一元多项式计算器完整报告
- 格式:doc
- 大小:2.36 MB
- 文档页数:32
课程设计报告1.需求分析【问题描述】设计一个一元稀疏多项式简单计算器.【基本要求】一元稀疏多项式基本功能包括:1)输入并建立多项式;2)输出多项式,输出形式为整数序列:n, c1, e1, c2, e2, … , c n, e n,其中n是多项式的项数,c i和e i分别是第i项的系数和指数,序列按指数降序排列;3)多项式a和b相加,建立多项式a+b;4)多项式a和b相减,建立多项式a-b;【测试数据】1)(2x+5x8-3.1x11)+(11x9-5x8+7)=(-3.1x11+11x8+2x+7)2)(-1.2x9+6x-3+4.4x2-x)-(7.8x15+4.4x2-6x-3)=(-7.8x15-1.2x9+12x-3-x)3)(x5+x4+x3+x2+x+1)-(-x4-x3)=(x5+x2+x+1)4)(x3+x)-(-x3-x)=05)(x100+x)+(x200+x100)=(x200+2x100+x)6)(x3+x2+x)+0=x3+x2+x7)互换上述测试数据中的前后两个多项式.2.概要设计ADT Polynomial{数据对象: D={a i|a i∈TermSet, i=1,2,…,m,m≥0,TermS et中的每个元素包含一个表示系数的实数和表示指数的整数}数据对象: R1={<a i,a i-1>|a i,a i-1∈D,且a i-1中的指数值小于ai中的指数,i=2,…,m}基本操作:CreatePolyn(void)Result: 指数由大到小输入m项的系数和指数,建立一元多项式pPrintPoly(LNode Head)Result: 输出一元多项式AddPoly(LNode H1,LNode H2)Condition: 一元多项式pa,pb已存在Result: 完成多项式相加运算,即pa=pa+pb,并销毁一元多项式pb.SubtractPoly(LNode H1,LNode H2)Condition: 一元多项式pa,pb已存在Result: 完成多项式相减运算,即pa=pa-pb,并销毁一元多项式pb.}ADT Polynomial3.详细设计【数据类型定义】typedef struct node{int expn,coef;struct node *next;}Nodetype,*LNode; //定义结点类型【函数原型定义】LNode CreatePolyn(void);Void PrintPoly(LNode Head);LNode AddPolyn(LNode H1,LNode H2);LNode SubPolyn(LNode H1,LNode H2);【核心算法描述】CreatePolyn()LNode CreatePolyn(void) //创建表达式{LNode Head,p,pre,pree;int x,z;Head=(LNode)malloc(sizeof(Nodetype));Head->next=NULL;printf("当你输入的系数为0时,输入将结束!\n");printf("请输入第一项系数:");scanf("%d",&x);if(x==0){p=(LNode)malloc(sizeof(LNode));p->coef=0;p->expn=0;Head->next=p;p->next=NULL;}while(x!=0){printf("请输入指数:");scanf("%d",&z);p=(LNode)malloc(sizeof(Nodetype));p->coef=x;p->expn=z;pre=Head;while(pre->next&&pre->next->expn>=z)//原有项指数大于插入项{pree=pre;pre=pre->next;}p->next=pre->next;//插入项pre->next=p;if(pre->expn==p->expn)//原有项指数等于插入项{pre->coef+=p->coef;pre->next=p->next;free(p);}if(pre->coef==0)//系数为0{pree->next=pre->next;free(pre);}printf("请输入系数:");scanf("%d",&x);}if(Head->next==NULL)//多项式空{pre=(LNode)malloc(sizeof(LNode));pre->coef=0;pre->expn=0;pre->next=Head->next;Head->next=pre;}return Head;}PrintPolyn()void PrintPolyn(LNode Head) //输出表达式{LNode pre;pre=Head->next;if(pre->expn==0)//指数为0printf("%d",pre->coef);elseprintf("%d*X(%d)",pre->coef,pre->expn);pre=pre->next;while(pre)//系数不为0{if(pre->expn==0)//指数为0{if(pre->coef>0)printf("+%d",pre->coef);else if(pre->coef<0)printf("%d",pre->coef);}else//指数不为0{if(pre->coef>0)printf("+%d*X(%d)",pre->coef,pre->expn);else