水滴。
3.白炽灯的灯丝断了之后,如果再搭接上,还会发光。
这时的耗电功率与原来相比。
[ ]A.增加。
B.减少。
C.不变。
D.耗电功率比原来增加或减少由灯丝搭接的位置决定。
4.为了比较准确地测出一堆相同规格的小橡胶垫圈的数量(估计为1000个),最好采用下列哪种方法?[ ]A.将这些垫圈叠在一起,用刻度尺量出总厚度L,再量出一个垫圈B.将这些垫圈叠在一起,用刻度尺量出总厚度L,再量出10个垫C.用天平测出这些垫圈的总质量M,再测出一个垫圈的质量M1,D.用天平测出这些垫圈的总质量M,再测出10个垫圈的质量M10。
5.白炽灯泡的灯丝常制成螺旋状,这样做的目的是[ ]A.便于灯丝散热,防止灯丝熔断。
B.尽量减少灯丝的电阻。
C.减少灯丝散热,提高灯丝的温度。
D.减少灯丝在高温时的升华。
6.拖拉机的履带是由一块块金属板做成的,每块板上都有一、二条凸起的棱[ ]A.金属板和它上面的棱都是为了减小对地面的压强。
B.金属板和它上面的棱都是为了增大对地面的压强。
C.金属板是为了减小对地面的压强;棱是为了增大对地面的压强。
D.金属板是为了增大对地面的压强;棱是为了减小对地面的压强。
7.冬天,把自来水笔从室外带到室内,有时会有墨水流出。
这主要是因为[ ]A.墨水受热膨胀,流出来了。
B.笔囊受热膨胀,把墨水挤出来了。
C.笔囊中的空气受热膨胀,把墨水挤出来了。
D.笔尖处的缝隙受热膨胀,使墨水漏出来了。
第23 届全国中学生物理竞赛决赛试题2006年11月深圳★ 理论试题一、建造一条能通向太空的天梯,是人们长期的梦想.当今在美国宇航局(NASA)支持下,洛斯阿拉莫斯国家实验室的科学家已在进行这方面的研究.一种简单的设计是把天梯看作一条长度达千万层楼高的质量均匀分布的缆绳,它由一种高强度、很轻的纳米碳管制成,由传统的太空飞船运到太空上,然后慢慢垂到地球表面.最后达到这样的状态和位置:天梯本身呈直线状;其上端指向太空,下端刚与地面接触但与地面之间无相互作用;整个天梯相对于地球静止不动.如果只考虑地球对天梯的万有引力,试求此天梯的长度.已知地球半径R0 = 6.37 ×106 m ,地球表面处的重力加速度g = 9.80 m·s-2 .二、如图所示,一内半径为R 的圆筒(图中2R 为其内直径)位于水平地面上.筒内放一矩形物.矩形物中的A 、B 是两根长度相等、质量皆为m 的细圆棍,它们平行地固连在一质量可以不计的,长为l = 3R 的矩形薄片的两端.初始时矩形物位于水平位置且处于静止状2R态,A 、B 皆与圆筒内表面接触.已知A 、B 与圆筒内表面A间的静摩擦因数μ都等于1.l现令圆筒绕其中心轴线非常缓慢地转动,使A 逐渐升高.1.矩形物转过多大角度后,它开始与圆筒之间不再能保持相对静止?答:(只要求写出数值,不要求写出推导过程)2.如果矩形物与圆筒之间刚不能保持相对静止时,立即令圆筒停止转动.令θ表示A的中点和B 的中点的连线与竖直线之间的夹角,求此后θ等于多少度时,B 相对于圆筒开始滑动.(要求在卷面上写出必要的推导过程.最后用计算器对方程式进行数值求解,最终结果要求写出三位数字.)三、由于地球的自转及不同高度处的大气对太阳辐射吸收的差异,静止的大气中不同高度处气体的温度、密度都是不同的.对于干燥的静止空气,在离地面的高度小于 20 km 的大气层 内,大气温度 T e 随高度的增大而降低,已知其变化率△T e △z= -6.0 × 10-3 K ·m -1z 为竖直向上的坐标.现考查大气层中的一质量一定的微小空气团(在确定它在空间的位置时可当作质点处 理),取其初始位置为坐标原点(z = 0),这时气团的温度 T 、密度ρ 、压强 p 都分别与周 围大气的温度 T e 、密度ρe 、压强 p e 相等.由于某种原因,该微气团发生向上的小位移.因 为大气的压强随高度的增加而减小,微气团在向上移动的过程中,其体积要膨胀,温度要变 化(温度随高度变化可视为线性的).由于过程进行得不是非常快,微气团内气体的压强已 来得及随时调整到与周围大气的压强相等,但尚来不及与周围大气发生热交换,因而可以把 过程视为绝热过程.现假定大气可视为理想气体,理想气体在绝热过程中,其压强 p 与体积 V 满足绝热过程方程 pV γ = C .式中 C 和γ都是常量,但γ与气体种类有关,对空气,γ =1.40 .已知空气的摩尔质量μ = 0.029 kg • mol-1,普适气体恒量 R = 8.31 J • ( K • mol )-1.试在上述条件下定量讨论微气团以后的运动.设重力加速度 g = 9.8 m ·s -2 ,z = 0 处大气的温度T e0 = 300 K . 四、图 1 中 K 为带电粒子发射源,从中可持续不断地射出质量、电荷都相同的带正电的粒 子流,它们的速度方向都沿图中虚线 O ′O ,速度的大小具有一切可能值但都是有限的.当 粒子打在垂直于 O ′O 的屏 NN ′ 上时,会在屏上留下永久性的痕迹.屏内有一与虚线垂直的 坐标轴 Y ,其原点位于屏与虚线的交点 O 处,Y 的正方向由 O 指向 N .虚线上的 A 、B 两处,各有一电子阀门 a 和 b .阀门可以根据指令开启或关闭.开始时两阀门都处于关闭 状态,挡住粒子流.M 、M ′ 是两块较大的平行金属平板,到虚线 O ′O 的距离都是 d ,板 M 接地.在两板间加上如图 2 所示的周期为 2T 的交变电压 u ,u 的正向最大值为 2U ,负 向最大值为 U .已知当带电粒子处在两平板间的空间时,若两平板间的电压为 U ,则粒子 在电场作用下的加速度 a 、电压 u 的半周期 T 和平板到虚线的距离 d 满足以下关系aT 2 = 1d5Y N MK AB bOaO ′M ′llll已知 AB 间的距离、B 到金属板左端的距离、金属板的长度以及金属板右端到屏的距离 都是 l .不计重力的作用.不计带电粒子间的相互作用.打开阀门上的粒子被阀门吸收,不 会影响以后带电粒子的运动.