2018-2019学年北师大版九年级上第一次月考数学试卷有答案
- 格式:doc
- 大小:254.00 KB
- 文档页数:3
———第一学期第一次阶段性检测九年级数学试题时间:100分钟分值:120分一、选择题(每小题3分,共36分)1. △△ABC中,a、b、c分别是△∠A、△∠B、△∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.b cosB=c B.c sinA=a C.a tanA=b D.2.下列说法正确的是()A.所有的矩形都是相似形B.有一个角等于100°的两个等腰三角形相似C.对应角相等的两个多边形相似D.对应边成比例的两个多边形相似3.如图,在△ABC中,D是边AC上一点,连接BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD•AC;③∠A=∠ABD;④AB•BC=AC•BD.其中单独能够判定△ABD∽△ACB的个数是()A.1个B.2个C.3个D.4个4.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1:3B.2:3C.:2D.:33题图4题图5题图5. 如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A.B.C.D.6.等腰三角形底边与底边上的高的比是2:,则顶角为()A.60°B.90°C.120°D.150°7. 数学活动课上,小敏、小颖分别画了△ABC和△DEF,尺寸如图.如果两个三角形的面积分别记作S△ABC、S△DEF,那么它们的大小关系是()A . S △ABC >S △DEFB . S △ABC <S △DEFC .S △ABC =S △DEF D . 不能确定8. 如图,在△ABC 中,AB=AC=13,BC=10,点D 为BC 的中点,DE ⊥AB 于点E ,则tan ∠BDE 的值等于( ) A . B . C . D .8题图 9题图9. 湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB 底部50米的C 处,测得桥塔顶部A 的仰角为41.5度°(如图).已知测量仪器CD 的高度为1米,则桥塔AB 的高度约为( )(参考数据:sin41.5=0.663,cos41.5=0.749,tan41.5=0.885) A . 34米 B . 38米 C . 45米 D . 50米10. 如图:AB ⊥CD ,CD 为圆O 直径,且AB=20,CE=4,那么圆O 的半径是( ) A . B . 14 C . D . 1511. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6.现在Rt △ABC 内叠放边长为1的小正方形纸片,第一层小纸片的一条边都在AB 上,首尾两个正方形各有一个顶点D ,E 分别在AC ,BC 上,依次这样叠放上去,则最多能叠放多少?( ) A . 16个 B . 13个 C . 14个 D . 15个 12. 平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,正方形A 2013B 2013C 2013C 2012的面积为( )A .B .C .D .11题图 12题图二、填空题(每小题3分,共15分)13. 如图,已知A (4,2),B(2,﹣2),以点O为位似中心,按位似比1:2把△ABO 缩小,则点A的对应点A′的坐标为____________14. 在△ABC中如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=_________ .15. 如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE= _________ .16.如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,则坝底AD=_______________.17. 如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1△l2△l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为.三、解答题(18题5分,23,24题12分,其余题10分,共69分)18. |﹣5|+2cos30°+()﹣1+(9﹣)0+.19. 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.20.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=4.(1)求BC的长;(2)求tan∠DAE的值.21. 如图,如图,在△ABC中,AD是角平分钱,点E在AC上,∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.22. 如图,我校九年级某班数学课外活动小组利用周末开展课外实践活动,他们要在佳山公路上测量佳山高AB.于是他们采用了下面的方法:在佳山公路上选择了两个观察点C、D (C、D、B在一条直线上),从C处测得山顶A的仰角为30度°,在D处测得山顶A的仰角为45度°,已知测角仪的高CE与DF的高为1.5m,量得CD=450m.请你帮助他们计算出佳山高AB.(精确到1m,,)23. 已知:如图,圆O的弦AB长为8,延长AB至C,使BC=AB,tanC=.求:(1)求圆O的半径;(2)求点C到直线AO的距离.24. 如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC△△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动(始终不与点B. C重合),且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;2015———2016学年第一学期第一次阶段性检测九年级数学试题答案卷二、填空题(每小题3分,共15分)13.________________ 14.__________________ 15._____________16.________________ 17._________________三、(18题5分,23,24题12分,其余题10分,共69分)18.(5分) |﹣5|+2cos30°+()﹣1+(9﹣)0+.19.(10分)20.(10分)21.(10分)22.(10分)23.(12分)24.(12分)九年级数学试题答案一、选择题1—5 BBBAA 6-10 ACCCC 11-12 AD 二、填空题13.(2,1)或(-2,-1) 14.075 15.15416.56203 17.三:解答题 18.1119. 解:(1)如图所示:△A 1B 1C 1,即为所求, C 1点坐标为:(3,2);(2)如图所示:△A 2B 2C 2,即为所求, C 2点坐标为:(﹣6,4);(3)如果点D (a ,b )在线段AB 上,经过(2)的变化后D 的对应点D 2的坐标为:(2a ,2b ).20.解:(1)∵AD 是BC 边上的高, △△∠ADB=90°,在Rt △△ABD 中,sinB==,而AD=4, △AB=6, △BD==2,在Rt △△ADC 中,△∠C=45°, △CD=AD=4,△BC=BD+CD=2+4;(2)△AE 是BC 边上的中线, △CE=BC=+2,△ED=CE ﹣CD=﹣2,在Rt △AED 中,tan △∠DAE==.21.证明:△AD 平分△∠BAC , △△BAD=△DA , △△EAD=△ADE , △△BAD=△ADE ,△AB△DE,△△△DCE△△△BCA;(2)解:△△∠EAD=△∠ADE,△AE=DE,设DE=x,△CE=AC﹣AE=AC﹣DE=4﹣x,△△△DCE△∽△△BCA,△DE:AB=CE:AC,即x:3=(4﹣x):4,解得:x=,∵DE的长是.22.解:连接EF并延长交AB于H,则△△AEH、△△AFH均为直角三角形,在Rt△△AFH中,△△∠AFH=45°,△△FAH=45°,△AH=FH,设AH=FH=x (m),则EH=450+x (m),在Rt△△AEH中,△tan∠30°=,△,解得x=225+225△AB=225+225+1.5≈225×1.73+226.5≈616(m).答:佳山高约为616(m).23.5,48/524. 1)证明:△AB=AC,△△∠B=△∠C,△△ABC△△DEF,△△∠AEF=△∠B,又△△∠AEF+△∠CEM=△∠AEC=△∠B+△∠BAE,△△CEM=△BAE,△△ABE△∽△△ECM;(2)能.解:△△∠AEF=∠B=△∠C,且△∠AME>△∠C,△△∠AME>△∠AEF,△AE≠AM;当AE=EM时,则△ABE△△ECM,△CE=AB=5,△BE=BC﹣EC=6﹣5=1,当AM=EM时,则△∠MAE=△∠MEA,△△∠MAE+△∠BAE=△∠MEA+△∠CEM,即△∠CAB=△∠CEA,又△△∠C=△∠C,△△△CAE△∽△△CBA,△,△CE=,△BE=6﹣=;△BE=1或.第11页共11页。