if(pre->coef<0)printf("%d*X(%d)",pre->coef,pre->expn);}pre=pre->next;//遍历每一项}printf("\n");}AddPolyn()LNode AddPolyn(LNode H1,LNode H2) //表达式相加{LNode H3,p1,p2,p3,pre;//p1第一个多项式的项,pre p的前一项H3=(LNode)malloc(sizeof(LNode));H3->next=NULL; //建立一个空的多项式p1=H1->next; //第一个多项式的第一项p2=H2->next;pre=H3; //while(p1&&p2){if(p1->expn>p2->expn)//第一个多项式的项的指数大于第二个的{p3=(LNode)malloc(sizeof(LNode));p3->expn=p1->expn;p3->coef=p1->coef;p3->next=pre->next;pre->next=p3;pre=p3;p1=p1->next;}else if(p1->expn<p2->expn)//第一个多项式的项的指数小于第二个的{p3=(LNode)malloc(sizeof(LNode));p3->expn=p2->expn;p3->coef=p2->coef;p3->next=pre->next;pre->next=p3;pre=p3;p2=p2->next;else if(p1->coef+p2->coef!=0)//相加为不0,指数相同系数相加{p3=(LNode)malloc(sizeof(LNode));p3->expn=p1->expn;p3->coef=p1->coef+p2->coef;p3->next=pre->next;pre->next=p3;pre=p3;p1=p1->next;p2=p2->next;}else//相加为0{p1=p1->next;p2=p2->next;}}while(p2){p3=(LNode)malloc(sizeof(LNode));p3->expn=p2->expn;p3->coef=p2->coef;p3->next=pre->next;pre->next=p3;pre=p3;p2=p2->next;}while(p1){p3=(LNode)malloc(sizeof(LNode));p3->expn=p1->expn;p3->coef=p1->coef;p3->next=pre->next;pre->next=p3;pre=p3;p1=p1->next;}return H3;}LNode SubstractPolyn(LNode H1,LNode H2) //表达式相减{//让系数变负,代入加法LNode H3,pre;pre=H2->next;while(pre){pre->coef=-pre->coef;pre=pre->next;}H3=AddPolyn(H1,H2);pre=H2->next;while(pre){pre->coef=-pre->coef;pre=pre->next;}return H3;}【函数调用关系】main()调用CreatePoly(),PrintPoly(),AddPoly(),scanf()函数输入,printf()函数输出。
[计算机]一元多项式相加完整实验报告一元多项式的相加一实验内容根据所学的数据结构中线性结构(线性表)的逻辑特性和物理特性及相关算法,应用于求解一个具体的实际问题----------两个多项式相加二需求分析1掌握线性结构的逻辑特性和物理特性。
2建立一元多项式。
3将一元多项式输入,并存储在内存中,并按照指数降序排列输出多项式。
4能够完成两个多项式的加减运算,并输出结果。
三概要设计1 本程序所用到的抽象数据类型:typedef OrderedLinkList polynomial;// 用带表头结点的有序链表表示多项式结点的数据元素类型定义为:typedef struct { // 项的表示oat flcoef; // 系数int expn; // 指数 term, ElemType;Void AddPolyn(polynomail&Pa,polynomail&Pb)Position GetHead()Position NextPos(LinkList L,Link p)Elem GetCurElem(Link p)int cmp(term a term b)Status SetCurElem(Link&p, ElemType e)Status DelFirst(Link h, Link &q)Status ListEmpty(LinkList L)Status Append(LinkList&L, Link S)FreeNode()2 存储结构一元多项式的表示在计算机内用链表来实现,同时为了节省存储空间,只存储其中非零的项,链表中的每个节点存放多项式的系数非零项。
它包含三个域,分别存放多项式的系数,指数,以及指向下一个项的指针。
序数coef 指数exp 指针域next创建一元多项式链表,对运算中可能出现的各种情况进行分析,实现一元多项式的相加相减操作。