只考虑 MM ′ 之间的电场并把它视为匀强电场.1.假定阀门从开启到关闭经历的时间δ比 T 小得多,可忽略不计.现在某时刻突然开启 阀门 a 又立即关闭;经过时间 T ,再次开启阀门 a 又立即关闭;再经过时间 T ,第 3 次开 启阀门 a 同时开启阀门 b ,立即同时关闭 a 、b .若以开启阀门 b 的时刻作为图 2 中 t = 0 的时刻,则屏上可能出现的粒子痕迹的 Y 坐标(只要写出结果,不必写出计算过程)为.T 2.假定阀门从开启到关闭经历的时间δ = ,现在某时刻突然开启阀门 a ,经过时间10δ立即关闭 a ;从刚开启 a 的时刻起,经过时间 T ,突然开启阀门 b ,经过时间δ关闭 b .若以刚开启阀门 b 的时刻作为图 2 中 t = 0 的时刻,则从 B 处射出的具有最大速率的粒子射 到 屏 上 所 产 生 的 痕 迹 的 Y 坐 标 ( 只 要 写 出 结 果 , 不 必 写 出 计 算 过 程 ) 为.具有最小速率的粒子射到屏上所产生的痕迹的 Y 坐标(只要写出结果,不必写出计算过程) 为.天 科 学 堂 学 科 竞 赛 网五、如图所示,坐标系 Oxyz 的 x 轴和 z 轴都位于纸P面内,y 轴垂直纸面向里.两无限大金属极板 P 和 Q 分别位于 x = -d 和 x = d 处.磁感应强度大小为 B 的匀强磁场的方向平行于 Oxz 坐标平面,与 z 轴的夹 角为α .在坐标原点 O 处,有一电荷为 q (>0)、质 量为 m 的带电粒子,以沿 y 轴正方向的初速度 v 0 开 始运动.不计重力作用.1.若两极板间未加电场,欲使该粒子在空间上恰好能到达极板(但与板不接触),则初 速度 v 0 应为多大?所需最短时间 t 0 是多少?2.若在两极板间沿 x 轴正方向加上一场强为 E 的匀强电场,使该粒子能在第 1 问中所 π4 求得的时间 t 0 到达极板,则该粒子的初速度 v 0 应为多大?若α =,求粒子到达极板时粒子 的坐标.六、在高能物理中,实验证明,在实验室参考系中,一个运动的质子与一个静止的质子相碰 时,碰后可能再产生一个质子和一个反质子,即总共存在三个质子和一个反质子.试求发生 这一情况时,碰前那个运动质子的能量(对实验室参考系)的最小值(即阈值)是多少.已知质子和反质子的静止质量都是 m 0 = 1.67 × 10-27kg .不考虑粒子间的静电作用.第 23 届全国中学生物理竞赛决赛参考解答一、要使天梯相对于地球静止不动,由地面伸向太空,与地面之间无相互作用力,这样的天 梯的下端只能位于赤道上某处,且天梯与该处地球表面垂直,并与地球同步转动.如图 1 所示.O图 1从坐标原点与地球中心固连、坐标轴指向恒星的惯性参考系来看,天梯和地球一起匀速 转动.天梯所受的外力只有地球的万有引力.把天梯看作是由线密度为ρ的许多非常小的小段组成,则每小段到地球中心的距离不同,因而所受地球引力的大小也不同,其中与地心的 距离为 r i -1 到 r i 间的长度为△r i 的小段所受地球引力为M ρ△r if i = G(1)r 2i整个天梯所受的地球引力 F 就等于每小段所受地球引力之和, 即n nM ρr F =f i= ∑G i =1i =1∑ i(2)2rin符号∑ 表示对所有小段求和.因△r i= ri- r i -1 是个小量,注意到 r i r i -1 = r i ( i =1r i -△r i ) ≈r 2,因此i n∑ i =1 r in∑ i =1 r i - r i -1 = n∑ i =1 ( 1 r i -1 - 1 ) = 1 - 1 = 2 r i r i r i -1 r i r 0 r n 用 R 0 表示地球半径,也就是天梯下端到地心的距离,R l 表示天梯上端到地心的距离, 则 r 0 = R 0 ,r n = R l ,代入(2)式得1 1 F = GM ρ(- (3)) R 0 R l整个天梯的质量m = ρ ( R l -R 0 )(4)R 0天 科 学 堂 学 科 竞 赛 网天梯的质心位于天梯的中点,它到地心的距离-R 2R l 0(5)r C = R 0 +根据质心运动定理,有2π TF = mr C ( (6))2式中 T 为地球自转的周期. 由(3)、(4)、(5)、(6)式可得GMT 2( R l -R 0 ) ( R 2 + R 0R l - ) = 0l2π2R 0R l -R 0 = 0 ,表示天梯无长度,不符合题意,符合题意的天梯长度满足的方程为GMT 2 R 2R - (7)+ R = 0 0 l l 2π2R 0因为 GM = R 2g ,所以得 0R 0gT 2R 2 R - (8)+ R = 0 0 l l 2π2【从跟随地球一起转动的参考系看,也可得到(8)式.这时,天梯在地球引力和惯性 离心力的作用下,处于平衡静止状态,地球引力仍为(3)式,天梯所受的惯性离心力可由 下面的方法求得:仍把天梯看作由很多长度为△r i 的小段组成,则第 i 小段受的惯性离心力 为2π f i ′ = ρ△r i ( )2 r iT对所有小段求和,就得到整个天梯所受的惯性离心力(4′)'n∑ f ii =1n2π = ∑ρ( ) r i△ri(5′)F ′ =2T i =12π T(5′)式中所示的和可以用图 2 过原点的直线 y = ρ( )2r 下的一个带阴影的梯形面积 来表示,即2π ρ( )2 R lT2π Tρ()2 Rl图 22π T )2 R 0 + R l 2F ′ = ρ(( R l -R 0 ) (6′)因为地球引力与惯性离心力平衡,由(3)式和(6′)式可得1 1 2π T R 0 + R l 2GM ( - ) =( R 0 R l )2 ( R l -R 0 )(7′)因为 GM = R 2g ,化简(7′)式最后也能得到(8)式.】 0 解(8)式得(9)R l = 2根号前取正号,代入有关数据,注意到 T = 8.64 ×104 s ,得R l = 1.50 ×108 m(10)所以天梯的长度L = R l -R 0 = 1.44 ×108 m(11) 二、1.90 °.2.