生物医学工程概论(4)
- 格式:ppt
- 大小:3.01 MB
- 文档页数:49
医学院校“生物医学工程概论”研究生课程及教材生物医学工程概论是一门涵盖了生物医学工程学科的多个领域的课程,包括生物医学成像、生物医学信号处理、生物医学材料等等。
这门课程旨在为学生提供一个全面的、系统的了解生物医学工程学科以及其应用的基础知识。
在这门课程中,学生将会针对以下几个方面进行深入的研究和探索。
1. 生物医学成像。
这个领域是生物医学工程最活跃的领域之一。
生物医学成像涉及到许多不同的技术,如计算机断层扫描(CT)、磁共振成像(MRI)等等,这些技术的应用在医疗领域中已经变得极为普遍。
在这门课程中,学生将会学习这些各种成像技术的基本原理、应用、设备以及技术的局限性等。
2. 生物医学信号处理。
生物学信号处理是指将生理学信号转化为数字信号,利用数值分析来处理这些信号并从中提取必要的信息。
在生物医学应用中,良好的信号处理是非常关键的。
学生将会学习许多生物学信号,如心电图(ECG)、脑电图(EEG)等等的基本原理、信号处理技术以及应用。
3. 生物医学材料。
这个领域涉及到各种各样的材料和化学物质,如生物材料、生物医学可降解聚合物、药物等等。
学生将会学习这些材料的基本原理、制造工艺、特性以及应用等。
在这门课程中,学生将会使用跨学科思维,探索并理解人体生理学以及医疗技术之间的关系,从而为其他医学领域的研究提供基础,进一步推动生物医学工程学科的发展。
对于生物医学工程概论的教材而言,常用的教材有《生物医学工程学概论》、《生物医学科学与工程》等等,这些教材都很好地解释了生物医学工程的基本原理以及应用。
此外,还有一些基于实践和实验的教材,如《生物医学工程实验》、《生物仪器实验》等等,这些实验教材不仅能够帮助学生更好地理解生物医学工程技术,还能提供给学生实践操作的机会,增强学生的实际操作能力。
总而言之,通过学习生物医学工程概论课程,学生将会对生物医学工程学科有更全面、更深入的了解,开阔视野、加强实践能力,从而为未来在医学领域的研究和工作铺平道路。
医学院校“生物医学工程概论”研究生课程及教材
在医学院校中,生物医学工程概论是一门研究生课程,旨在介绍生物医学工程学科的基本概念、研究领域和应用。
该课程通常由医学院的生物医学工程学科或相关专业教授授课,教学内容包括典型的生物医学工程学研究领域、常见的生物医学工程技术和方法等。
生物医学工程概论课程主要分为几个主题。
课程会介绍生物医学工程学科的基本概念和发展历程,包括生物医学工程的定义、起源、学科内涵和主要研究领域等内容。
这部分内容旨在让学生对生物医学工程的整体框架有一个初步了解。
课程将介绍生物医学工程的研究方法和技术。
这包括生物医学工程中常用的实验技术和研究方法,如细胞培养技术、生物材料的制备和表征、医学成像技术等。
学生通过学习这些内容,可以了解和掌握生物医学工程研究所需的实验技术和方法。
课程还会涉及生物医学工程领域的研究进展和应用。
学生将学习到一些当前热门的生物医学工程研究课题,如人工器官的研发、基因工程技术在医疗上的应用等。
通过学习这些内容,学生可以了解到生物医学工程在医疗领域的重要性,并且能够了解到当今世界的生物医学工程科技发展的前沿及其潜力。
教师还根据自身教学和研究经验,可能会结合一些最新的研究成果和实践案例进行教学。
这样可以使学生更加了解生物医学工程领域的最新成果和前沿动态,提高他们的学习和研究能力。
“生物医学工程概论”考试大纲目录I考查目标II考试形式和试卷结构III考查范围1)生物医学工程基本原理2)医疗器械与医学仪器3)生物材料4)组织工程IV试题示范V参考书I 考查目标生物医学工程概论考试主要考察学生对生物医学工程定义、地位作用及研究范围,以及关于生物医学工程的基本概念、原理和方法学习掌握的情况。
在理解方面、分析能力所达到的程度。
以及具体在医疗器械/医学仪器,生物材料,组织工程方面的基本原理、方法和应用等情况。