2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.下列方程是关于x的一元二次方程的是().A.1+x=2B.x2―2y=0xC.x2+2x=x2―1D.x2=0【答案】D【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐项分析判断即可求解.+x=2,是分式方程,不是一元二次方程;故该选项不符合题意;【详解】解:A.1xB.x2―2y=0,含有两个未知数,不是一元二次方程,故该选项不符合题意;C.x2+2x=x2―1,化简后为:2x+1=0,不是一元二次方程,故该选项不符合题意;D.x2=0,是一元二次方程,故该选项符合题意;故选D.2.下列事件中,属于必然事件的是()A.打开电视,正在播放跳水比赛B.一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,至少有一个是红球C.抛掷两枚质地均匀的骰子,点数和为6D.一个多边形的内角和为600°【答案】B【分析】本题考查事件的分类,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,由此对每一项进行分析即可.【详解】A,打开电视,可能播放跳水比赛,也可能不播放,因此该事件是随机事件;B,一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,可能是2个红球,也可能是1个红球和1个白球,因此至少有一个是红球,该事件是必然事件;C,抛掷两枚质地均匀的骰子,点数和为可能是6,也可能不是6,因此该事件是随机事件;D,设一个n边形的内角和为600°,则(n―2)⋅180°=600°,解得n=16,不是整数,因此这种情3况不存在,该事件是不可能事件;故选B.3.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.有一组邻边相等的四边形是平行四边形C.有三个角是直角的四边形是矩形D.对角线互相垂直且平分的四边形是菱形【答案】B【分析】根据正方形的判定、平行四边形的判定、矩形和菱形的判定判断即可.【详解】解:A、有一组邻边相等的矩形是正方形,是真命题;B、有一组邻边相等的四边形不一定是平行四边形,如筝形,原命题是假命题;C、有三个角是直角的四边形是矩形,是真命题;D、对角线互相垂直且平分的四边形是菱形,是真命题;故选:B.【点睛】本题考查的是命题的真假判断,主要包括平行四边形的判定和特殊平行四边形的判定.判断命题的真假关键是要熟悉课本中的性质定理.4.已知m是方程x2―x―4=0的一个根,则―2m2+2m的值为()A.4B.―4C.8D.―8【答案】D【分析】根据一元二次方程的根的定义,可知m2―m=4,然后整体代入求值即可.【详解】解:∵m是方程x2―x―4=0的一个根,∴m2―m―4=0,整理,可得m2―m=4,∴―2m2+2m=―2(m2―m)=―2×4=―8.故选:D.【点睛】本题主要考查了一元二次方程的根的定义以及代数式求值,理解一元二次方程的根的定义是解题关键.5.某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1―x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【分析】本题主要考查一元二次方程的增长率问题,根据题意分别表示出五月份,六月份生产零件的量,最后相加列出等式即可.【详解】解:根据题意,该厂五月份生产零件为:50(1+x),则该厂六月份生产零件为:50(1+x)(1+x)=50(1+x)2,故该厂第二季度共生产零件为:50+50(1+x)+50(1+x)2=182.故选:B6.如图,在3×3的正方形网格中,已有两个小正方形被凃黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是()A.17B.37C.47D.57【答案】B【分析】本题考查了概率公式,轴对称图形,熟记概率公式和能识别轴对称图形是解题的关键.分别将7个空白处涂黑,判断出所得图案是轴对称图形的个数,再根据概率公式进行计算.【详解】解:如图①②③任意一处涂黑时,图案为轴对称图形,∵共有7个空白处,将①②③处任意一处涂黑,图案为轴对称图形,共3处,∴构成轴对称图形的概率是3,7故选:B7.若1和―1有一个是关于x的方程x2+bx+a=0的根,则一元二次方程(a+1)x2+2bx+(a+1)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根【答案】B【分析】本题考查了一元二次方程的根,一元二次方程的根的判别式.熟练掌握:当Δ=0时,一由(a+1)x2+2bx+(a+1)=0,可知Δ=4b2―4(a+1)2,由题意,当1是方程的根时,b=―(1+a),则Δ=0,此时,方程有两个相等的实数根;当―1是方程的根时,b=1+a,则Δ=0,此时,方程有两个相等的实数根;然后作答即可.【详解】解:∵(a+1)x2+2bx+(a+1)=0,∴Δ=4b2―4(a+1)2,∵1和―1有一个是关于x的方程x2+bx+a=0的根,当1是方程的根时,则1+b+a=0,解得,b=―(1+a),∴Δ=4b2―4(a+1)2=4[―(1+a)]2―4(a+1)2=0,此时,方程有两个相等的实数根;当―1是方程的根时,则1―b+a=0,解得,b=1+a,∴Δ=4b2―4(a+1)2=4(1+a)2―4(a+1)2=0,此时,方程有两个相等的实数根;综上,方程有两个相等的实数根,故选:B.8.如图,菱形ABCD的顶点A,B的坐标分别为1,2,―2,―1,BC∥x轴,将菱形ABCD平移,使点B与原点O重合,则平移后点D的对应点的坐标为()A.3―1,2B.2,3)C.+1,2)D.+3,3)【答案】D【分析】本题考查了菱形的性质,坐标与图形,勾股定理以及平移等知识,先利用勾股定理求出AB,然后利用菱形的性质求出点D的坐标,最后利用平移的性质求解即可.【详解】解∶∵A,B的坐标分别为1,2,―2,―1,∴AB==∵菱形ABCD,∴AD=AB=AD∥BC,又BC∥x轴,∴AD∥x轴,∴D的坐标为(1+,∵菱形ABCD平移,使点B与原点O重合,∴菱形ABCD向右平移2个单位,向上平移1个单位,∴平移后点D的对应点的坐标为3,3),故选∶D.9.如图,在平行四边形ABCD中,∠C=135°,AB=2,AD=3,点H,G分别是CD,BC上的动点,连接AH,GH.E,F分别为AH,GH的中点,则EF的最小值是( )A.2B C D.【答案】C【分析】作AQ⊥BC,根据中位线定理可推出EF=12AG,进一步可得当AG⊥BC时,AG有最小值,此时EF的值也最小.据此即可求解.【详解】解:作AQ⊥BC,如图:∵E,F分别为AH,GH的中点∴EF=12AG故:当AG⊥BC时,AG有最小值,此时EF的值也最小∴EF的最小值是12AQ∵∠C=135°,AB=2∴∠B=180°―135°=45°∴AQ=AB×sin45°=∴EF故选:C【点睛】本题考查了中位线定理、平行四边形的性质、解直角三角形等.掌握相关结论即可.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a―b+c=0,则b2―4ac≥0;②若方程ax2+c=0有两个不相等的实数根,则方程ax2+bx+c=0必有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2;⑤若方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实数根1x1,1x2.其中,正确的是( )A.②④⑤B.②③⑤C.①②③④⑤D.①②④⑤【答案】D【分析】一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则Δ=b2―4ac>0;有两个相等的实数根,则Δ=b2―4ac=0;没有实数根,则Δ=b2―4ac<0;若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1·x2=ca.【详解】解:①若a―b+c=0,则x=―1是一元二次方程ax2+bx+c=0的解∴Δ=b2―4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实数根∴Δ=―4ac>0∴b2―4ac≥4ac>0∴方程ax2+bx+c=0必有两个不相等的实数根,故②正确;③∵c是方程ax2+bx+c=0的一个根∴ac2+bc+c=0当c=0时,无法得出ac+b+1=0,故③错误;④∵x0是一元二次方程ax2+bx+c=0的根∴x0=∴±=2ax0+b∴b2―4ac=(2ax0+b)2,故④正确;⑤∵方程ax2+bx+c=0(a≠0)两根为x1,x2∴x1+x2=―ba ,x1·x2=ca∴b=―a(x1+x2),c=ax1x2∴方程cx2+bx+a=0(c≠0)可化为:ax1x2x2―a(x1+x2)x+a=0(c≠0)即:x1x2x2―(x1+x2)x+1=0∴(x1x―1)(x2x―1)=0∴x=1x1或x=1x2,故⑤正确;综上分析可知,正确的是①②④⑤.故选:D【点睛】本题考查了一元二次方程根的判别式和根与系数的关系.熟记相关结论是解题关键.第II卷(非选择题)二、填空题11.已知关于x的一元二次方程(m―2)x2―2x+1=0有实数根,则实数m的取值范围是.【答案】m≤3且m≠2【分析】本题考查了一元二次方程的定义及根的判别式,根据一元二次方程的定义及根的判别式可得,解不等式即可求解,掌握一元二次方程的定义及根的判别式与根的关系是解题的关键.【详解】解:由题意得,Δ=(―2)2―4(m―2)×1=12―4m≥0,且m―2≠0,∴m≤3且m≠2.12.在一个不透明的盒子中装有6个红球、若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是红球的概率为23,则盒子中黑球的个数为.【答案】3【分析】设黑球的个数为x个,根据概率的求法得:66+x =23,解方程即可求出黑球的个数.【详解】解:设黑球的个数为x个根据题意得:66+x =23解得:x=3经检验:x=3是原分式方程的解∴黑球的个数为3故答案为:3.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.把关于x的一元二次方程x²―8x+c=0配方,得(x―m)²=11,则c+m=.【答案】9【分析】本题考查了配方法解一元二次方程;把常数项c移项后,在左右两边同时加上一次项系数8的一半的平方得(x―4)2=16―c,进而得出c=5,m=4,即可求解.【详解】解:x2―8x+c=0配方,得(x―4)2=16―c∴m=4,16―c=11∴c=5∴c+m=9,故答案为:9.14.如图,在Rt△ABC中,∠ACB=90°,且Rt△ABC的周长是12cm,斜边上的中线CD长为52cm,则S△ABC=.【答案】6cm2【分析】先根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=5cm,再利用勾股定理可得AC2 +BC2=25cm2,利用三角形的周长公式可得AC+BC=7cm,然后利用完全平方公式可得AC⋅BC的值,最后利用三角形的面积公式求解即可得.cm,【详解】解:∵在Rt△ABC中,斜边上的中线CD长为52∴AB=2CD=5cm,∴AC2+BC2=AB2=25(cm2),∵Rt△ABC的周长是12cm,∴AC+BC+AB=AC+BC+5=12,∴AC+BC=7(cm),×(72―25)=12(cm2),∴AC⋅BC=AC+BC)2―(AC2+BC2)=12AC⋅BC=6cm2,则S△ABC=12故答案为:6cm2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半、勾股定理、完全平方公式等知识点,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.15.