当矩形物处于竖直位置即θ = 0° 时,B 不会滑动,矩形物静止.当圆筒缓慢转动使θ 刚超过 0° 时,A 将离开圆筒内表面而开始倾倒,按题意此时圆筒已停止转动.假定 B 仍不 动,此后,A 在竖直平面内从静止开始绕 B 做圆周运动.圆周运动的径向方程(牛顿第二定 律)为v 2m = mg cos θ-T l(1)这里 v 表示 A 的速度.T 是刚性薄片对 A 的作用力,规定其方向从 B 到 A 为正.根据 能量守恒,有mgl (1-cos θ ) = 1mv 22联立(1)、(2)式,得(2)T = mg ( 3cos θ-2 )(3)如果令 T = 0 ,可得A2 θ = arccos ( ) = 48.2°3O120°显见,θ < 48.2° 时,作用力是径向正向,对 A 是推 θ 力;θ > 48.2° 时,作用力是径向反向,对 A 是拉力.B现在再来看前面被假定不动的 B 是否运动.我们可以30°在 B 处画圆筒内表面的切面,它与水平面成 30° 夹角.因为假定 B 不动,其加速度为零, 所以 B 在垂直于切面方向的受力方程为f ⊥-mg cos30°-T cos ( 30°-θ ) = 0(4)这里 f ⊥ 是圆筒内壁对 B 的支持力.由(4)式和(3)式可以论证,如果在θ等于 60°(A将与圆筒相碰)之前 B 不动,则 f ⊥ 必将始终不等于零,这就是说,在 B 开始滑动以前,B 不会离开筒壁.B 对筒壁的正压力是 f ⊥ 的反作用力,大小和 f ⊥ 相同.式中的 T 是刚性薄片 对 B 的作用力,它和(1)式中的 T 大小相等(因薄片质量不计).由于μ =1,所以最大静摩 擦力 f max 的大小就等于正压力.f max = μf ⊥ = mg cos30° + T cos ( 30°-θ )(5)其方向是沿切面方向.沿切面方向除摩擦力外,B 还受到其他力f ∥ = mg sin30° + T sin ( 30°-θ )(6)只要 f ∥ 不大于最大静摩擦力,B 就不滑动.这个条件写出来就是f ∥ ≤ (7)f maxB 滑动与否的临界点就应由 f ∥ = f max 求出,即mg cos30° + T cos ( 30°-θ ) = mg sin30° + T sin ( 30°-θ )(8)将(3)式的 T 代入(8)式,化简后得方程( 3cos θ -2 )[ cos θ + ( 2 + 3 )sin θ ] + 1 = 0 (9)这个方程可用数值求解,即取不同的θ值代入逐步逼近,最后可得θ = 54.9 ° (10) θ 超过此值,B 将开始滑动.三、设微气团中空气的质量为 m ,当其位移为 z 时,气团的体积为 V ,气团内气体的密度 为ρ ,气团周围大气的密度为ρe .气团受到竖直向下的重力mg = V ρg 和竖直向上的浮力V ρe g 作用,若气团的加速度为α,则由牛顿第二定律有 -V ρg + V ρe g = -V ( ρ -ρe )g (1)m α = 或有ρ -ρeρα = -g(2)根据理想气体状态方程pV = m(3)RTμ可知气体的密度m μpρ = = (4)V RT利用(4)式,注意到p = p e ,(2)式可化成T e-TT eα = -g(5)周围大气在z 处的温度T e 等于z = 0 处的温度T e0 加从0 到z 温度的增量,即△T e △z (6)T e = T e0 +z若气团中气体温度随高度的变化率为△T,根据题意,有△z△T e △z (7)T = T0 +zT0 为气团位于初始位置时气团中气体的温度.根据题意T e0 = T0 ,把(6)、(7)式代入(5)式得g △T e—△Tα = -( (8)) zT e △z △z△T e △T在(8)式中,若( -) >0 ,则加速度方向向下,作用于气团的力有使气团△z △z回到初始位置的趋势,这样,大气层中的大气就处于稳定状态;反之,气团将远离其初始位置,大气层中的大气处在不稳定状态.因周围大气温度随高度的变化率△T e是已知的,故只△z要知道气团中气体温度随高度的变化率,便可对气团的运动作出判断.大气的压强随高度的增加而减小,在高度为z 和z +△z 处的压强差△p e = -ρe g△z(9)式中ρe 为z 处的空气的密度,与温度、压强有关,由(4)式表示.式中负号表示高度增加时,大气压强是减小的.把(4)式代入(9)式得μp eRT e△p e =-g△z(10)质量为m 的气团在上升过程中,其压强将随周围大气的压强的减小而减小,体积要增大,气团对周围空气做功.因为过程是绝热的,气团的内能要减少,因而温度要降低,温度、压强的变化应满足绝热过程的规律.试题给出的绝热过程方程是关于压强与体积间的关系,利用理想气体状态方程,可把绝热过程方程表示为温度与压强间的关系.由(3)式得m RTμ pV = (11)把(11)式代入pV γ = C得1γ-1 p γC γ μ mR(12)T = 当气团的压强由 p 变到 p + △p 时,气团的温度将由 T 变到 T +△T .由(12)式1γ-1 γC γ μ mRT +△T = ( p + △p )利用二项式定理,忽略△p 的高次方项,并注意到(12)式得1γ-1[ p γ+ γ-1-1 γ-1 p γγγ-1 γ Cγ μmR T△p pT +△T = (△p ) ] = T +故有γ-1 T△T =△p (13)γ p根据题意,p = p e ,△p = △p e ,由(7)式、(10)式和(13)式得T 0 △T △z γ-1 γ μg R = - (14)△T e △z γ-1 γ μg RT e0 + ( + ) z已知△T e △z= -6.0 × 10-3 K ·m -1 ,代入有关数据可求得γ-1 μg=9.8 × 10-3 K ·m -1γ 当 z 不是很大时,有R△T e γ-1 μgR T e0 +( ) z ≈T e0 +△zγ 故有△T △z γ-1 μg= - (15)γ R代入题给的有关数据得△T △z= -9.8 × 10-3 K ·m -1(16)△T e△T 负号表示高度增加时,气团的温度要下降.