能运用这些基本原理对生物医学工程领域相关理论和实际问题提出解决思路。
II考试形式和试卷结构考试形式:闭卷考试,180分钟,总分150分。
试卷内容结构1)生物医学工程定义和基本原理50分2)医疗器械与医学仪器40分3)生物材料30分4)组织工程30分试卷形式名词解释35分填空题30分选择题50分问答题45分III考查范围1)生物医学工程基本原理考查目标考查目标掌握生物医学工程定义、地位作用及主要研究领域,生物医学工程的基本概念、了解生物医学工程应用于医学领域的主要方式和途径。
生物医学工程的定义和主要内容生物医学工程与第三代医疗生物医学工程与医药的关系生物医学工程在临床医学中的主要应用2)医疗器械与医学仪器考查目标为医疗器械与医学仪器主要技术及其技术基础与器件,以及有关应用技术和系统等。
主要要求掌握有关技术的基本原理,技术类型特点和优缺点,主要应用范围等。
主要内容生物医学信号处理生物传感器,生物医学电子学,微系统—微米纳米技术,医用器械,生物阻抗,激光生物医学,医学影像3)生物材料考查目标掌握生物材料的基本概念、分类,利用生物材料工程的原理和方法,设计用于医学的主要制品和人工器官,了解生物材料应用于医学领域的主要方式和途径。
主要内容一、生物材料的定义和发展阶段生物惰性生物活性组织再生支架二、无机生物材料的分类和应用领域无机非金属生物材料金属生物材料碳基生物材料复合生物材料三、有机生物材料的分类和应用领域合成高分子天然高分子复合生物材料四、生物材料主要应用领域-人工器官和制品人工关节(髋关节)人工皮肤药物载体4)组织工程考查目标掌握组织工程的基本概念,利用组织工程的原理和方法,掌握用于医学的组织或器官的设计思路,了解组织工程应用于医学领域的新进展。
医学院校“生物医学工程概论”研究生课程及教材随着医学技术的不断发展和进步,生物医学工程作为医学和工程学科的交叉领域,受到了越来越多的关注和重视。
在医学院校中,生物医学工程也逐渐成为热门的研究方向,“生物医学工程概论”成为了许多医学院校研究生必修的一门课程。
本文将对医学院校的“生物医学工程概论”研究生课程及教材进行详细介绍。
一、课程简介“生物医学工程概论”是一门涵盖医学、生物学、工程学等多个学科知识的综合性课程。
通过本课程的学习,学生将了解生物医学工程的基本概念、发展历程、研究方法、应用领域等内容,为将来深入研究生物医学工程领域奠定基础。
课程的教学目标主要包括:1.了解生物医学工程的基本概念和发展历程;2.掌握生物医学工程的研究方法和理论基础;3.熟悉生物医学工程在医学领域的应用和未来发展趋势;4.培养学生的综合分析和解决问题的能力。
二、课程内容“生物医学工程概论”课程的内容涵盖了多个方面的知识,主要包括以下几个方面:1.生物医学工程概述:介绍生物医学工程的定义、产生背景、学科内涵和发展前景等内容,为学生建立对生物医学工程整体概念的认识;2.生物医学信号与图像处理:介绍生物医学信号的获取、处理和分析方法,以及生物医学图像的采集、处理和诊断应用;3.生物医学材料与生物力学:介绍生物医学材料的种类、性能和应用,以及生物力学在医学领域的应用和研究进展;4.生物医学传感技术与医学仪器:介绍生物医学传感器的原理和设计,以及医学仪器的分类、应用和发展趋势;5.生物医学工程中的计算方法:介绍在生物医学工程中常用的计算方法,包括数值模拟、数据分析和建模等内容。
三、教学方法为了使学生能够更好地掌握生物医学工程概论的知识,教学方法也非常重要。
在教学实践中,一般采用以下几种教学方法:1.理论授课:通过教师的讲解,向学生传授生物医学工程的基本理论知识,帮助学生建立对生物医学工程概念的认识;2.案例分析:教师可以选取一些生物医学工程应用案例,进行详细分析和讨论,帮助学生了解生物医学工程在实际医学领域的应用;3.实验教学:通过实验教学,让学生亲自动手操作和实践,加深对生物医学工程原理的理解和掌握;4.课堂讨论:鼓励学生在课堂上提出问题和观点,进行互动交流,促进对生物医学工程知识的深入思考。