3 模块划分a) 主程序;2)初始化单链表;3)建立单链表; 4)相加多项式 4 主程序流程图开始申请结点空间输入多项式各项的系数X,指数Y输出已输出的多项式否是否输入正确合并同类项结束四详细设计根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应系数相加,若其和不为零,则构成“和多项式”中的一项,对于两个一元多项式中所有指数不相同的项,则分别复抄到“和多项式”中去。
一元多项式计算:程序要求:1)、能够按照指数降序排列建立并输出多项式;2)、能够完成两个多项式的相加、相减,并将结果输入。
概要设计:1.功能:将要进行运算的多项式输入输出。
2.数据流入:要输入的多项式的系数与指数。
3.数据流出:合并同类项后的多项式。
4.程序流程图:多项式输入流程图如图3.2.1所示。
5.测试要点:输入的多项式是否正确,若输入错误则重新输入2、多项式的加法(1)功能:将两多项式相加。
(2)数据流入:输入函数。
(3)数据流出:多项式相加后的结果。
(4)程序流程图:多项式的加法流程图如图3.2.2所示。
(5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。
3、多项式的减法(1)功能:将两多项式相减。
(2)数据流入:调用输入函数。
(3)数据流出:多项式相减后的结果。
(4)程序流程图:多项式的减法流程图如图3.2.3所示。
(5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。
详细代码:#include<iostream>#include<conio.h>#include<stdlib.h>using namespace std; struct Node{float coef;//结点类型int exp;};typedef Node polynomial;struct LNode{polynomial data;//链表类型LNode *next;};typedef LNode* Link;void CreateLink(Link &L,int n);void PrintList(Link L);void PolyAdd(Link &pc,Link pa,Link pb);void PolySubstract(Link &pc,Link pa,Link pb); void CopyLink(Link &pc,Link pa);void PolyMultiply(Link &pc,Link pa,Link pb);int JudgeIfExpSame(Link pa,Link e);void DestroyLink(Link &L);int CompareIfNum(int i);void DestroyLink(Link &L){Link p;p=L->next;while(p){L->next=p->next;delete p;p=L->next;}delete L;L=NULL;}//创建含有n个链表类型结点的项,即创建一个n项多项式void CreateLink(Link &L,int n){if(L!=NULL){DestroyLink(L);}Link p,newp;L=new LNode;L->next=NULL;(L->data).exp=-1;//创建头结点p=L;for(int i=1;i<=n;i++){newp=new LNode;cout<<"请输入第"<<i<<"项的系数和指数:"<<endl;cout<<"系数:";cin>>(newp->data).coef;cout<<"指数:";cin>>(newp->data).exp;if(newp->data.exp<0){cout<<"您输入有误,指数不允许为负值!"<<endl;delete newp;i--;continue;}newp->next=NULL;p=L;if(newp->data.coef==0){cout<<"系数为零,重新输入!"<<endl;delete newp;i--;continue;}while((p->next!=NULL)&&((p->next->data).exp<(newp->data).exp)){p=p->next; //p指向指数最小的那一个}if(!JudgeIfExpSame( L, newp)){newp->next=p->next;p->next=newp;}else{cout<<"输入的该项指数与多项式中已存在的某项相同,请重新创建一个正确的多项式"<<endl;delete newp;DestroyLink(L);CreateLink(L,n); //创建多项式没有成功,递归调用重新创建break;}}}/*判断指数是否与多项式中已存在的某项相同*/int JudgeIfExpSame(Link L,Link e){Link p;p=L->next;while(p!=NULL&&(e->data.exp!=p->data.exp))p=p->next;if(p==NULL)return 0;else return 1;}/*输出链表*/void PrintList(Link L){Link p;if(L==NULL||L->next==NULL)cout<<"该一元多项式为空!"