可见 (- ) >0 ,作用于气团的 △z △z合力的方向与气团位移的方向相反,指向气团的初始位置,气团发生向上位移后,将要回到 初始位置.当 z 不是很大时,(8)式中的 T e 可以用 T e0 代替,可知气团将在初始位置附近天 科 学 堂 学 科 竞 赛 网做简谐振动.振动的圆频率(17)ω =代入数据,得ω = 1.1 × 10-2 s-1(18)四、1.Y 1 = -0.3d ,Y 2 = 0.9d . 2.Y ′ = -0.138d ,Y ′′ = -0.138d . 附参考解法:1.当阀门 a 第 1 次开启时,具有各种速率的粒子(称之为第一批粒子)从 A 处进入 AB 之间,在 a 第 2 次开启时刻,第一批粒子中速率为l T(1)v 1 =的粒子正好射到 B 处,被阀门 b 挡住.与此同时,第二批具有各种速率的粒子从 A 处 进入 AB 之间.在阀门 a 第 3 次开启的时刻,第一批进入 AB 间的粒子中速率为l = 1 2T 2(2)v 2 = v 1的粒子与第二批进入 AB 间的粒子中速率为 v 1 的粒子同时到达 B 处.因此时阀门 b 已开 启,这些粒子都从 B 处沿虚线射向两平行板,而第三批进入 AB 间的粒子在它们到达 B 处时, 被 b 挡住.由此可知,能从 B 处射向两平行板的粒子具有 v 1 和 v 2 两种不同的速率.根据题意,粒子从 B 处射出的时刻为 t = 0 ,故速率为v 1 的粒子在时刻l v 1t 1 == T 进入两平行板之间,由本题图 2 可知,两板间的电压u = -U粒子在两板间的电场作用下的加速度为-a ,粒子通过两板经历的时间为l v 1△t 1 = = T在△t 1 时间内粒子在 Y 方向获得的分速度和位移分别为v 1y = -a △t 1 = -aT(3)1 2 - 1 2- a (△t 1 )2 = (4)y 1 = aT 2 因 aT 2 = 1 d 5,故| y 1 | = 1 d < d ,表明速率为 v 1 的粒子能穿出平板,粒子穿出平10板后做匀速运动.在从射出平板至射到屏的时间内,粒子在 Y 方向的位移△y 1 = v 1yl = -aT 2(5)v 1粒子在屏上产生的痕迹的 Y 坐标为1 3 Y 1 = y 1 +△y 1 = — aT2 -aT 2 = 2 - aT 2 = -0.3d 2(6)速率为 v 2 的粒子在时刻l v 2t 2 == 2T 进入两平行板之间,由本题图 2 可知,两板间的电压u = 2U粒子在电场作用下的加速度为 2a ,粒子通过两板经历的时间为l v 2△t 2 = = 2T因为两板间的电压在时间△t 2 内由 2U 变为-U ,粒子的加速度亦将从 2a 变成-a ,由 此可求得在△t 2 时间内粒子在 Y 方向获得的分速度和位移分别为- (7)v 2y = 2aT aT = aT1 2( 2a )T 2 + ( 2aT )T - aT 2 = 5 aT 2 1 y 2 =(8)2 2 因 aT 2 = 1y 2 = 1 d ,故 d < d ,表明速率为 v 2 的粒子亦能穿出平板.粒子穿出平5 2板后做匀速运动.在从射出平板至射到屏的时间内,粒子在 Y 方向的位移△y 2 = v 2yl = 2aT 2(9)v 2粒子打在屏上产生的痕迹的 Y 坐标为Y 2 = y 2 +△y 2 = 529 aT 2 + 2aT 2 = aT 2 = 0.9d2 (10)即粒子在屏上产生的痕迹是两个点,它们的 Y 坐标分别为 Y 1 和 Y 2 .2.由于阀门从开启到关闭要经历一段时间,在阀门 a 开启到关闭经历的δ时间间隔内的不同时刻,都有各种不同速率的粒子从 A 处进入 AB 间,有的早进入,有的晚进入.由于阀 门 b 从开启到关闭也要经历一段时间δ ,粒子可能在最早的时刻即 t = 0 的时刻从 B 处射出, 也可能在最晚的时刻即 t = δ时刻从 B 处射出.在 a 刚开启的时刻从 A 处射入 AB 间,并在 t = δ时刻从 B 处射出的粒子的速率最小,这最小速率为v min =l (11)T + δ在阀门 a 刚要关闭时刻从 A 处射进 AB 间,并在 t = 0 的时刻从 B 处射出的粒子的速率最大,这最大速率为v max =l(12)T -δ在t = 0 时刻从B 处射出的速率为v max 的粒子在时刻l v max = T -δt1 =进入两平板之间,在时刻t1′ = t1 +l= 2T -2δv max离开两平板.由本题图2 可知,在T -δ到T 时间内,两板间的电压为2U ,在T 到2T -2δ时间内,两板间的电压为-U ,与电压对应的粒子的加速度分别为2a 和-a .在粒子通过平板的时间内,粒子在Y 方向获得的分速度和位移分别为- a (T -2δ) = -aT + 4aδ(13)v1y = 2aδ1 2 ( 2a ) δ2 + ( 2a ) δ(T -2δ)-1a (T2y1 =-2δ)212= -aT 2 + 4aδT -5aδ2(14)粒子穿出平板后做匀速运动.从射出平板至射到屏的时间内,粒子在Y 方向的位移△y1 = v1yl= (-aT + 4aδ) (T -δ) v max= -aT2 + 5aδT -4aδ2(15)粒子在屏上产生的痕迹的Y 坐标为3Y1 = y1 +△y1 =—aT2 + 9aTδ2-9aδ2(16)根据题意,代入数据得-0.138d(17)Y1 =在t = δ时刻从B 处射出的速度为v min 的粒子在时刻t2 = δ+l v min进入两平板之间,在时刻= T + 2δt2′ = t2 +l= 2T + 3δv min离开两平板.