如图,在矩形ABCD中,AB=4,AD=3.P是射线AB上一动点,将矩形ABCD沿着PD对折,点A的对应点为A′.当P,A′,C三点在同一直线上时,则AP的长.【答案】4±【分析】分类讨论:当点P在AB上时,由折叠的性质得AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,利用勾股定理求得A′C=AP=A′P=x,则PB=4―x,PC=x+定理列方程求解即可;当点P在AB的延长线上时,由折叠的性质得∠A=∠A′=90°,AP=A′P,AD=A′D=3,利用勾股定理求得A′C=AP=A′P=a,则CP=a―BP=a―4,利用勾股定理列方程求解即可.【详解】解:如图,当点P在AB上时,由折叠的性质得,AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,∴∠DA′C=90°,在Rt△DA′C中,A′C==设AP=A′P=x,则PB=4―x,PC=x+在Rt△BCP中,BC2+BP2=PC2,即32+(4―x)2=(x+2,解得x=4―∴AP=4―如图,当点P在AB的延长线上时,由折叠的性质得,∠A=∠A′=90°,AP=A′P,AD=A′D=3,在Rt△A′DC中,A′C==设AP=A′P=a,则CP=a―BP=a―4,在Rt△BCP中,BC2+BP2=CP2,即32+(a―4)2=(a―2,解得a=4+综上所述,AP=±+4,故答案为:4±【点睛】本题考查矩形的性质、折叠的性质、勾股定理、解一元一次方程,运用分类讨论思想解决问题是解题的关键.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示放置,点A1,A2,A3,…,在直线y=x+2上,点C1,C2,C3,…在x轴上,则B2023的坐标是.【答案】(22024―2,22023)【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出B1,B2,B3,……,的坐标,根据点的坐标的变化找出变化规律,再代入n=2023即可得出结论.【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1的坐标为(0,2).∵四边形A1B1C1O为正方形,∴B1的坐标为(2,2),C1的坐标为(2,0).当x=2时,y=4,∴A2的坐标为(2,4),∵四边形A2B2C2C1为正方形,∴B2的坐标为(6,4),C2的坐标为(6,0).同理,可知:B3的坐标为(14,8),……,∴B n的坐标为(2n+1―2,2n)(n为整数),∴点B2023的坐标是(22024―2,22023).故答案为:(22024―2,22023).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质及规律型,解题的关键是根据点的坐标的变化找出变化规律.三、解答题17.解方程:(1)x2―4x―1=0.(2) x(x―1)+2=2x【答案】(1)x1=2+2=2―(2)x1=2,x2=1【分析】(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2―4x―1=0x2―4x=1x2―4x+4=1+4(x―2)2=5x―2=±x1=2x2=2―(2)x(x―1)+2=2xx(x―1)+2―2x=0x(x―1)―2(x―1)=0(x―2)(x―1)=0x1=2,x2=1【点睛】本题考查了解一元二次方程,选择合适的方法是解题的关键.18.小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入插座C的概率为______;(2)现小明同时对手机和学习机两种电器充电,请用列表或画树状图的方法计算两种电器插在不相邻的插座的概率.【答案】(1)14(2)12【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出两个插头插在不相邻插座的结果数,然后根据概率公式计算.【详解】(1)小明随机选择一个插座插入,则插入A 的概率=14;故答案为:14;(2)画树状图为:共有12种等可能的结果数,其中两个插头插在不相邻插座的结果数为6,所以两个插头插在不相邻插座的概率=612=12.19.如图,用长为34米的篱笆,一面利用墙(墙的最大可用长度为20米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门(如图),设花圃垂直于墙的边AB 长为x 米.(1)用含x 的代数式表示BC ;(2)当AB 为多少米时,所围成花圃面积为105平方米?【答案】(1)(36―3x )米(2)当AB 为7米时,所围成花圃面积为105平方米【分析】(1)用绳子的总长减去三个AB 的长,然后加上两个门的长即可表示出BC ;(2)由(1)得花圃长BC=36―3x,宽为x,然后再根据面积为105,列一元二次方程方程解答即可.【详解】(1)解:设花圃垂直于墙的边AB长为x米,则长BC=34―3x+2=36―3x(米)故答案为:(36―3x);(2)由题意可得:(36―3x)x=105解得:x1=5,x2=7∵当AB=5时,BC=36―3×5=21>20,不符合题意,故舍去;当AB=7时,BC=36―3×7=15<20,符合题意,∴AB=7(米).答:当AB为7米时,所围成花圃面积为105平方米.【点睛】本题主要考查一元二次方程的应用,弄清题意、用x表示出BC是解答本题的关键.20.已知关于x的一元二次方程x2+6x―m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x1,x2满足x1+2x2=―5,求m的值.【答案】(1)见解析(2)m=±【分析】(1)根据一元二次方程根的判别式,代入计算即可解答;(2)根据一元二次方程根与系数的关系,求得x1,x2,再将其代入求得m的值即可.【详解】(1)证明:∵在方程x2+6x―m2=0中,Δ=62―4×1×(―m2)=36+4m2>0,∴该方程有两个不相等的实数根.(2)解:∵该方程的两个实数根分别为x1,x2,∴x1+x2=―6①,x1⋅x2=―m2②.∵x1+2x2=―5③,∴联立①③,解得x1=―7,x2=1.∴x1⋅x2=―7=―m2,解得m=±【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟知相关公式是解题的关键.21.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE 于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)见解析(2)AB=【分析】(1)由题意可得△AFD≌△CED(AAS),则AF=EC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形AECF是平行四边形;又EF垂直平分AC,根据垂直平分线的性质可得AF=CF,根据“有一组邻边相等的平行四边形是菱形”可得结论;(2)过点A作AG⊥BC于点G,根据题意可得∠AEG=60°,AE=2,则BG=AG=AB=BG=【详解】(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,AE=1,AG==∴GE=12∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=∴AB==.【点睛】本题主要考查菱形的性质与判定,含30°角的直角三角形的三边关系,等腰直角三角形的性质与判定等内容,根据45°,30°等特殊角作出正确的垂线是解题关键.22.如图,在Rt△ABC中,AC=24cm,BC=7cm,点P在BC上从B运动到C(不包括C),速度为2cm/s;点Q在AC上从C运动到A(不包括A),速度为5cm/s.若点P,Q分别从B,C同时出发,当P,Q两点中有一个点运动到终点时,两点均停止运动.设运动时间为t秒,请解答下列问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为?(2)当t 为何值时,△PCQ 的面积为15cm 2【答案】(1)经过1秒,P ,Q 两点的距离为(2)经过1.5秒或2秒,△PCQ 的面积为15cm 2【分析】本题考查一元二次方程的应用,勾股定理.熟练掌握勾股定理,列出一元二次方程,是解题的关键.(1)设经过t 秒,P ,Q 两点的距离为,勾股定理列式求解即可;(2)利用S △PCQ =12PC ⋅CQ ,列式计算即可.【详解】(1)解:设经过t 秒,P ,Q 两点的距离为,由题意,得:BP =2t cm ,CQ =5t cm ,∵在Rt △ABC 中,AC =24cm ,BC =7cm ,∴CP =BC ―BP =(7―2t )cm ,由勾股定理,得:CP 2+CQ 2=PQ 2,即:(7―2t )2+(5t )2=2,解得:t 1=1,t 2=―129(舍去);∴经过1秒,P ,Q 两点的距离为;(2)解:设经过t 秒,△PCQ 的面积为15cm 2,此时:BP =2t cm ,CQ =5t cm ,则:CP =BC ―BP =(7―2t )cm ,∴S △PCQ =12PC ⋅CQ =12(7―2t )⋅5t =15,解得:t 1=2,t 2=1.5,∴经过1.5秒或2秒,△PCQ 的面积为15cm 2.23.暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为 件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)230(2)59元或39元(3)不可能达到3700元,理由见解析【分析】本题考查一元二次方程的应用,找准等量关系是解题的关键,正确列出一元二次方程是解题的关键.(1)根据当天销售量=280―10×增加的销售单价,即可得到答案;(2)设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,列出一元二次方程即可得到答案;(3)设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,列出一元二次方程根据根的判别式判断即可.