医学院校“生物医学工程概论”研究生课程及教材生物医学工程概论是一门研究生课程,主要介绍生物医学工程的基本概念、原理和应用。
该课程旨在培养学生对生物医学工程领域的基本知识和技能,为学生未来的研究和实践工作打下坚实的基础。
这门课程的教材包括以下几本主要书籍:1.《生物医学工程》(第4版)作者:Joseph D. Bronzino)这本教材是生物医学工程领域的经典教材,内容涵盖了生物医学工程的各个方面,包括生物传感器、医学成像、生物材料和生物信息处理等。
这本书详细介绍了生物医学工程的基本原理和方法,并且结合了许多实际的应用案例,有助于学生理解和掌握该领域的知识。
2.《生物医学光学和成像》(作者:Gabriel Popescu)这本教材主要介绍了生物医学光学和成像的原理和应用。
包括生物光学原理、生物光学显微镜、生物光学成像模式等内容。
这本书对于学生理解生物医学成像技术的基本原理和应用有很大帮助,同时也对于生物医学光学领域的研究具有重要的参考价值。
3.《生物材料》(作者:Buddy D. Ratner)这本教材主要介绍了生物材料的基本概念、性能和应用。
包括生物材料的种类、生物相容性、表面改性和生物材料的应用等。
这本书详细讲解了生物材料在生物医学工程领域的应用,对学生深入了解生物材料的特性和选择适合的生物材料具有重要意义。
4.《神经工程》(作者:Bin He)这本教材主要介绍了神经工程的基本原理和应用。
包括神经信号的采集与处理、脑机接口、神经可塑性等内容。
这本书针对神经工程领域的学生,详细介绍了神经工程的相关知识和技术,对于学生深入了解神经工程的研究和应用具有重要作用。
生物医学工程学1 生物电磁学是研究生物体的电现象和磁现象以及生物电磁的应用的一门学科。
2 正常心电图包括P波 QRS综合波 ST T波 U波3 正常脑电活动相关的脑电波频率范围划分成五种类型,频率由高到低依次为γ波、β波、α波、θ波、δ波。
4 电磁波的生物学效应不仅对生物体有热效应,而且有非热效应。
热效应又称为能量效应,是指通过微波照射生物体引起其组织器官生热所产生的生理影响。
根据照射能量的不同可分为温热治疗、高温消融、电灼、电凝、切割等热疗方法。
根据使用频率的不同,而对皮肤的穿透深度不同,又可分为浅表热疗、深部透热治疗。
各种用途的微波热疗机、消融仪、微波电刀已成为医院重要治疗手段之一。
非热效应往往利用的是弱信号,机体组织不产生明显的发热现象,这类电磁波生物效应也被称作“信息效应”。
5微波是指300MHz至300GHz的电磁波毫米波是指自由空间波长在1~10mm的电磁波,相应的频率范围是30~300GHz,处于微波波段的高频段6 生物力学是应用力学原理和方法对生物体中的力学问题进行定量研究的生物物理学分支,是研究力及生物体运动、生理、病理之间关系的学科。
7 生物力学依研究对象的不同可分为生物流体力学、生物固体力学和运动生物力学等。
8 频率在20kHz以上的机械波称为超声波。
9 超声波应用包括超声波诊断和超声波治疗。
10超声波引起的生物效应包括:机械效应,热效应,空化效应,声流效应,触变效应,弥散效应。
11生物医学光子学:所谓光子学是指研究光和其他辐射能(以光子为量子单位)的产生及利用的科学。
生物技术12 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。
美国、英国、法国、德国、日本和我国科学家共同参及了这一预算达30亿美元的人类基因组计划。
按照这个计划的设想,在2019年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。
生物医学工程,(Biomedical Engineering,BME是用自然科学和工程技术的理论方法,研究解决医学防病治病,增进人民健康的一门理、工、医相结合的边缘科学。