由本题图2 可知,在T + 2δ到2T 时间内,两板间的电压为-U ,在2T 到2T + 3δ时间内,两板间的电压为2U ,与电压对应的粒子的加速度分别为-a 和2a .在粒子通过平板的时间内,粒子在Y 方向获得的分速度和位移分别为- a (T -2δ) + ( 2a )3δ= -aT + 8aδ(18)v2y =天科学堂学科竞赛网- 121a (T -2δ)2 -a (T -2δ) 3δ+ ( 2a ) ( 3δ) 22y2 =1= -aT 2 -aTδ + 13aδ22(19)粒子穿出平板后做匀速运动.在从射出平板至射到屏的时间内,粒子在Y 方向的位移△y2 = v2ylv min= (-aT + 8aδ) (T + δ)= -aT2 + 7aTδ+ 8aδ2(20)粒子在屏上产生的痕迹的Y 坐标为3Y2 = y2 +△y2 =—aT2 + 6aTδ+221aδ2(21)根据题意,代入数据得Y2 =-0.138d(22)由以上分析可知,速率最小和速率最大的粒子打在屏上产生的痕迹是位于Y 轴上的同一点.五、解法一1.平行板间仅有磁场,带电粒子初速度v0 的方向垂直于磁场,在洛伦兹力的作用下,粒子将在垂直于磁场方向的平面内做匀速圆周运动,圆周半径mv0qBR0 =(1)轨道平面与Oxz 坐标平面的交线如图1 中NN ′所示.要使粒子刚能到达极板Q(与板刚未接触),圆心C 应是ON ′ 的中点,有zB QPαNαO xC N ′2d图1dCN ′ = R0 =(2)2cosα由(1)、(2)式得dqB 2m cos αv 0 =(3)粒子由 O 经过半个圆周到达 N ′ ,所经历的最短时间为圆周运动的半个周期T πm(4)t 0 = = 2 qB2.以 y 轴为旋转轴,顺时针转动α角,建立新坐标系 Ox ′y ′z ′ ,如图 2 所示.在新坐标系中电场强度 E 的分量为zz ′B y ,y ′αv 0E Oαx ′图 2(5)E x ′ = E cos α E y ′ = 0 E z ′ = E sin α 磁感应强度 B 的分量为(6)B x ′ = 0B y ′ = 0 B z ′ = B 带电粒子所受到的电场力的分量为f Ex ′ = qE x ′ = qE cos αf Ey ′ = 0f Ez ′ = qE z ′ = qE sin α(7)当带电粒子速度为 v 时,带电粒子所受到磁场力的分量为f Bx ′ = qv y ′Bf By ′ = -qv x ′Bf Bz ′ = 0(8)(i )关于带电粒子在 Ox ′y ′ 平面内的分运动现设想起始时刻带电粒子沿 y ′ 轴正方向的初速度v 0 用下式表示 v 0 = v 0 + v 1- v 1= v 2- v 1式中(9)v 2 = v 0 + v 1现把 v 0 看成沿 y ′ 轴负方向运动的速度 v 1 和沿 y ′ 轴正方向运动的 v 2 的合成.这样,与前者 联系的运动使带电粒子受到沿 x ′ 轴的负方向的磁场力作用,它与电场力的分量f Ex ′ 的方向相反,当 v 1 取数值E x ′ = Ev 1=cos α (10)B B时,与- v 1 相联系的磁场力与 f Ex ′ 的合力为零,其效果是带电粒子沿 y ′ 轴负方向以速度 v 1 做匀速运动;与后者联系的运动使带电粒子仅受到磁场力作用,此力的方向既垂直于磁场方 向(z ′ 轴方向),又垂直于速度 v 2 ,即位于 Ox ′y ′ 平面内,其大小为 (11)f x ′y ′ = qv 2B粒子在此力作用下在平面内做速度为 v 2 的匀速圆周运动,圆周的半径mv 2qB(12)R =其圆频率y ′v 2ωtOx ′图 3ω = qB(13)m由以上分析可知带电粒子一方面在 Ox ′y ′ 平面内做上述匀速圆周运动,另一方面圆心沿轴负方向以速度 v 1= Ecos α做匀速直线运动. B(ii )关于粒子沿 z ′ 轴的分运动y ′由(7)、(8)两式可知,粒子在 z ′ 方向仅受电场力作用,其加速度qE z ′= qE (14)a z ′ =sin α m m即粒子沿着 z ′ 轴以加速度 a z ′ 做匀加速直线运动. (iii )关于粒子在 Ox ′y ′z ′ 坐标系中的运动方程在只考虑圆周运动的情况下,粒子的坐标随时间变的关系为x ′ = R ( 1-cos ωt ) (15) (16)y ′ = R sin ωt(17)z ′ = 0考虑了圆心运动及粒子沿 z ′ 轴的运动并注意到(9)、(10)、(12)式,在 Ox ′y ′z ′ 坐标 系中,粒子的运动方程为mv 2qB mv 0 mE x ′ x ′ =( 1-cos ωt ) = ( + qB qB 2) ( 1-cos ωt ) (18) mv 0 qB mE x ′qB 2 E x ′ t By ′ = R sin ωt - v 1t = ( + ) sin ωt - (19) 1 qE z ′ t2(20)z ′ =2 m (iv )粒子在 Oxyz 坐标系中的运动方程 利用坐标变换x = x ′c os α + z ′sin α y = y ′z = -x ′sin α + z ′cos α并注意到(5)、(9)、(10)、(13)各式,可将(18)、(19)、(20)式转换至 Oxyz 坐标 系,得到粒子在 Oxyz 坐标系中的运动方程式为2 2 m qB m qB E cos α B ) ( 1-cos q Bt ) + 1 qE sin α 2 (21) x = ( v 0cos α +t m 2 mE cos α B )sin q Bt - E cos α (22) y = ( v 0 +t m E sin2α 2BBm qB ) ( 1-cos q Bt ) + qE sin2α t 2 4m z = - (23)( v 0sin α +m T πm 根据题意,将 x = d 和 t = t 0 = = 代(21)式,解得2 qB2qB d-mE ( 4cos 2α + π2sin 2α) 2 (24)v 0 =4mB cos απ 4 T πm 将α =,t = t 0 == 和(24)式代入(21)、(22)、(23)各式,可得粒子到达极 2 qB 板 Q 时粒子的坐标为x = d(25)2qB 2 y = -(26) π2mE z = -d +(27)2qB 2解法二1.