动量守恒之弹簧物块连接模型 高三物理一轮复习专题
- 格式:doc
- 大小:302.50 KB
- 文档页数:13
高三物理《弹簧连接体问题专题训练题》教材中并未专题讲述弹簧。
主要原因是弹簧的弹力是一个变力。
不能应用动力学和运动学的知识来详细研究。
但是,在高考中仍然有少量的弹簧问题出现(可能会考到,但不一定会考到)。
即使试题中出现弹簧,其目的不是为了考查弹簧,弹簧不是问题的难点所在。
而是这道题需要弹簧来形成一定的情景,在这里弹簧起辅助作用。
所以我们只需了解一些关于弹簧的基本知识即可。
具体地说,要了解下列关于弹簧的基本知识:1、 认识弹簧弹力的特点。
2、 了解弹簧的三个特殊位置:原长位置、平衡位置、极端位置。
特别要理解“平衡位置”的含义3、 物体的平衡中的弹簧4、 牛顿第二定律中的弹簧5、 用功和能量的观点分析弹簧连接体6、 弹簧与动量守恒定律经典习题:1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( )A .l 2>l 1B .l 4>l 3C .l 1>l 3D .l 2=l 42、(双选)用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如右图所示,下列说法正确的是( )A .F 1的施力者是弹簧B .F 2的反作用力是F 3C .F 3的施力者是小球D .F 4的反作用力是F 13、如图,两个小球A 、B ,中间用弹簧连接,并用细绳悬于天花板下,下面四对力中,属于平衡力的是( )A 、绳对A 的拉力和弹簧对A 的拉力B 、弹簧对A 的拉力和弹簧对B 的拉力C 、弹簧对B 的拉力和B 对弹簧的拉力D 、B 的重力和弹簧对B 的拉力4、如图所示,质量为1m 的木块一端被一轻质弹簧系着,木块放在质量为2m 的木板上,地面光滑,木块与木板之间的动摩擦因素为μ,弹簧的劲度系数为k ,现在用力F 将木板拉出来,木块始终保持静止,则弹簧的伸长量为( )A .k g m 1μB .k gm 2μ C . k F D .k gm F 1μ-5、如图所示,劲度系数为k 的轻质弹簧两端连接着质量分别为1m 和2m 的两木块,开始时整个系统处于静止状态。
高三一轮同步复习专题25 动量守恒定律及应用二——“滑块-弹簧”模型【模型归纳】【典例分析】例1、如图所示,一轻弹簧的两端与质量分别为m1和m2的两物块甲、乙连接,静止在光滑的水平面上。
现在使甲瞬时获得水平向右的速度v0=5m/s,当甲物体的速度减小到1m/s 时,弹簧最短。
下列说法正确的是()A.紧接着甲物体将开始做减速运动B.紧接着甲物体将开始做加速运动C.甲乙两物体的质量之比m1∶m2=1∶3D.甲乙两物体的质量之比m1∶m2=1∶4【变式训练1】如图所示,质量为m1=2 kg的小球P从离水平面高度为h=0.8m的光滑斜面上滚下,与静止在光滑水平面上质量为m Q=2kg的带有轻弹簧的滑块Q碰撞,g=10m/s2,下列说法正确的是()A.P球与滑块Q碰撞前的速度为5m/sB.P球与滑块Q碰撞前的动量为16kg·m/sC.它们碰撞后轻弹簧压缩至最短时的速度为2m/sD.碰撞过程中动能守恒【变式训练2】如图甲所示,一轻弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上。
现使A瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图像信息可得()A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都处于伸长状态B.从t3到t4时刻弹簧由伸长状态恢复到原长C .两物体的质量之比为12:1:3m m =D .在t 2时刻A 与B 的动能之比为12:1:8k kE E =【变式训练3】如图所示,质量为m 1=0.95kg 的小车A 静止在光滑地面上,一质量为m 3=0.05kg 的子弹以v 0=100m/s 的速度击中小车A ,并留在其中,作用时间极短。
一段时间后小车A 与另外一个静止在其右侧的,质量为m 2=4kg 的小车B 发生正碰,小车B 的左侧有一固定的轻质弹簧,碰撞过程中,弹簧始终未超弹性限度,则下列说法错误的是( )A .小车A 与子弹的最终速度大小为3m/sB .小车B 的最终速度大小为2m/sC .弹簧最大的弹性势能为10JD .整个过程损失的能量为240J【变式训练4】如图所示,质量M=4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L=0.5m 这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑。
专题五 动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.关键能力·分层突破考点一 碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2. 如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m.P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ.求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.教你解决问题第一步:审条件 挖隐含P的速度不变.①“与静止的P2发生碰撞,碰撞时间极短”隐含→P1、P2获得共同速度.②“碰撞后P1与P2粘连在一起”隐含→P1、P2、P三者有共同速度及整个碰撞过程③“P压缩弹簧后被弹回并停在A点”隐含→中的弹性势能变化为零.第二步:审情景 建模型①P1与P2碰撞建模碰撞模型.→②P与P2之间的相互作用建模滑块—滑板模型.→第三步:审过程 选规律①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x及弹性势能E p.模型3“子弹打木块”模型1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m +M )v ,Q 热=fL相对=12mv2-12(M +m )v 2.(2)若子弹穿出木块,有mv 0=mv 1+Mv 2,Q 热=fL 相对=12mv −0212mv −1212M v 22.