【详解】(1)解:280―(45―40)×10=230(件),故答案为:230;(2)解:设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,依题意得(x―30)[280―(x―40)×10]=2610,整理得x2―98x+2301=0,整理解得x1=39,x2=59,答:当该纪念品的销售单价定价为59元或39元时,该产品的当天销售利润是2610元.(3)解:不能,理由如下:设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,依题意得(y―30)[280―(y―40)×10]=2610,整理得y2―98y+2410=0,∵Δ=(―98)2―4×1×2410=―36<0,故该方程没有实数根,即该纪念品的当天利润不可能达到3700元.24.如图,正方形ABCD中,点P是线段BD上的动点.(1)当PE⊥AP交BC于E时,①如图1,求证:PA=PE.②如图2,连接AC 交BD 于点O ,交PE 于点F ,试探究线段PA 2、PO 2、PF 2之间用等号连接的数量关系,并说明理由;(2)如图3,已知M 为BC 的中点,PQ 为对角线BD 上一条定长线段,若正方形边长为4,随着P 的运动,CP +QM 的最小值为PQ 的长.【答案】(1)①见解析;②PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2【分析】(1)①连接PC ,根据SAS 证明△ABP≌△CBP (SAS),得到PA =PC ,∠BAP =∠BCP ,再求出∠BAP +∠BEP =180°,进一步证明∠BCP =∠PEC 得到PC =PE ,等量代换可得结果;②先根据PE ⊥AP 得到S △APF =12PO ⋅AF =12PA ⋅PF ,得到PO 2⋅AF 2=PA 2⋅PF 2,结合勾股定理得到PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)连接AC 交BD 于点O ,先根据正方形的性质得到AC ⊥BD ,BO =CO =P 与点O 重合时,CP 的最小值,QM 的最小值,以及此时QM ⊥BD ,QM∥AC ,最后根据M 为BC 中点得到Q 为BO 中点,即可求解.【详解】(1)解:①如图1,连接PC ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∠ABD =∠CBD =45°,在△ABP 和△CBP 中,AB =BC ∠ABD =∠CBD BP =BP,∴△ABP≌△CBP (SAS),∴PA =PC ,∠BAP =∠BCP,∵PE ⊥AP ,∴∠APE =90°,又∠BAP +∠BEP +∠ABC +∠APE =360°,∴∠BAP +∠BEP =180°,∵∠PEC +∠BEP =180°,∴∠BAP =∠PEC ,∴∠BCP =∠PEC ,∴PC =PE ,∴PA =PE ;②如图,PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2,理由是:∵PE ⊥AP ,∴PA 2+PF 2=AF 2,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵S △APF =12PO ⋅AF =12PA ⋅PF ,∴PO 2⋅AF 2=PA 2⋅PF 2,∴PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)如图,连接AC 交BD 于点O ,∵四边形ABCD 是正方形,边长为4,∴AC ⊥BD ,BO =CO ==∴当点P 与点O 重合时,CP 的最小值为CO =∵CP +QM 的最小值为∴QM ∴当点P 与点O 重合时,QM ⊥BD ,如图,∴QM∥AC ,∵M 为BC 中点,∴Q 为BO 中点,∴PQ =12BO =12×=。
北师大版九年级上册数学第一次月考试题一、填空题1.有一块长30cm ,宽20cm 的纸板,要挖出一个面积为2200cm 的长方形的孔,并且四周宽度相等,若设这个框的宽为xcm ,则可得方程为________.2.如图,点E 是正方形ABCD 边BC 延长线上一点,且CE AC =,则AFC ∠的度数为________.3.某校初三年级组织一次篮球比赛,每两班之间都赛一场,共进行了55场比赛,则该校初三年级共有________个班.4.要使一个菱形ABCD 成为正方形,则需增加的条件是________.(填一个正确的条件即可)5.当x =________时,()8x x -的值与16-的值相等.6.如图,在Rt ABC 中,90ACB ∠=,AC BC =,在AC 上取一点D ,在AB 上取一点E ,使BDC EDA ∠=∠,过点E 作EF BD ⊥于点N .交BC 于点F ,若8CF =,11AD =,则CD 的长为________.7.已知关于x 的方程()()212110m x m x m -+-++=有两个不相等的实数根,则实数m 的取值范围是________.8.如图,四边形ABCD 是菱形,E 在AD 上,F 在AB 延长线上,CE 和DF 相交于点G ,若CE DF =,30CGF ∠=,AB 的长为6,则菱形ABCD 的面积为________.9.方程2320x x --=的解是________.二、单选题10.菱形的对角线长为8cm 和6cm ,则该菱形面积为( )A .48cm 2B .24cm 2C .25cm 2D .14cm 211.方程()()31241x x -+=的解是( )A .23或32- B . C . D .23. 12.已知四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( )A .90D ∠=;B .AB CD =;C .AD BC =; D .BC CD =. 13.如图,某小区规划在一个长30m 、宽20m 的长方形土地ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分钟花草,要使每一块花草的面积都为278cm ,那么通道宽应设计成多少m ?设通道宽为xm ,则由题意列得方程为( )A .()()302078x x --=B .()()30220278x x --=C .()()30220678x x --=⨯D .()()302202678x x --=⨯14.如图,ABC 中,AD 平分BAC ∠,DE //AC 交AB 于E ,DF//AB 交AC 于F ,若AF 6=,则四边形AEDF 的周长是( )A .24B .28C .32D .3615.已知关于x 的一元二次方程2kx 2x 10--=,若方程有两个不相等的实数根,则k 的最小整数值为( )A.0B.1-C.1D.216.一元二次方程两根之和为6,两根之差为8,那么这个方程为()A.x2-6x-7=0 B.x2-6x+7=0 C.x2+6x-7=0 D.x2+6x+7=0 17.已知三角形的两边长分别为2和4,第三边的长是方程2430-+=的解,则这个三x x角形的周长为()A.3 B.9 C.7或9 D.718.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE三、解答题=.19.如图:ABC中,AB AC()1求作BC边上的垂直平分线MN,使得MN交BC于D;将线段BA沿着BC的方向平D,画出平移后的线段DE;(要求用尺规作图,不写移到线段DE(其中点B平移到点)作法,保留作图痕迹.)()2连接AE、EC,试判断四边形ADCE是矩形吗?说明理由.20.解方程()2+-=(配方法)x xx+-=()21(2)2502450()()() 3323x x x +=+ ()242710x x -+=21.已知关于x 的一元二次方程()()22120x m x m m ---+=. ()1若2x =-是这个方程的一个根,求m 的值和方程的另一个根;()2求证:对于任意实数m ,这个方程都有两个不相等的实数根.22.()1如图1,ABC 中,AD 平分BAC ∠交BC 于点D ,在AB 上截取AE AC =,过点E 作//EF BC 交AD 于点F .求证:四边形CDEF 是菱形;()2如图2,ABC 中,AD 平分ABC 的外角EAC ∠交BC 的延长线于点D ,在BA 的延长线上截取AE AC =,过点E 作//EF BC 交DA 的延长线于点F .四边形CDEF 还是菱形吗?如果是,请证明;如果不是,请说明理由.23.如图,四边形ABCD 是正方形,点E 是BC 的中点,90AEF ∠=,EF 交正方形外角的平分线CF 于F ,连接AC 、AF 、DF ,求证:()1AE EF =;()2ABE ACF ∽;()3DFC 是等腰直角三角形.参考答案1.()()302202200x x --=2.112.53.114.A 90∠=或AC BD =5.46.37.54m <且1m ≠8.189.1x =2x =10.B11.C12.D13.C14.A15.C16.A17.B18.B19. (1)作图见解析;(2)证明见解析.20.(1)13x =,27x =-;(2)11x =,25x =-;(3)13x =-,22x =;(4)1x = ,274x = . 21.(1)0x =; 4x =或.(2)证明见解析. 22.(1)证明见解析;(2)四边形CDEF 是菱形,理由见解析. 23.(1)证明见解析;(2)证明见解析;(3)证明见解析.。