与解法一相同.2.以 y 轴为旋转轴,顺时针转动α角,建立新坐标系 Ox ′y ′z ′,设粒子速度在坐标系 Ox ′y ′z ′中分量分别为 v x ′ 、v y ′ 、v z ′ ,牛顿第二定律的三个分量形式为d v x ′d td v y ′d t d v z ′d tm = qE x ′ + qv y ′ B (1) -qv x ′ B (2) m = (3)m= qE z ′ 将(2)式表示为d v y ′ d tqB d x ′m d t = -两边积分后得qB m-() x ′ + C 1 v y ′ = C 1 为待定常量,当 t = 0 时,x ′ = 0 ,v y ′ = v 0 ,故求得 C 1 = v 0 ,上式应表为v y ′ = qB x ′ + v 0- (4)m将(4)式代入(1)式,得d 2x ′ d t 2 qB x ′ + v ) Bm= qE + q (- x ′ 0 md 2x ′ d t 2 -( qB m qB m mv 0 + qBmE x ′ qB 2 = )2 x ′ + ( )2 ( ) (5) 令mv 0 + mE x ′ qB 2 (6) R = ( )qB ω = q Bm X ′ = x ′-R(7) (8)(5)式可表为d2X ′ d t 2= -ω2X ′ (9)这是简谐运动方程,其解为(10)X ′ = A cos ( ωt + θ )由(8)式得(11) x ′ = A cos ( ωt + θ ) + R d x ′ d t= -ωA sin ( ωt + θ ) (12)= vx ′ 利用初始条件,由(11)与(12)式,得-R = A cos θ0 = -ωA sin θ解得(13)θ = 0 A = -R再由(6)式,得mv 0 + mE x ′ qB qB 2A = -( (14)) 代入(11)式mv 0 + mE x′ ) ( 1-cos ωt ) (15)x ′ = ( qB qB 2将(12)式代入(2)式,整理后得d v y ′d t= ω2A sin ωt 对上式积分,考虑初始条件,得d y ′ = Ex ′B-ωA cos ωt - (16)v y ′ = d t 积分(16)式,考虑初始条件及(14)式,得mv 0 + qB mE x ′ qB 2 E x ′tBy ′ = ( ) sin ωt - (17)对(3)式积分可得qE z ′t 22m(18)z ′ = (15)、(17)、(18)式分别与解法一中的(18)、(19)、(20)式相同,接下去的讨论与 解法一相同.解法三设粒子速度在 Oxyz 坐标中分量分别为 v x 、v y 、v z ,牛顿第二定律的三个分量 方程为d v xd td v yd td v zd tm = qE x + qv y B z(1) m = -qv x B z + qv z B x(2) -qB x v y (3)m= 令qBmω =(4)v 1 = Ecos αB方程变为如下形式(5)d v xd t d v yd td v zd tωv 1 cos α = ωv y cos α + (6) -ωv x cos α + (7) = ωv z sin α -ωv y sin α (8) = 对(6)、(8)两式积分,利用初始条件 t = 0 时,v x = 0 ,x = 0 ,y = 0 ,得v 1 )tcos α v x = ωy cos α + (9) ω ( -ωy sin α(10)v z = 将(9)、(10)两式代入(7)式,得d v y d t-ω2y -ω2v 1t = -ω2 ( y + v 1t )= 令Y = y + v 1t(11)得d2Y d t 2= -ω2Y (12)其解为Y = A cos ( ωt + θ )由(11)式可得y = A cos ( ωt + θ ) -v 1t(13)由(13)式得v y = -A ωsin ( ωt + θ ) -v 1(14)由初始条件 t = 0 时,v y = v 0 ,y = 0 ,得A cos θ = 0 v 0 = -A ωsin θ-v 1解得π2v 1 +v 0 ωθ =A = -(15)由(15)式,注意到(4)式、(5)式,得天 科 学 堂 学 科 竞 赛 网 m qB E cos α B ) sin q Bt -E cos α (16) y =( v 0 + t m BE cos α B ) cos q Bt -E cos α v y = ( v 0 + (17) m B 把(17)式代入(1)式,经积分并利用初始条件,可得2 2 m qB E cos α B ) ( 1-cos q Bt ) + m 1 qE sin α t 2 (18)x = ( v 0cos α + 2 m 将(17)式代入(8)式,经积分并利用初始条件,得 m qB E sin2α 2B ) ( 1-cos q Bt ) + qE sin2α z = - ( v 0sin α + t 2 (19)m 4m (18)、(16)、(19)式分别与解法一中的(21)、(22)、(23)式相同,接下去的讨论与 解法一相同.六、在讨论本题之前,先看一下相对论能量和动量的普遍关系式,即( mc 2)2 = c 2p 2 + m 02c 4 (1)式中 c 为光在真空中的速度,m 为粒子的质量,p 为其动量,m 0 为静止质量.