例3.(多选)如图所示,一质量m 2=0.25 kg 的平顶小车,车顶右端放一质量m 3=0.30 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=18 m/s 射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10m s2.下列分析正确的是( )A .小物体在小车上相对小车滑行的时间为13s B .最后小物体与小车的共同速度为3 m/s C .小车的最小长度为1.0 mD .小车对小物体的摩擦力的冲量为0.45 N·s 跟进训练1.[2022·黑龙江哈尔滨模拟](多选)如图所示,两个小球A 、B 大小相等,质量分布均匀,分别为m 1、m 2,m 1<m 2,A 、B 与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A 球心等高处水平快速向右敲击A ,作用于A 的冲量大小为I 1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B 球心等高处水平快速向左敲击B ,作用于B 的冲量大小为I 2,I 1=I 2,则下列说法正确的是( )A .若两次锤子敲击完成瞬间,A 、B 两球获得的动量大小分别为p 1和p 2,则p 1=p 2B .若两次锤子敲击分别对A 、B 两球做的功为W 1和W 2,则W 1=W 2C .若两次弹簧压缩到最短时的长度分别为L 1和L 2,则L 1<L 2D .若两次弹簧压缩到最短时,A 、弹簧、B 的共同速度大小分别为v 1和v 2,则v 1>v 22.如图甲所示,质量为M =3.0 kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t 图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二 力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4. 如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知x bc=1 m,重力加速度g=10 m/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用关键能力·分层突破例1 解析:由题意可知,当b的速度最小时,弹簧恰好恢复原长,设此时a的速度最大为v,由动量守恒定律和机械能守恒定律得:m b v0=mb v1+m a v,12m b v2=12m b v12+12m a v2,代入数据解得:m a=0.5 kg,v=4 m/s,故A错误,B正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v0=(m a+m b)v2,E p=12mbv−212(ma+m b)v22,代入数据解得:Ep=1.5 J,故C正确;在a离开挡板前,a、b及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D错误.答案:BC例2 解析:(1)P1、P2碰撞瞬间,P的速度不受影响,根据动量守恒mv0=2mv1,解得v1=v 0 2最终三个物体具有共同速度,根据动量守恒:3mv0=4mv2,解得v2=3 4 v0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:1 2×2mv+¿1212×2mv−212×4m v22¿=2mgμ(L+x)×2解得x=v0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+x)解得E p=116mv2答案:(1)v0234v0 (2)v0232μg-L 116mv2例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v2=12(m1+m2)v2+E p,得E p=m1m2 2(m1+m2)v2,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:x A=12(2+4)×1 m=3 m,x B=12×2×1 m=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2x′A=v2−v A2-2a A=0.96 mx车=v22a车=0.16 m车的长度至少为l=x A+x B+x′A-x车=4.8 m.答案:(1)0 (2)4.8 m例4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+¿1212m2v22¿解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v,距水平面的高度为h,则有m1v1=(m1+M)v,12m1v12=12(m1+M)v2+m1gh解得h=0.1 m由于h=R(1-cos 60°),所以物块P恰好不能从滑块左侧冲出,假设成立,之后物块P沿弧形槽从滑块上滑下,设物块P返回到水平面时的速度为v3、滑块的速度为v4,由动量守恒定律和机械能守恒定律得m1v1=m1v3+Mv4,12m1v12=12m1v+¿3212M v42¿解得v3=0,v4=2 m/s.(2)若Q恰能经过d点,则Q在d点的速度v d满足m2g=m2v d2 rQ从b点运动到半圆轨道最高点d的过程,由动能定理有-μm2gx bc-2m2gr=12m2v−d212m2v22解得Q恰能经过半圆轨道最高点时μ=0.3若Q恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm2gx bc-m2gr=0−12m2v22解得Q恰能运动到与半圆轨道圆心等高点时μ=0.6若Q恰能到达c点,则由动能定理得-μm2gx bc=0−12m2v22解得Q恰能运动到c点时μ=0.8分析可知,要使Q能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C点时,有2mg+mg=m v C2R,解得v C=√3gR.小球从A到C,由机械能守恒定律得12m v2=12m vC2+mg·2R,联立解得v0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12m vC2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR (2)R。