<<endl;else{p=L->next;//项的系数大于的种情况if((p->data).coef>0){if((p->data).exp==0)cout<<(p->data).coef;else if((p->data).coef==1&&(p->data).exp==1)cout<<"x";else if((p->data).coef==1&&(p->data).exp!=1)cout<<"x^"<<(p->data).exp;else if((p->data).exp==1&&(p->data).coef!=1)cout<<(p->data).coef<<"x";else cout<<(p->data).coef<<"x^"<<(p->data).exp; }//项的系数小于的种情况if((p->data).coef<0){if((p->data).exp==0)cout<<(p->data).coef;else if(p->data.coef==-1&&p->data.exp==1)cout<<"-x";else if(p->data.coef==-1&&p->data.exp!=1)cout<<"-x^"<<p->data.exp;else if(p->data.exp==1)cout<<p->data.coef<<"x";else cout<<(p->data).coef<<"x^"<<(p->data).exp; }p=p->next;while(p!=NULL){if((p->data).coef>0){if((p->data).exp==0)cout<<"+"<<(p->data).coef;else if((p->data).exp==1&&(p->data).coef!=1)cout<<"+"<<(p->data).coef<<"x";else if((p->data).exp==1&&(p->data).coef==1)cout<<"+"<<"x";else if((p->data).coef==1&&(p->data).exp!=1)cout<<"+"<<"x^"<<(p->data).exp;else cout<<"+"<<(p->data).coef<<"x^"<<(p->data).exp; }if((p->data).coef<0){if((p->data).exp==0)cout<<(p->data).coef;else if(p->data.coef==-1&&p->data.exp==1)cout<<"-x";else if(p->data.coef==-1&&p->data.exp!=1)cout<<"-x^"<<p->data.exp;else if(p->data.exp==1)cout<<p->data.coef<<"x";else cout<<(p->data).coef<<"x^"<<(p->data).exp;}p=p->next;}}cout<<endl;}/*把一个链表的内容复制给另一个链表*/void CopyLink(Link &pc,Link pa){Link p,q,r;pc=new LNode;pc->next=NULL;r=pc;p=pa;while(p->next!=NULL){q=new LNode;q->data.coef=p->next->data.coef;q->data.exp=p->next->data.exp;r->next=q;q->next=NULL;r=q;p=p->next;}}/*将两个一元多项式相加*/void PolyAdd(Link &pc,Link pa,Link pb){Link p1,p2,p,pd;CopyLink(p1,pa);CopyLink(p2,pb);pc=new LNode;pc->next=NULL;p=pc;p1=p1->next;p2=p2->next;while(p1!=NULL&&p2!=NULL){if(p1->data.exp<p2->data.exp){p->next=p1;p=p->next;p1=p1->next;}else if(p1->data.exp>p2->data.exp){p->next=p2;p=p->next;p2=p2->next;}else{p1->data.coef=p1->data.coef+p2->data.coef;if(p1->data.coef!=0){p->next=p1;p=p->next;p1=p1->next;p2=p2->next;}else{pd=p1;p1=p1->next;p2=p2->next;delete pd;}}}if(p1!=NULL){p->next=p1;}if(p2!=NULL){p->next=p2;}}/*将两个多项式相减*/void PolySubstract(Link &pc,Link pa,Link pb) {Link p,pt;CopyLink(pt,pb);p=pt;while(p!=NULL){(p->data).coef=(-(p->data).coef);p=p->next;}PolyAdd(pc,pa,pt);DestroyLink(pt);}//清屏函数void Clear(){system("pause");system("cls");}/*将两个一元多项式相乘*/void PolyMultiply(Link &pc,Link pa,Link pb) {Link p1,p2,p,pd,newp,t;pc=new LNode;pc->next=NULL;p1=pa->next;p2=pb->next;while(p1!