【此关系式可由能量E = mc 2和动量p = mv = 导出,v 为粒子的速度.m 02c 4 m 02v 2 E 2 -c 2p 2 = -c 2 v c v c 1- ( )2 1- ( )2v 1- ( )2 = m 02c 4 c = m 02c 4 v c1- ( )2 故 E 2 = c 2p 2 + m 02c 4 】由此关系式可知,对每一个粒子,其能量的平方与 p 2 成线性关系.解法从实验室参考系来看,碰前系统的总动量等于运动的那个质子的动量,设其方向沿 x 轴 正方向,碰撞前后系统的总动量守恒,总能量守恒.若要碰后能存在三个质子和一个反质子 且总能量为最小值,则可论证这四个粒子的动量必定相等.1.先讨论碰后四个粒子的动量都沿x 轴正方向的情况.令p1 、p2 、p3 、p4 分别表示它们动量的大小,这四个动量中,若有任何两个不相等,如p1 ≠p2 ,设p1 p2 ,则若将p1 增加△p(△p <p2 -p1)而将p2 减少△p(这时总动<量不变),则有( p1 +△p )2 -p12 = 2p1△p + (△p )2p22-( p2 -△p )2 = 2p2△p-(△p )2这样一来,第一个粒子能量的平方增加了c2 [ 2p1△p + (△p )2 ],而第二个粒子能量的平方减少了c2 [ 2p2△p-(△p )2 ],两个粒子能量平方的净增量为c2 [ 2p1△p + (△p )2 ]-c2 [ 2p2△p-(△p )2 ]= c2 [ 2△p ( p1-p2 +△p ) ]因已设p1 p2 ,且△p <p2 -p1 ,所以净增量是负的,总能量将减少.这就是说,<设p1 ≠p2 时对应的总能量并不是最小值.由此可判断,四个粒子的动量必相等.2.若四个粒子中,有一个粒子其动量p1 沿x 轴的负方向,因为总动量守恒,则必有沿x 轴正方向运动的另一粒子的动量增加了p1 ,因为能量的平方与p2 成线性关系,所以这时的总能量必然大于p1 沿x 轴正方向运动时的能量.也就是说,只要四个粒子中,有沿x 轴负方向运动的,则总能量必不是最小值.3.若四个粒子的动量的方向不在同一直线上,这时将它们沿x 轴方向和垂直于x 轴方向分解,沿x 轴方向总动量守恒;垂直于x 轴方向的动量互相抵消,但它们却使粒子的能量增大了,也就是说,这时的能量也不是最小值.总结以上可见,要想碰后四个粒子的总能量最小,根据总动量守恒、能量守恒及相对论能量和动量关系式可知,碰后四个粒子的动量必相等.设碰前运动质子的动量为p ,质量为m,碰后四个粒子的动量为p1 、p2 、p3 和p4 ,四个粒子的质量为m1 、m2 、m3 和m4 ,根据动量守恒和能量守恒,有p = p1 + p2 + p3 + p4 (2)mc2 + m0c2 = m1c2 + m2c2 + m3c2 + m4c2(3)由上面论述可知pp1 = p2 = p3 = p4 =(4)4再由(1)式可知,碰后四个粒子的能量从而质量必相等.以m′表示碰后四个粒子中每个粒子的质量,由(3)式得天科学堂学科竞赛网mc2 + m0c2 = 4m′c2(5)对碰前那个运动的质子,由相对论能量和动量关系有( mc2)2 = c2p2 + m02c4(6)对四个粒子中任一个粒子,由相对论能量和动量关系有p( m′c2)2 = c2 ( )2 + m02c4(7)4由(5)、(6)、(7)式可得mc2 = 7m0c2(8)代入数据得mc2 = 1.05 ×10-9 J (9)。
2006年全国初中物理知识竞赛预赛试卷(河南赛区)一、选择题(以下各题所列选项中只有一个是正确的,请将正确答案的字母序号填写在题后的括号内.每题3分,共36分)1.(3分)弦乐队在演奏前,演奏员都要调节自己的乐器﹣拧紧或放松琴弦,这样做主要是改变乐器发出声音()A.响度B.音调C.音色D.传播方向2.(3分)下列在宇宙探索过程中的一些学说中,既具有科学价值又具有巨大的人文价值的是()A.古人命名了许多星座B.托勒密提出“地心说”C.哥白尼提出“日心说”D.伽莫夫提出“宇宙大爆炸学说”3.(3分)我国发射的“神舟”飞船返回舱的表面有一层叫做“烧蚀层“的物质,它可以在返回大气层时保护返回舱不因高温而烧毁。
烧蚀层能起这种作用,除了它的隔热性能好外,还由于()A.它的硬度大,高温下不会损坏B.它的表面非常光滑,能减少舱体与空气的摩擦C.它在熔化和汽化时能吸收大量的热D.它能把热辐射到宇宙空间4.(3分)日常生活中,不是利用电磁波来传输信息的事例是()A.机场对飞机进行导航B.气象卫星向地面站传播气象变化信息C.警察用对讲机通话D.到电话局打长途电话5.(3分)秋高气爽的夜里,当我们仰望天空时会觉得星光闪烁不定,这主要是因为()A.星星在运动B.地球在自转C.地球在绕太阳公转D.星光经过大气层时发生了多次折射6.(3分)小猴用双手握住竖直的竹竿匀速攀上和匀速下滑时,他所受的摩擦力分别为f上和f下”那么它们的关系是()A.f上向上,f下向下,且f上=f下B.f上向下,f下向上,且f上>f下C.f上向上,f下向上,且f上=f下D.f上向上,f下向下,且f上>f下7.(3分)一杯浓盐水中加入冰块后刚好不会溢出。
如果冰块完全融化,则杯中的液体()A.将会溢出B.将会下降C.仍然刚好不会溢出D.以上三种情况均有可能8.(3分)某同学要清理金鱼缸中沉在底部的污物,其手中只有一根透明的塑料软管,采用虹吸的方法来将鱼缸底部的污物排除。
最近十年初中应用物理知识竞赛题分类解析专题2--声现象一.选择题1. (2013全国初中应用物理知识竞赛预赛题)在“达人秀”节目中,演员用冬瓜、土豆做成吹奏乐器,用它们吹奏出来的声音可能具有的相同特征是( )A.音调响度B.音色响度C.音色音调D.音色音调响度1.答案:A解析:演员用冬瓜、土豆做成吹奏乐器,二者音色一定不同,用它们吹奏出来的声音可能具有的相同特征是音调和响度,选项A正确。
2. (2013全国初中应用物理知识竞赛)如图3所示,海北中学有一个跑道为400 m的操场,在操场的主席台和观众席上方一字形排列着A, B,C三个相同的音箱。