北师大版九年级上册数学《第一次月考》考试题(各版本)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1有意义时,a 的取值范围是( )A .a ≥2B .a >2C .a ≠2D .a ≠-22.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A .47B .37 C .34D .133.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩5.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <14D .c <17.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC8.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.149.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:205-=__________. 2.分解因式:2x 3﹣6x 2+4x =__________.3.式子3x -在实数范围内有意义,则 x 的取值范围是__________. 4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,点A 是反比例函数y=4x(x >0)图象上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311xx x x +=--2.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.4.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、A6、B7、D8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)12、2x(x﹣1)(x﹣2).3、x≥34、805、6、﹣2.三、解答题(本大题共6小题,共72分)1、x=32、-53、(1)略(2)略4、(1)略;(2)1;(3)略.5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
北师大版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案,每小题3分,共30分)1.一元二次方程2346x x =-化成一般形式是()A .23460x x --=B .23460x x -+=C .23460x x +-=D .23460x x ++=2.如果2是方程x 2-3x +k =0的一个根,则常数k 的值为()A .2B .1C .-1D .-23.下列性质中菱形不一定具有的性质是()A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形4.用配方法解方程x 2+4x-1=0,下列配方结果正确的是()A .2(x 2)5+=B .2(x 2)1+=C .2(x 2)1-=D .2(x 2)5-=5.方程22310x x -+=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .以上说法都不对6.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是()A .平行四边形B .矩形C .对角线相等的四边形D .对角线互相垂直的四边形7.如图,将矩形ABCD 绕点A 顺时针旋转90o 后,得到矩形AB’C’D’,若CD=8,AD=6,连接CC’,那么CC’的长是A .20B .100C .10D .108.如图,在菱形ABCD 中,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连结DF ,若∠BAD =70°,则∠CFD 等于()A .50°B .60°C .70°D .80°9.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则DE 的长为()A .12B .53C .25D .1310.如图,菱形ABCD 中,∠ABC=60°,AB=4,E 是边AD 上一动点,将△CDE 沿CE 折叠,得到△CFE ,则△BCF 面积的最大值是()A .8B .C .16D .二、填空题11.一元二次方程22490x x --=的一次项系数是_________。
北师大版九年级上册数学第一次月考测试卷(满分120分,时间120分钟)合要求的)1.下列方程是关于x的一元二次方程的是( )=0B.ax²+bx+c=0 C.(x--1)(x+2)=0 D.3x²−2xy−5y²=0A.x2+1x22.四边形ABCD中,O是对角线的交点,下列条件中能判定此四边形是正方形的是( )①AC=BD,AB∥CD,AB=CD;②AD∥BC,∠BAD=∠BCD;③AO=CO,BO=DO,AB=BC;④AO=BO=CO=DO,AC⊥BD.A.1个B.2个C.3个D.4个3.已知方程x²+px+q=0的两个根分别是2和-3,则x²−px+q可分解为( )A.(x+2)(x+3)B.(x-2)(x-3)C.(x-2)(x+3)D.(x+2)(x--3)4.如图所示,菱形ABCD中,AB=2,∠A=120°,点P,Q,K 分别为线段BC,CD,BD 上任意一点,则PK+QK 的最小值为( )A.1B.√3C.2D.√3+15.已知α,β是方程.x²+2006x+1=0的两个根,则(1+2008α+α²)(1+2008β+β²)的值为( )A.1B.2C.3D.46.用配方法解一元二次方程x²−6x−4=0,,下列变形正确的是( )A.(x−6)²=−4+36B.(x−6)²=4+36C.(x−3)²=−4+9D.(x−3)²=4+97.如图所示,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B 为圆心,大于线段AB 长度的一半的长为半径画弧,相交于点C,D,则直线CD 即为所求.连接AC,BC,AD,BD,根据她的作图方法可知四边形ADBC一定是( )A.矩形B.菱形C.正方形D.等腰梯形8.教师节期间,某校数学组教师向本组其他教师各发一条祝福短信.据统计,全组共发了240条祝福短信,如果设全组共有x名教师,依题意,可列出的方程是( )x(x+1)=240 A. x(x+1)=240 B. x(x-1)=240 C.2x(x+1)=240 D.129.如图所示,在矩形ABCD 中,边AB的长为3,点E,F 分别在AD,BC上,连接BE,DF,EF,BD,若四边形B EDF 是菱形,且 EF=AE+FC,则BC的长为( )√3A.2√3B.3√3C.6√3D.9210.如图所示,在一张矩形纸片 ABCD 中,AB=4,BC=8,点 E,F 分别在AD,BC上,将纸片 ABCD 沿直线EF折叠,点C落在AD 上的一点H 处,点 D 落在点G 处,有以下四个结论:①四边形 CFHE 是菱形;②CE平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点 H 与点A 重合时,EF=2√5.以上结论中,你认为正确的有( )A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题4分,共32分,本题要求把正确结果填在规定的横线上,不需要解答过程)=0有实数根,则k的取值范围是 .11.关于x的方程kx2−4x−2312.如图,AB∥GH∥CD,点 H 在 BC 上,AC 与 BD 交于点G,AB=2,BG:DG=2:3,,则GH 的长为13.如图所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为边AD,AB,BC,CD 的中点.若AC=8,BD=6,则四边形EFGH的面积为 .14.将相同的矩形卡片按如图所示的方式摆放在一个直角上,每个矩形卡片长为2,宽为1,以此类推,摆放2 014个时,实线部分长为 .。
北师大版九年级上册数学第一次月考试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D . 4 4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.抛物线2y 3(x 1)1=-+的顶点坐标是( )A .()1,1B .()1,1-C .()1,1--D .()1,1-7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.下列图形中,是中心对称图形的是( )A .B .C .D .9.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.因式分解:x 3﹣4x=_______.3.若a 、b 为实数,且b =22117a a a -+-++4,则a+b =__________. 4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度. 5.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__________.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、A6、A7、D8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)12、x(x+2)(x﹣2)3、5或34、805、136三、解答题(本大题共6小题,共72分)1、x=﹣3.2、3、(1)相切,略;(2).4、(1)略;(2)45°;(3)略.5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
2023-2024学年九年级上学期数学(北师大版)第一次月考试卷▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=0 2.菱形具有而平行四边形不一定具有的性质是( )A.对角线互相垂直B.对边相等C.对角相等D.是中心对称图形 3.一元二次方程x 2=4的解为( )A.x =2B.x =4C.x 1=−2,x 2=2D.x 1=−4,x 2=4 4.如图,若四边形ABCD 是平行四边形,则下列结论中错误的是( ) A.当AC ⊥BD 时,它是菱形 B.当AC=BD 时,它是矩形 C.当∠ABC=90°时,它是矩形 D.当AB=BC 时,它是正方形5.已知关于x 的一元二次方程x 2+b x +c=0有一个非零实数根c ,则b+c 的值为( ) A.1 B.−1 C.0 D.26.如图,把一张矩形纸片ABCD 按如下方法进行两次折叠:第一次将DA 边折叠到DCADCBO边上得到DA ´,折痕为DM ,连接A ´M ,CM ,第二次将△MBC 沿着MC 折叠,MB 边恰好落在MD 边上.若AD=1,则AB 的长为( )A.32 B.√2 C.√3 D.√2−1 二、填空题(本大题共6小题,每小题3分,共18分)7.把一元二次方程x (x −3)=4化成a x 2+b x +c=0的一般形式,其中a=1,则常数项c=______.8.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ADB=25°,那么∠AOB 的度数为______.9.