=NULL){pd=new LNode;pd->next=NULL;p=new LNode;p->next=NULL;t=p;while(p2){newp=new LNode;newp->next=NULL;newp->data.coef=p1->data.coef*p2->data.coef;newp->data.exp=p1->data.exp+p2->data.exp;t->next=newp;t=t->next;p2=p2->next;}PolyAdd(pd,pc,p);CopyLink(pc,pd);p1=p1->next;p2=pb->next;DestroyLink(p);DestroyLink(pd);}}//菜单函数void Menu(){cout<<""<<endl;cout<<endl;cout<<"\t=========================一元多项式的简单运算========================="<<endl;cout<<"\t\t\t\t\t\t\t\t "<<endl;cout<<"\t\t\t [1] 创建要运算的两个一元多项式\t\t "<<endl; cout<<"\t\t\t [2] 将两个一元多项式相加\t\t\t "<<endl; cout<<"\t\t\t [3] 将两个一元多项式相减\t\t\t "<<endl; cout<<"\t\t\t [4] 将两个一元多项式相乘\t\t\t "<<endl; cout<<"\t\t\t [5] 显示两个一元多项式\t\t\t "<<endl;cout<<"\t\t\t [6] 销毁所创建的二个多项式\t\t "<<endl; cout<<"\t\t\t [7] 退出\t\t\t\t\t "<<endl;cout<<"\t\t\t\t\t\t\t\t "<<endl;cout<<"\t=========================一元多项式的简单运算========================="<<endl;cout<<endl;cout<<"\t\t 请选择:";}//判断输入的整数是不是为到的数字int CompareIfNum(int i){if(i>0&&i<8)return 0;else return 1;}void main(){{system("color b");//system("pause");system("color a");//system("pause");}int n;Link L,La=NULL,Lb=NULL;//La,Lb分别为创建的两个多项式int choose;while(1){Menu(); //调用菜单函数cin>>choose;switch(choose){case 1:cout<<"请输入你要运算的第一个一元多项式的项数:"<<endl; cin>>n;if(CompareIfNum(n)==1){cout<<"您的输入有误,请重新输入……"<<endl;Clear();break;}CreateLink(La,n);cout<<"请输入你要运算的第二个一元多项式的项数:"<<endl; cin>>n;if(CompareIfNum(n)==1){cout<<"您的输入有误,请重新输入……"<<endl;Clear();break;}CreateLink(Lb,n);Clear();break;case 2:if(La==NULL||Lb==NULL){cout<<"您的多项式创建有误,请重新选择……"<<endl; Clear();break;}PolyAdd(L,La,Lb);cout<<""<<endl;cout<<"待相加的两个一元多项式为:"<<endl;cout<<""<<endl;cout<<"A的多项式为:";PrintList(La);cout<<""<<endl;cout<<"B的多项式为:";PrintList(Lb);cout<<""<<endl;cout<<"相加后的结果为:";PrintList(L);cout<<""<<endl;Clear();DestroyLink(L);break;case 3:if(La==NULL||Lb==NULL){cout<<"您的多项式创建有误,请重新选择……"<<endl; Clear();break;}PolySubstract(L,La,Lb);cout<<"相减的两个一元多项式为:"<<endl;cout<<""<<endl;cout<<"A的多项式为:";PrintList(La);cout<<""<<endl;cout<<"B的多项式为:";PrintList(Lb);cout<<""<<endl;cout<<"相减后的结果为:";PrintList(L);cout<<""<<endl;Clear();DestroyLink(L);break;case 