它综合运用工程学的理论和方法,深入研究、解释、定义和解决医学上的有关问题。
生物传感器应有以下几个条件:①高可靠;②少损伤或无损伤;③微型化;④重复性好;⑤数字信号输出;⑥组织相容性好;⑦寿命长;⑧容易制造。
生物工程(bioengineering亦称生物技术(biotechnology , 它是通过工程技术手段,利用生物有机体或生物过程,生产有经济价值的产品的技术科学。
它的实际应用包括对生物有机体及其亚细胞组分在制造业、服务性工业以及环境管理等方面的应用。
细胞工程(cell engineering是应用细胞生物学和分子生物学技术,按照预定的设计改变或创造细胞遗传物质,使之获得新的遗传性状,通过体外培养,提供细胞产品,或培育出新的品种,甚至新的物种。
细胞工程的三个发展阶段:第一阶段:~70年代中期确立了细胞培养技术、核型分析技术、细胞融合技术及其应用第二阶段:70年代后期~80年代后期基因工程与细胞工程结合,应用DNA导入技术分析了人体基因的微细结构。
第三阶段:80年代后期~基因打靶为基础,胚胎发生工程与基因工程结合作为新的研究发展趋势。
即在培养细胞水平上同源基因重组的“基因打靶”“基因打靶”是指利用基因转移方法,将外源DNA序列导入靶细胞后通过外源DNA序列与靶细胞内染色体上同源DNA序列间的重组,将外源基因定点整合入靶细胞基因组上某一确定的点,或对某一预先确定的靶位点进行定点突变的技术细胞融合(cell fusion是指用自然或人工方法,使两个或更多个不同的细胞融合成一个细胞的过程。
它包括质膜的连接与融合,胞质合并,细胞核、细胞器和酶等互成混合体系。
应用:淋巴细胞杂交瘤技术其产物为单克隆抗体单克隆抗体(monoclonal antibody, McAb是由单一克隆(clone的B淋巴细胞产生的抗单一抗原的高度特异性抗体。
《生物医学工程概论》课程教学大纲【课程编号】:22315313【英文译名】:Introduction to Biomedical Engineering【适用专业】:生物医学工程【学分数】:2【总学时】:32【实践学时】:0一、本课程教学目的和课程性质本课程是生物医学工程专业本科生开设的专业基础必修课。
主要介绍生物医学工程学科的发展史,学科内涵和研究领域,以及未来展望。
目的在于使学生了解生物医学工程专业的研究内容,为后续课程的学习作好铺垫。
二、本课程的基本要求1、通过该课程的学习应当对这个学科有一个较全面的了解,对这个学科中的几个主要研究领域有一个较概括的了解。
2、了解现代医学电子仪器、医学成像技术(如CT,MRI,DSA等)、生物材料等方向的研究内容及发展状况。
3、了解信息论、控制论、系统论在医学中的应用,计算机在医学中的应用等。
三、本课程与其他课程的关系前修课程:无后继课程:医学成像技术、医学图像处理、医学信号处理、医学仪器四、课程内容第一章:医学电子仪器内容体系:人体电生理参数检测仪器;人体非电生理参数检测技术及仪器;病人监护仪器‘临床化学技术与仪器;生理功能辅助仪器;医用光学技术与仪器;治疗用电子仪器知识点:主要介绍临床上应用的医疗仪器的种类、结构、功能特点。
重点:熟悉当前临床上的医学仪器的技术方法;了解医学仪器的发展方向。
1第二章:医学成像系统内容体系:医学图像处理;医学图像研究的若干新进展知识点:主要介绍目前医学成像的技术水平、设备种类及功能特点,医学图像的重建原理,图像处理方法。
第三章:生物医学传感器内容体系:生物医学信号处理知识点:主要介绍生物医学传感器的种类、特点;生物医学信号的特点、采集和处理方法。
第四章:人工智能内容体系:模式识别;医学专家系统知识点:主要介绍人工智能、模式识别、医学专家系统的概念及应用。
第四章:人体运动信息检测技术与仪器内容体系:生理系统模型与控制知识点:主要介绍生理系统模型的分类、计算机仿真的基本方法;人体运动信息的检测方法与技术水平。