若关于x 的方程x 2−2x +1−k=0有两个相等的实数根,则k 的值为______. 10.若关于x 的一元二次方程a x 2=b(ab >0)的两个根分别为m 与2m −6,则m 的值为______.11.如图,在平面直角坐标系x Oy 中,四边形ABCO 是正方形,已知点A 的坐标为(2,1),则点C 的坐标为______.12.如图,在菱形ABCD 中,AB=20,∠A=45°,点E 在边AB 上,AE=13,点P 从点A 出发,沿着A →D →C →B 的路线向终点B 运动,连接PE ,若△APE 是以AE 为腰的等腰三角形,则AP 的长可以是______.第8题图ADCBO第12题图A D BCPE第11题图ACDB三、解答题(本大题共5小题,每小题6分,共30分) 13.(1)解方程:x 2−2x −1=0.(2)如图,在Rt △ABC 中,∠ACB=90°,D 为AB 的中点,∠A=30°,BC=2,求CD 的长.14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点C 作BD 的平行线交AB 的延长线于点E.求证:AC=CE.15.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AE ⊥BC 于点E ,若OB=2,S 菱形ABCD =4,求AE 的长.16.如图,△ACB 和△CED 都是等腰直角三角形,点B ,C ,E 在同一直线上,且E 是BC 的中点,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹). (1)在图1中,作□ABMC. (2)在图2中,作正方形ACBN.ADBCEO CDEOADBC17.如图,矩形绿地的长为12m ,宽为9m ,将此绿地的长、宽各增加相同的长度后,绿地面积增加了72m 2,求绿地的长、宽增加的长度.四、解答题(本大题共3小题,每小题8分,共24分)18.设关于x 的一元二次方程为x 2+b x +c=0.在下面的四组条件中选择其中一组b ,c 的值,使这个方程有两个不相等的实数根,并解这个方程. ①b=2,c=1;②b=1,c=2;③b=3,c=−1;④b=−3,c=2. 注:如果选择多组条件分别作答,按第一个解答计分.19.定义:如果关于x 的一元二次方程a x 2+b x +c=0(a ≠0)满足b=a+c ,那么我们称这个方程为“完美方程”.(1)下面方程是“完美方程”的是______.(填序号) ①x 2−4x +3=0;②2x 2+x +3=0;③2x 2−x −3=0.(2)已知3x 2+m x +n=0是关于x 的“完美方程”,若m 是此“完美方程”的一个根,求m 的值.20.如图,在□ABCD 中,E ,F 分别是边CD ,BC 上的点,连接BE ,DF ,BE 与DF 交于点P ,BE=DF.添加下列条件之一使□ABCD 成为菱形:①CE=CF ;②BE ⊥CD ,DF ⊥BC. (1)你添加的条件是_______(填序号),并证明.图1ADCBEA图2CDE B(2)在(1)的条件下,若∠A=45°,△BFP 的周长为4,求菱形的边长.五、解答题(本大题共2小题,每小题9分,共18分) 21.【阅读】解方程:(x −1)2−5(x −1)+4=0.解:设x −1=y ,则原方程可化为y 2−5y+4=0,解得y 1=1,y 2=4. 当y=1时,即x −1=1,解得x =2;当y=4时,即x −1=4,解得x =5. 所以原方程的解为x 1=2,x 2=5. 上述解法称为“整体换元法”. 【应用】 (1)若在方程x−1x−3xx−1=0中,设y=x−1x,则原方程可化为整式方程:________.(2)请运用“整体换元法”解方程:(2x −3)2−(2x −3)−2=0.22.如图1,在□ABCD 中,点E ,F 在对角线AC 上,AE=CF ,DE ⊥AC ,过点D 作DG ∥AC 交BF 的延长线于点G. (1)求证:四边形DEFG 是矩形.(2)如图2,连接DF ,BE ,当∠DFG=∠BEF 时,判断四边形 DEFG 的形状,并说明理由.图1E F ABCDG图2ABDGCFE AFCDE P B六、解答题(本大题共12分) 23.【课本再现】(1)如图1,在正方形ABCD 中,F 为对角线AC 上一点,连接BF ,DF.你能找出图中的全等三角形吗?结论猜想:图中的全等三角形有__________ (不必证明). 【知识应用】(2)如图2,P 为DF 延长线上一点,且BP ⊥BF ,DP 交BC 于点E.判断△BPE 的形状,并说明理由. 【拓展提升】(3)如图3,过点F 作HF ⊥BF 交DC 的延长线于点H. ①求证:HF=DF.②若AB=√3+1,∠CBF=30°,请直接写出CH 的长.2023-2024学年九年级上学期数学(北师大版)第一次月考试卷参考答案▼(上册1.1~2.4) ▼说明:共有六个大题,23个小题,满分120分,作答时间120分钟. 一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后图1AB CDFA图2B PDC EF图3ABDHCF括号内.错选、多选或未选均不得分. 1.下列方程是一元二次方程的是( )A.3x −1=0B.a x 2+b x +c=0(a ,b ,c 为常数)C.x ²+x =3D.3x 2−2x y −5y 2=01.解:A 是一元一次方程,B 当a ≠0时是一元二次方程,C 是一元二次方程,D 是二元二次方程,故选C 。
2021-2022学年河南省实验中学第一次月考复习题一.选择题(共37小题)1.如图,在边长为3的正方形ABCD中,∠CDE=30°,DE⊥CF,则BF的长是()A.1B.C.D.22.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为等边三角形,点E,F分别在菱形的边BC,CD上滑动,且E,F不与B,C,D重合,则四边形AECF的面积是()A.4B.4C.3D.33.如图,在矩形ABCD中,AD=6.对角线AC与BD相交于点O,AE⊥BD,垂足为E,DE=3BE,则AE的长为()A.2B.3C.D.34.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为()A.(2+)B.(2,2)C.(,2+)D.(4﹣,2)5.下列说法中,正确的是()A.两邻边相等的四边形是菱形B.一条对角线平分一组内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形6.如图,正方形ABCD中,点E,F分别在CD,BC上,且AF⊥BE,垂足为G,则下列结论:①BE=AF;②∠AFB+∠BEC=90°;③∠DAF=∠ABE;④BF=CE.其中正确的个数是()A.1个B.2个C.3个D.4个7.如图,将矩形ABCD放置在平面直角坐标系的第一象限内,使顶点A,B分别在x轴、y 轴上滑动,矩形的形状保持不变,若AB=2,BC=1,则顶点C到坐标原点O的最大距离为()A.1+B.1+C.3D.8.如图,菱形ABCD中,∠D=60°.点E、F分别在边BC、CD上,且BE=CF.若EF =4,则△AEF的面积为()A.B.C.D.9.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF的中点,则AM的最小值是()A.2.4B.2C.1.5D.1.210.如图,在边长为4的正方形ABCD中,点E,F分别在CD,AC上,BF⊥EF,CE=1,则AF的长是()A.B.C.D.11.如图.矩形ABCD中对角线AC,BD交于点O,AB=6,BC=8.点P是边AD上的动点,过点P作PE⊥AC于点E,PF⊥BD于点F.则PE+PF的值是()A.5B.4C.3D.4.812.如图,已知菱形ABCD的对角线AC,BD的长分别为4,6,AE⊥BC于点E,则AE的长是()A.3B.C.D.13.如图,若菱形ABCD的顶点A、B的坐标分别为(3,0)、(﹣2,0),点D在y轴上,则点C的坐标是()A.(﹣5,4)B.(﹣5,5)C.(﹣4,4)D.(﹣4,5)14.如图,在菱形ABCD中,∠ABC=50°,对角线AC,BD交于点O,E为CD的中点,连接OE,则∠AOE的度数是()A.110°B.112°C.115°D.120°15.如图,AC是菱形ABCD的对角线,P是AC上一个动点,过点P分别作AB、BC的垂线,垂足分别是F和E.若菱形ABCD的周长是12cm,面积是6cm2,则PE+PF的值是()A.1.5B.1C.2D.416.如图,矩形ABCD中,点G是AD的中点,GE⊥BG交CD于点E,CB=CE,连接CG 交BE于点F,则∠ECF的度数为()A.30°B.22.5°C.25°D.15°17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,H是AF的中点,CH =4,那么CE的长是()A.3B.C.D.18.如图,在矩形ABCD中,AB=6,过对角线AC的中点O作EF⊥AC,分别交AB、DC 于E、F,点G为AE的中点,若∠AOG=30°,则OG的长为()A.2B.2C.D.319.如图,在边长为6的正方形ABCD中,E是边CD的中点,F在BC边上,且∠EAF=45°,连接EF,则BF的长为()A.2B.C.3D.20.如图,在矩形ABCD中,AB=4,AD=6,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值为()A.8B.10C.12D.2021.已知关于x的方程mx2﹣2x+1=0有两个不相等的实数根,则m的取值范围是()A.m<1B.m>1C.m<1,且m≠0D.m>1,且m≠0 22.关于x的方程x2+(k2﹣4)x+k﹣1=0的两实数根互为相反数,则k的值为()A.±2B.2C.﹣2D.不能确定23.若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2021+3a﹣3b的值为()A.2018B.2020C.2022D.202424.书法兴趣小组在中秋节这一天人人相互送一个月饼,共送出72个月饼,书法兴趣小组人数个数是()A.7B.8C.9D.625.有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为()A.1+2x=81B.1+x2=81C.1+x+x2=81D.1+x+x(1+x)=8126.已知m是一元二次方程x2﹣4x+1=0的一个根,则2020﹣m2+4m的值为()A.2020B.2021C.2019D.