4:if(La==NULL||Lb==NULL){cout<<"您的多项式创建有误,请重新选择……"<<endl; Clear();break;}PolyMultiply(L,La,Lb);cout<<"相乘的两个一元多项式为:"<<endl;cout<<""<<endl;cout<<"A的多项式为:";PrintList(La);cout<<""<<endl;cout<<"B的多项式为:";PrintList(Lb);cout<<""<<endl;cout<<"相乘后的结果为:";PrintList(L);DestroyLink(L);cout<<""<<endl;Clear();break;case 5:if(La==NULL||Lb==NULL){cout<<"您的多项式创建有误,请重新选择……"<<endl; Clear();break;}cout<<"一元多项式A为:"<<endl;PrintList(La);cout<<""<<endl;cout<<"一元多项式B为:"<<endl;PrintList(Lb);cout<<""<<endl;Clear();break;case 6:if(La&&Lb){DestroyLink(La);DestroyLink(Lb);cout<<"多项式销毁成功!"<<endl;Clear();}else{cout<<"多项式不存在,请重新选择^^^"<<endl;Clear();}break;case 7:exit(0); //exit(0)强制终止程序,返回状态码表示正常结束default:cout<<"您的输入有误,请重新选择操作……"<<endl;Clear();break;}}}。
题目:编制一个一元多项式基本运算的程序姓名: 学号:PB110130一、需求分析1.在通常的应用中,多项式的次数可能很高且变化很大,使得顺序存储结构的最大长度很难确定。
由稀疏多项式的特点,故采用链式存储结构,可以不会带来浪费存储空间。
2.程序中单链表存储,根据链表的指数域,对链表进行升序排序,可给运算带来方便。
3.程序设计是在VC6.0环境下设计的的。
4.程序执行的命令为(程序主界面):二、概要设计抽象数据类型一元多项式的定义如下:1.LNode *MakeNode(double coef, int exp) 通过传入指数和系数创建一个节点,返回该节点的地址。
2.void InitList(LinkList &L)初始化,带头节点3.void PrintPolyn (LinkList L) 传入链表的指针,打印该链表4.LinkList CreatPolyn(void)//输入m项的系数和指数,建立表示一元多项式的有序链表L5.double SumPolyn(LinkList L,double x) 传入链表的指针及x值,求多项式的值。
6.void DestroyPolyn (LinkList &L) 销毁多项式,去掉头节点7.void ClearPolyn (LinkList &L) 清空多项式,保留节点实验报告8.void CopyPolyn (LinkList La,LinkList &Lb) 将La位置的多项式复制到Lb位置9.void AddPolyn(LinkList L,LinkList J ,LinkList &K) 将a和b多项式相加存到c10.void MultiplyPolyn(LinkList L,LinkList J,LinkList &K)将a和b相减存到c11. void MultiplyPolyn(LinkList L,LinkList J,LinkList &K)将a和b多项式相乘存到c12。
1、课程设计目的1.1、本次课程设计的主要目的是设计一个一元多项式简单计算器,体会链式存存储结构和顺序存储结构各自的优缺点和适用性;1.2、了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力;1.3、初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技1.4、提高综合运用所学的理论知识和方法独立分析和解决问题的能力;1.5、加深对常用数据结构的理解,强化学生的逻辑思维能力和动手能力,巩固良好的编程习惯,掌握工程软件设计的基本方法,为后续课程的学习打下坚实基础。
2、课程设计的准备和功能要求2.1、需求环境本课程设计需要的设备为硬件要求和软件配置要求具体要求如下:①硬件要求:一台计算机。
②软件配置:windows XP或windows 7、VC++6.0。
2.2、目标程序的功能要求集合链式存储结构和顺序存储结构实现一元多项式计算器的设计,并使该计算器具有以下功能:①能够按照多项式变量的指数降序创建一个多项式;②能够对已创建的多项式进行显示;③能够对已创建的多项式之间的加法运算;④能够对已创建的多项式之间的减法运算;⑤能够对已创建的多项式进行删除;⑥能够实现计算器退出操作;2.3、系统总框图3、课程设计过程3.1、菜单界面设计考虑到计算器的操作应具备简易性,我们采取用户和计算机的对话方式执行,即程序运行时,在计算机终端上显示该计算器的功能 菜单栏,其中包括对应的选项共用户选择输入;当用户根据选项中的“提示信息”在键盘上输入多项式的项数及各项的系数和指数,然后 进行显示、相加运算、相减运算、多项式删除以及计算器退出操作。
如下所示:用户菜单多项式的显示多项式的相加多项式的相减多项式的删除退出 菜单多项式的建立3.2、菜单选项的实现对于计算器菜单中各选项的设计处理,我们采用了switch (menu) 语句并将各选项前的数字定义为字符型。
然后根据所输入的不同的memu列出对应的6种case分支情况。