在一次运动会的开幕式上,站在操场中的所有同学都可以听到音箱发出的足够大的声音,但站在某些位置的同学却感觉听不清音箱中播放的内容,在图3的1,2, 3三个位置中,位于哪个位置附近的同学应该是“感觉听不清”的?( )A. 1B. 2C. 3D.在哪个位置都一样答案:A解析:位置1声波干涉相互削弱,所以位于位置1附近的同学应该是“感觉听不清”选项A正确。
3. (2009年上海初中物理竞赛)在汽车、摩托车发动机的排气管上附加消声器,目的是减弱噪声。
减弱噪声的位置在( )A.排气管上B.空气中C.人耳处D.发动机上3.答案:A 解析:发动机的排气管上附加消声器,减弱噪声的位置在排气管上,选项A正确。
4.(无锡物理竞赛题)下图是探究声现象的四种实验情景,下列说法正确的是()A .甲实验说明声音的传播需要介质B. 乙实验说明钢尺振动的频率越高,响度越大C. 丙实验说明音叉的振幅越大,音调越高D .丁实验说明声波不能传递能量4.答案:A 解析:甲实验是把正在响铃的闹钟放在钟罩里,用抽气机逐步抽去钟罩里的空气,听到的闹钟响声逐步减小,据此说明真空不能传声,声音的传播需要介质,选项A 正确;乙实验利用钢尺的振动来说明钢尺振动的频率越高,音调越高,选项B 错误;丙实验通过音叉振动时乒乓球弹开的远近说明音叉的振幅越大,响度越大,选项C 错误;丁实验通过敲击橡皮膜时蜡烛火焰的摇动说明声波能够传递能量,选项D 错误。
2006年第十六届全国初中应用物理知识竞赛复赛试题一、(10分)如图l,东湖中学想用离心泵将湖中的水抽到C处的养鱼池中。
要求在30 min内至少向养鱼池中输水120m3,学校领导将以下几个需要解决的问题交给了科技小组。
(1)A,B处各有一个平台,离心泵应放在什么位置,请说明理由。
(2)如果某型号离心式水泵的扬程为15 m,功率为17 kW,效率为0.6,试通过计算说明这台水泵是否可满足东湖中学的需求?(3)为了节约资金,有人提出全部采购比硬质管便宜、而且与水泵管径相符的软橡皮管配套使用,你认为是否可行,为什么?说出你的正确方案。
二.(10分)一个地质勘探小分队,在野外河边休息时发现了一种矿石,他们非常想尽快知道这种矿石的密度大约是多少,但是手中只有皮尺、直木棍和针线包中缝衣服用的针和细线,请你帮助他们利用现场可利用的物品,设计一个测定矿石密度的方案,并推导出计算矿石密度的表达式。
三.(14分)小华同学为了节能和方便家人洗澡,用废弃的汽油桶在房顶上自制了一个简易太阳能热水器,图2是它的安装示意图。
在水箱上下安有二根管子,其中一根是进出水管,给热水器上冷水或淋浴时用热水,都是通过进出水管来完成,室内进出水管上安有三个阀门。
若当地的大气压强p0=1.0×105Pa,请回答下列问题:(1)小华为什么要在热水器上方安装一根与大气相通的管子A?(2)根据阀门I、II、Ⅲ的位置,说明它们的作用是什么?如何调节喷头出水的温度?(3)给热水器上冷水时,阀门I、1I、III应当处于何种状态?洗澡时,阀门1、II、111应当处于何种状态?(4)如果小华同学住的居民楼层高为3 m,他家的热水器安装在七楼楼顶上,且距楼顶高1 m,那么该地区的水压至少为多大,才能顺利为热水器上水?(5)设热水器水箱容积为100 L,在一般的光照条件下,一满箱12℃的水经白天太阳的加热温度可达到45℃,这相当于多少煤气完全燃烧放出的热量?(已知水的比热容为4.2×107J/(kg·℃),煤气的热值约4.2×107J/kg)四、(12分)育才中学科技小组设计了一个可以测量电阻值的多量程欧姆表,图3中所示为其中两个量程的测试电路,G为灵敏电流表,其内阻Ro=100 Ω、电流灵敏度(即指针在满刻度时流过灵敏电流表的电流)U=100μA,R为可调电阻,阻值变化范围为0~5 kΩ,R l和R2为定值电阻,R1=15 Ω,R2=ll kΩ,E为1.5V干电池,S为量程选择开关。
初中应用物理知识竞赛题精选分类解析专题二、声现象一.选择题1.(2013全国初中应用物理知识竞赛预赛题)在“达人秀”节目中,演员用冬瓜、土豆做成吹奏乐器,用它们吹奏出来的声音可能具有的相同特征是 ( )A.音调响度B.音色响度C.音色音调D.音色音调响度1.答案:A解析:演员用冬瓜、土豆做成吹奏乐器,二者音色一定不同,用它们吹奏出来的声音可能具有的相同特征是音调和响度,选项A正确。
2. (2013全国初中应用物理知识竞赛)如图3所示,海北中学有一个跑道为400 m的操场,在操场的主席台和观众席上方一字形排列着A, B, C三个相同的音箱。
在一次运动会的开幕式上,站在操场中的所有同学都可以听到音箱发出的足够大的声音,但站在某些位置的同学却感觉听不清音箱中播放的内容,在图3的1,2, 3三个位置中,位于哪个位置附近的同学应该是“感觉听不清”的?( )A. 1B. 2C. 3D.在哪个位置都一样答案:A解析:位置1声波干涉相互削弱,所以位于位置1附近的同学应该是“感觉听不清”选项A正确。
3. (2009年上海初中物理竞赛)在汽车、摩托车发动机的排气管上附加消声器,目的是减弱噪声。
减弱噪声的位置在( )A.排气管上 B.空气中 C.人耳处 D.发动机上3.答案:A 解析:发动机的排气管上附加消声器,减弱噪声的位置在排气管上,选项A正确。
4.(无锡物理竞赛题)下图是探究声现象的四种实验情景,下列说法正确的是()A.甲实验说明声音的传播需要介质B. 乙实验说明钢尺振动的频率越高,响度越大C. 丙实验说明音叉的振幅越大,音调越高D.丁实验说明声波不能传递能量4.答案:A解析:甲实验是把正在响铃的闹钟放在钟罩里,用抽气机逐步抽去钟罩里的空气,听到的闹钟响声逐步减小,据此说明真空不能传声,声音的传播需要介质,选项A正确;乙实验利用钢尺的振动来说明钢尺振动的频率越高,音调越高,选项B错误;丙实验通过音叉振动时乒乓球弹开的远近说明音叉的振幅越大,响度越大,选项C 错误;丁实验通过敲击橡皮膜时蜡烛火焰的摇动说明声波能够传递能量,选项D 错误。