﹣202027.已知一元二次方程x2﹣10x+24=0的两个根是菱形的两条对角线长,则这个菱形的面积为()A.6B.10C.12D.2428.用配方法解方程3x2+2x﹣1=0,配方后的方程是()A.3(x﹣1)2=0B.(x+)2=C.(x+)2=D.(x+)2=29.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,那么k的取值范围是()A.k≥﹣B.k≥﹣且k≠0C.k<﹣D.k>﹣且k≠0 30.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“健身杯”足球比赛,赛制为单循环形式(每两个队之间赛一场),现计划安排21场比赛,则邀请的参赛队数是()A.5B.6C.7D.831.把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.1,﹣3,2B.1,7,﹣10C.1,﹣5,12D.1,﹣3,10 32.在△ABC中,AB=AC,BC=8,AB的长是方程x2﹣9x+20=0的一个根,则△ABC的周长为()A.16B.16或18C.17D.1833.若实数a使关于x的一元二次方程(a+1)x2﹣3x+1=0有两个不相等的实数根,则实数a的取值范围是()A.a<B.a<且a≠﹣1C.a>D.a>且a≠﹣1 34.若x1,x2是方程x2﹣2x﹣3=0的两根,则x1+x2+x1x2的值是()A.1B.﹣1C.5D.﹣535.在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1.小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是()A.x2+2x﹣3=0B.x2+2x﹣20=0C.x2﹣2x﹣20=0D.x2﹣2x﹣3=0 36.学校组织学生外出集体劳动时,为九年级学生安排了三辆车.九年级的小明与小亮都可以从这三辆车中任选一辆搭乘,则他俩搭乘同一辆车的概率为()A.B.C.D.37.一个不透明的袋子中装有除颜色外均相同的4个白球和若干个绿球,每次摇均匀后随机摸出一个球,记下颜色后再放回袋中,经大量试验,发现摸到绿球的频率稳定在0.2,则摸到绿球的概率约为()A.0.2B.0.5C.0.6D.0.8二.填空题(共4小题)38.如图,折叠矩形纸片ABCD,使点B的对应点E落在CD边上,GH为折痕,已知AB =6,BC=10.当折痕GH最长时,线段BH的长为.39.两张宽为3cm的纸条交叉重叠成四边形ABCD,如图所示.若∠α=30°,则对角线BD 上的动点P到A,B,C三点距离之和的最小值是.40.如图,在正方形ABCD中,AB=2,E为边AB上一点,F为边BC上一点.连接DE和AF交于点G,连接BG.若AE=BF,则BG的最小值为.41.若m,n是一元二次方程x2+3x﹣1=0的两个实数根,则的值为.三.解答题(共19小题)42.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若∠C=90°,BC=16,CD=8,求菱形BNDM的周长.43.如图,四边形ABCD中,AD∥BC,AB=AD=CD=BC.分别以B、D为圆心,大于BD长为半径画弧,两弧交于点M.画射线AM交BC于E,连接DE.(1)求证:四边形ABED为菱形;(2)连接BD,当CE=5时,求BD的长.44.如图,在△ABC中,AB=AC,过A、C两点分别作AD∥BC,CD∥AB交于点D,延长DC至点E,使DC=CE,连接BE.(1)求证:四边形ACEB是菱形;(2)若AB=4,BC=6,求四边形ACEB的面积.45.如图,在等腰△ABC中,∠CAB=∠B=30°,D、E分别为AB、AC的中点,延长BC 至点F,使CF=BC,连接CD、EF和AF.(1)求证:DE=CF;(2)求证:四边形CDEF为菱形.(3)若BC=2,求AF.46.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12米的住房墙,另外三边用25米长的建筑材料围成的,为了方便进出,在垂直于住房墙的一边留一扇1米宽的门.当所围矩形与墙垂直的一边长为多少时,猪舍面积为80平方米?47.已知关于x的一元二次方程kx2+x﹣3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程两个实数根分别为x1,x2,且满足(x1+x2)2+x1•x2=4,求k的值.48.一家水果店以每斤3元的价格购进“官地洼”甜瓜若干斤,然后以每斤5元的价格出售,每天可售出100斤,通过调查发现,这种甜瓜每斤的售价每降低0.1元,每天可多售出20斤.(1)若将“官地洼”甜瓜每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这批“官地洼”甜瓜要想每天盈利300元,且保证每天至少售出280斤,那么水果店需将每斤的售价降低多少元?49.某商店将进价为8元的商品按每件10元售出,每天可售出200件,如果这种商品每件的销售价每提高0.5元,其销售量就减少10件.问(1)应将每件售价定为多少元时,才能使每天利润为640元?(2)店主想要获得每天800元的利润,小红同学认为不可能.如果你同意小红同学的说法吗?(说明理由)50.解方程:(1)4(x+1)2=16;(2)2x2+6x=2.51.按照指定方法解下列方程:(1)x(x﹣2)+3=0.(自选方法)(2)3x2﹣6x﹣2=0.(配方法)(3)x2﹣9=2x+6.(因式分解法)52.某服装厂生产一批服装,2019年该类服装的出厂价是200元/件,2020年,2021年连续两年改进技术,降低成本,2021年该类服装的出厂价调整为162元/件.(1)这两年此类服装的出厂价下降的百分比相同,求平均下降率.(2)2021年某商场从该服装厂以出厂价购进若干件此类服装,以200元/件销售时,平均每天可销售20件.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10件,如果每天盈利1150元,单价应降低多少元?53.用适当的方法解方程:(1)2x2+3x=1;(2)(x﹣2)(x+5)=18;(3)(x﹣1)2=4;(4)x(3x﹣6)=(x﹣2)2.54.关于x的一元二次方程x2﹣mx+2m﹣4=0.(1)求证:方程总有两个实数根;(2)若方程有一个根为1,求m的值.55.安庆某商场销售一批空气加湿器,平均每天可售出30台,每台可盈利50元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每台每降价1元,商场平均每天可多售出2台.(1)若该商场某天降价了5元,则当天可售出台,当天共盈利元.(2)在尽快减少库存的前提下,商场每天要盈利2100元,每台空气加湿器应降价多少元?(3)该商场平均每天盈利能达到2500元吗?如果能,求出此时应降价多少;如果不能,请说明理由.56.已知关于x的一元二次方程(x﹣m)2+6x=4m﹣3有实数根.(1)求m的取值范围;(2)设方程的两实根分别为x1与x2,若x1x2﹣x12﹣x22=﹣7,求m的值.57.在丝绸博览会期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸条带.(1)若丝绸条带的面积为650cm2,求丝绸条带的宽度;(2)已知该工艺品的成本是40元/件,如果以单价为100元/件销售,那么每天可售出200件,另外每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天把销售单价定为多少元时,当日所获利润为22500元.58.已知关于x的方程x2﹣4x+k+1=0有两个实数根.(1)求k的取值范围.(2)设方程两实数根分别为x1,x2,且=x1x2﹣1,求实数k的值.59.为庆祝中国共产党建党100周年,某校组织七、八、九年级学生参加了“颂党恩,跟党走”作文大赛.该校对参赛作文分年级进行了统计,并绘制了图1和图2不完整的统计图.请根据图中信息回答下面的问题:(1)参赛作文的篇数共篇;(2)图中:m=,扇形统计图中九年级所对应的圆心角度数为°;(3)把条形统计图补充完整;(4)经过评审,全校共有4篇作文获得特等奖,其中有一篇来自七年级,学校准备从特等奖作文中选取2篇刊登在学校校报上,请用树状图或列表法求七年级特等奖作文被刊登在校报上的概率.60.某校在庆“元旦”活动期间拟举行一次趣味联欢活动,该校文艺社团随机调查了部分同学在“瞎子击鼓”、“踩气球”“两人比划猜词”、“单人吸管运水”四个项目中选择一个项目参加的意愿,并根据调查结果绘制了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有人;扇形统计图中“两人比划猜词”对应的扇形圆心角的度数为;(2)根据本次调查结果,估计全校2000人中愿意参加“两人比划猜词”人数;(3)现从甲、乙、丙、丁四名学生(2男2女)中任选两人参加“两人比划猜词”,求抽取的2人不全为男生的概率.。
北师大版九年级数学上册第一次月考试卷及答案【真题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-=( )A .2019B .-2019C .12019D .12019- 2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠24.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1 B .1 C .﹣5 D .55.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( )A .±1B .1-C .1D .27.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .248.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( )A .30B .36︒C .60︒D .72︒二、填空题(本大题共6小题,每小题3分,共18分)1364 的平方根为__________.2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,已知反比例函数y=(k 为常数,k ≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB 的面积为1,则K=_______. 三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:233()111a a a a a -+÷--+,其中2.3.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65∠的度数.∠=︒,求FGCABCACB∠=︒,285.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、A6、B7、A8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±22、(y ﹣1)2(x ﹣1)2.3、x ≥-3且x ≠24、10.5、4π6、-2三、解答题(本大题共6小题,共72分)1、4x =2、3、(1)略(2)略4、(1)略;(2)78°.5、(1)200 , 8415m n ==,;(2)1224人;(3)见解析,23. 6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。