第六章 碰撞与动量守恒定律动量守恒定律及三类模型【考点预测】1.动量守恒的条件2.动量守恒的简单应用3.子弹打木块问题4.爆炸反冲问题5.人船模型问题【方法技巧与总结】一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.二、“三类”模型问题1.“子弹打木块”模型(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”在滑动摩擦力作用下做匀加速直线运动.②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为在这一过程中动量守恒.把“子弹”和“木块”看成一个系统:a.系统水平方向动量守恒;b.系统的机械能不守恒;c.对“木块”和“子弹”分别应用动能定理.(2)“木块”固定在水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”静止不动.②处理方法:对“子弹”应用动能定理或牛顿第二定律.2.“反冲”和“爆炸”模型(1)反冲①定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.②特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、发射火箭等.③规律:遵从动量守恒定律.(2)爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.如爆竹爆炸等.3.“人船模型”问题(1)模型介绍两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题即为“人船模型”问题.(2)模型特点①两物体满足动量守恒定律:m1v1-m2v2=0.②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1x2=v1v2=m2m1.③应用x1x2=v1v2=m2m1时要注意:v1、v2和x1、x2一般都是相对地面而言的.【题型归纳目录】题型一:动量守恒的判定题型二:动量守恒定律的理解和基本应用题型三:“人船”模型题型四:“子弹打木块”模型题型五:反冲和爆炸模型【题型一】动量守恒的判定【典型例题】1“世界上第一个想利用火箭飞行的人”是明朝的士大夫万户。
第3讲专题提升:“滑块—弹簧”模型和“滑块—斜(曲)面”模型基础对点练题组一“滑块—弹簧”模型1.(2024山东日照模拟)A、B两小球静止在光滑水平面上,用水平轻弹簧相连接,A、B两球的质量分别为m A和m B(m A<m B)。
若使A球获得瞬时速度v(如图甲),弹簧压缩到最短时的长度为L1;若使B球获得瞬时速度v(如图乙),弹簧压缩到最短时的长度为L2,则L1与L2的大小关系为()A.L1>L2B.L1<L2C.L1=L2D.不能确定2.(多选)(2024广东深圳模拟)如图所示,木块A、B放置在光滑的水平地面上,一轻质弹簧左端固定在紧靠竖直墙壁的木块A上,右端与木块B连接,此时弹簧处于原长。
现对木块B施加水平向左的推力F,将木块缓慢压至某一位置,然后撤去推力F,则在木块以后的运动过程中,下列说法正确的是()A.木块A、B与弹簧组成的系统动量守恒B.木块A、B与弹簧组成的系统机械能守恒C.木块A脱离墙壁时,木块B的动能最大D.木块A、B共速时,木块B的动能最大题组二“滑块—斜(曲)面”模型3.(2023安徽十校联盟检测)如图所示,光滑的四分之一圆弧轨道M静止在光滑水平面上,一个物块m在水平地面上以大小为v0的初速度向右运动并无能量损失地滑上圆弧轨道,当物块运动到圆弧轨道上某一位置时,物块向上的速度为零,此时物块与圆弧轨道的动能之比为1∶2,不计空气阻力,则此时物块的动能与重力势能之比为(以地面为参考平面)()A.1∶2B.1∶3C.1∶6D.1∶94.(多选)(2023河北唐山统考)在生产生活中,经常采用轨道约束的方式改变物体的运动方向。
光滑水平地面上停放着一辆小车,小车上固定着两端开口的光滑细管,细管由水平、弯曲和竖直三部分组成,各部分之间平滑连接,如图所示,竖直细管的上端到小车上表面的高度为h。
一小球以初速度v0水平向右射入细管,小球的质量与小车的质量(包含细管)相等,小球可视为质点,忽略一切阻力作用。
2019-2020年高三物理一轮专题复习弹簧问题知识导图轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视。
2016年 第11题 18分 考查弹簧做功与弹性势能问题2014年 第6题 8分 考查弹簧的瞬时性问题模型2013年 第11题 18分 考查弹簧的临界问题及做功问题2011年 第6题 8分 考查弹力的计算及瞬时性问题1. 通过本节课的学习,让学生加深弹簧问题的几个考点,学会每个考点对应的解题方法。
2. 让学生认识到弹簧问题的共性:不能突变;弹簧问题一定要找到几个临界点。
3. 提升学生综合分析物理问题能力,学会用动量能量的观点解决物理问题。
题型分类及方法点拨类型一 弹簧的伸长量和弹力的计算方法点拨:这类题一般以单一问题出现,涉及到的知识点是胡克定律:F=kx . 解题的主要关键是找弹簧原长位置。
例题1: 如图所示,劲度系数为 k 2 的轻质弹簧竖直固定在桌面上,上端连一质量为 m 的物块,另一劲度系数为 k 1 的弹簧的上端 A 缓慢向上提,当提到下端弹簧的弹力大小恰好等于23mg 时,求 A 点上提的高度。
精华提炼:1212木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为( )A.m 1g k 1B.m 2g k 1C.m 1g k 2D.m 2g k 2练习2. 一个长度为 L 的轻弹簧,将其上端固定,下端挂一个质量为 m 的小球时,弹簧的总长度变为 2L 。
现将两个这样的弹簧按如图所示方式连接,A 、 B 两小球的质量均为 m ,则两小球平衡时,B 小球距悬点 O 的距离为(不考虑小球的大小) ( )A. 3LB. 4LC. 5LD. 6L类型二 瞬时性问题 方法点拨:这类问题主要考查弹簧弹力不能发生突变这一特性。