九江金安高级中学2018-2019学年初三上学期第一次月考数学试卷命题:王加辉 审题:江样明班级 姓名 成绩请同学们认真答题,预祝同学们取得优异的成绩!一、选择题(每小题3分,共30分)1.已知关于x 的一元二次方程02=+-k x x 的一个根是2,则k 的值是( ) A 、-2 B 、2 C 、1 D 、﹣1 2.下列图形中,既时轴对称图形,又是中心对称图形的是( )3.如图(1),在 ABCD 中,下列说法一定正确的是( ) A 、AC =BD B 、AC ⊥BDC 、AB =CD D 、AB =BC4.一个等腰三角形的两边长分别为3和7,则它的周长是( )A 、17B 、15C 、13D 、13或17 5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个 6.下列性质中,矩形具有但平行四边形不一定具有的是( )A 、对边相等B 、对角相等C 、对角线相等D 、对边平行 7.下列各未知数的值是方程0232=-+x x 的解的是( )A 、1=xB 、1-=xC 、2=xD 、2-=x 8.下列各式是一元二次方程的是( ) A 、x x =-253 B 、0132=-+x xC 、02=++c bx axD 、014=-x 9.把方程3102-=-x x 左边化成含有x 的完全平方式,其中正确的是( ) A 、28)5(1022=-+-x x B 、22)5(1022=-+-x x C 、2251022=++x x D 、25102=+-x x 10.顺次连接矩形ABCD 各边中点得到四边形EFGH ,它的形状是( )A 、平行四边形B 、矩形C 、菱形D 、正方形 二、填空题(每小题3分,共18分)11.一元二次方程03852=+-x x 的一次项系数是____________,常数项是____________。
12.已知菱形ABCD 的周长为40㎝,O 是两条对角线的交点,AC =8㎝,DB =6㎝,菱形的边长是________㎝,面积是________㎝2。
13.方程013)2(=+++mx xm m是关于x 的一元二次方程,则m 的值是______________14.如图(2),△ABC 中,∠ACB =90°,D 为AB 中点,BC =6, CD =5,则AB =__________,AC =_____________ 15.如图(3),已知P 是正方形ABCD 对角线BD 上的一点, 且BP =BC ,则∠ACP 的度数是_________16.如图(4)在矩形ABCD 中,AB =3,AD =4,以对角线的一半为边依次作平行四边形,则_____1=C OBB S 平行四边形,_____1211=C B B O S 平行四边形三、解答题(一)(第17题2分,第18、19小题2.5分,共7分)17.解方程:25)3(2=-x18.用公式法解方程:012=--x x19.用配方法解方程:0862=+-x x四、解答题(二)(每小题6分,共18分) 20.在△ABC 中,D 为AB 的中点,连接CD 。
(1)尺规作图:延长CD 至E ,使DE =CD ,连接AE 、BE 。
(2)判断四边形ACBE 的形状,并说明理由。
ABCDABCD(2)(3)(4)ABCD第20题图(1)ABC21.如图,点M ,N 分别是正方形ABCD 的边BC ,CD 上的点,且BM =CN , AM 与BN 交于点P ,试探索AM 与BN 的关系。
(1)数量关系_____________________,并证明;(2)位置关系_____________________,并证明。
22.用一张长为10m 的梯子斜靠在墙上,梯子的顶端距墙角8m 。
(1)梯子底端距墙角有______________米;(2)若梯子底端下滑1m ,则梯子的底端水平滑动多少米?五、解答题(三)(每小题9分,共27分)23.如图,已知E 是平行四边形ABCD 中BC 边的中点,连接AE 并延长AE 交DC 的延长线于点F 。
(1)求证:△ABE ≌△FCE ; (2)连接AC 、BF ,若AE =21BC ,求证:四边形ABFC 为矩形; (3)在(2)条件下,当△ABC 再满足一个什么条件时,四边形ABFC 为正方形。
24.如图,将矩形纸片ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,连接AE 。
求证:(1)BF =DF ; (2)AE ∥BD ;(3)若AB =6,AD =8,求BF 的长。
25.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,BC =10㎝,AD =8㎝,E 点F 点分别为AB ,AC 的中点。
(1)求证:四边形AEDF 是菱形; (2)求菱形AEDF 的面积;(3)若H 从F 点出发,在线段FE 上以每秒2㎝的速度向E 点运动,点P 从B 点出发,在线段BC 上以每秒3㎝的速度向C 点运动,问当t 为何值时,四边形BPHE 是平 四边形?当t 取何值时,四边形PCFH 是平行四边形?P第23题图第24题图ABDEFHP第25题图 8m10m第22题图九江金安高级中学2018-2019学年初三上学期第一次月考数学试卷参考答案请阅卷老师认真参考评分标准!一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ADCADCBABC二、填空题(每小题3分,共18分)11、 -8 , 3 ;12、 5 , 24 ;13、 2 ;14、 10 , 8 ;15、 22.5 ;16、 1.5 三、解答题(一)(第17题2分,第18、19小题2.5分,共7分) 17、解:两边开方得:53±=-x ∴ 53=-x 或53-=-x ∴ 2,821-==x x 18、解:012=--x x 19、解:0862=+-x x∵ 1,1,1-=-==c b a 0)4)(2(=--x x ∴ 05)1(14)1(422>=-⨯⨯--=-ac b ∴04,02=-=-x x即251125)1(±=⨯±--=x ∴ 4,221==x x∴ 2511+=x ,2512-=x 四、解答题(二)(每小题6分,共18分)20、解:(1)作图略;(2)四边形ACBE 是平行四边形;理由:∵ D 为AB 的中点 ∴ AD =DB∵ CD =ED ∴ 四边形ACBE 为平行四边形 21、解:(1) AM =BN证明:∵ 四边形ABCD 是正方形 ∴ ∠ABM =∠BCN =90°,AB =BC∵ BM =CN ∴ △ABM ≌△BCN ∴ AM =BN (2) AM ⊥BN证明:∵ △ABM ≌△BCN ∴ ∠BAM =∠NBC ∵ ∠NBC +∠ABN =∠ABC =90° ∴ ∠BAM +∠ABN =90° 在△ABP 中,∠APB =180°-(∠BAM +∠ABN)=90° ∴ AM ⊥BN 22、解:(1) m 6 ;(2)222107)6(=++x , 015122=-+x x015122=-+x x15122=+x x 222615612+=++x x 即 51)6(2=+x516±=+x ∴ 5161+-=x ,5162--=x (负数舍去) 答:略 五、解答题(三)(每小题9分,共27分) 23、解:(1)证明:在 ABCD 中,AB ∥CD ,AB =CD ∴ ∠BAE =∠EFC ∵ E 为BC 的中点 ∴ BE =EC∵ ∠AEB =∠FEC ∴ △ABE ≌△FCE (2)证明:由(1)知AB ∥CD 即 AB ∥CF ∵△ABE ≌△FCE ∴ AB =FC∴ 四边形ABFC 为平行四边形 ∴ AE =EF =21AF ∵ AE =21BC ∴ BC =AF ∴ ABCD 是矩形 (3)当△ABC 为等腰三角形时,即 AB =AC 矩形ABFC 为正方形24、解:(1)证明:在矩形ABCD 中,AD ∥BC ,AD =BC ∴ ∠DBC =∠ADB ∵ ∠DBC =∠EBD ∴ ∠ADB =∠EBD ∴ BF =FD (2)证明:∵ AD =BC =BE ,BF =DF ∴ AF =EF ∴ ∠AEB =∠EAF∵ ∠AFE =∠BFD ,∠FBD =∠FDB ∴ ∠AEB =∠EBD ∴ AE ∥BD (3)在Rt △ABF 中 ,设BF =FD =x ,则AF =x -=8,则 222)8(6x x =-+ 解得:425=x ∴ BF 的长为 425 25、解:(1)证明:∵ AB =AC ,AD ⊥BC ∴ D 为BC 的中点∵ E ,F 分别为AB ,AC 的中点 ∴ DE 和DF 是△ABC 的中位线 ∴ DE ∥AC ,DF ∥AB ∴ 四边形AEDF 是平行四边形 ∵ E ,F 分别为AB ,AC 的中点,AB =AC ∴ AE =AF ∴ AEDF 是菱形 (2)∵ EF 为△ABC 的中位线 ∴ EF =21BC =5 ∵ AD =8,AD ⊥EF ∴ 21=菱形AEDF S AD·EF =21×8×5=20 (3)∵ EF ∥BC ∴ EH ∥BP若四边形BPHE 为平行四边形,则须EH =BP ∴ t t 325=- 解得:1=t∴ 当1=t 秒时,四边形BPHE 为平行四边形 ∵ EF ∥BC ∴ FH ∥PC若四边形PCFH 为平行四边形,则须FH =PC ∴ t t 3102-= ∴ 105=t ∴2=t ∴ 当2=t 秒时,四边形PCFH 为平行四边形P 第24题第23题ABDEFHP第25题。