1.一元稀疏多项式简单的计算器(实验类型:综合型)1)问题描述:用线性表表示一元稀疏多项式,设计一个一元多项式运算器2)实验要求:✧采用单链表存储结构一元稀疏多项式✧输入并建立多项式✧输出多项式✧实现多项式加、减运算3) 实现提示:以两个多项式相加为例✧结果多项式另存✧扫描两个相加多项式,若都未检测完:⏹若当前被检测项指数相等,系数相加,若结果未变成0,则将结果插入到结果多项式。
⏹若当前被检测项指数不等,则将指数较小者插入到结果多项式。
若有一个多项式已检测完,则将另一个多项式剩余部分直接连接到结果多项式。
4.一元稀疏多项式简单的计算器(实验类型:综合型)#include<stdio.h>#include<stdlib.h>typedef struct{float coef;//系数int expn;//指数} Term;typedef struct ploynomial{Term term;ploynomial* next;} ploynomial,*LinkList;void InitList(LinkList&L){//初始化链表L= (ploynomial*)malloc(sizeof(ploynomial));//头结点L->term.coef=0.0;L->term.expn=-1; L->next=NULL;}int cmp(Term a,Term b){//比较结点的系数大小函数if(a.expn>b.expn) return -1;else if(a.expn==b.expn) return 0; else return 1;}void insertNode(LinkList&L,Term e){//将结点插入多项式链表的适当位置,可以同时起到创建链表和多项式相加的功能ploynomial* q=L;while(q->next!=NULL){if(cmp(q->next->term,e)<0)//如果当前结点q的下一个结点的指数大于要插入的结点的指数q=q->next;//q指向下一个结点else break;//此时,q.term.expn>e.expn>=q->next->term.expn }if(q->next!=NULL&&cmp(q->next->term,e)==0) //指数相同,系数相加{q->next->term.coef+=e.coef;}else{ploynomial* node =(ploynomial*) malloc(sizeof(ploynomial));node->term.coef=e.coef;node->term.expn=e.expn;if(q->next==NULL)node->next=NULL; //如果q结点为尾结点,则node的指针域设为NULLelsenode->next=q->next; //否则node的指针域指向q的下一个结点q->next=node;//将node结点插入链表中}}void CreatPolyn(LinkList&L,int m){//输入m项的系数和指数,建立表示一元多项式的有序链表L Term e;InitList(L);for(int i=1; i<=m; i++){printf("\n第%d项的系数和指数:",i);scanf("%f%d",&e.coef,&e.expn);insertNode(L,e);}}void addPolyn(LinkList&L,LinkList L1,LinkList L2){//用L返回L1+L2的结果ploynomial* q;for(q=L1->next; q!=NULL; q=q->next){insertNode(L,q->term);//将L1的每一项插入到L中}for(q=L2->next; q!=NULL; q=q->next) //将L2的每一项插入到L 中{insertNode(L,q->term);}}void SubtracatPolyn(LinkList&L,LinkList L1,LinkList L2){//用L返回L1-L2的结果ploynomial* q;for(q=L1->next; q!=NULL; q=q->next){insertNode(L,q->term);//将L1的每一项插入到L中}for(q=L2->next; q!=NULL; q=q->next){q->term.coef = -(q->term.coef); //把系数变成相反数,再进行相加操作,即为L1-L2insertNode(L,q->term);//将L2的每一项插入到L中}}void multiplyPolyn(LinkList&L,LinkList L1,LinkList L2) {//用L返回L1*L2的结果ploynomial *p,*q;Term term;term.coef=0.0;term.expn=0;for(q=L1->next; q!=NULL; q=q->next){for(p=L2->next; p!=NULL; p=p->next){term.coef=(q->term.coef)*(p->term.coef);//系数相乘term.expn=(q->term.expn)+(p->term.expn);// 指数想加insertNode(L,term);}}}void derivativePolyn(LinkList&L,LinkList L1){//用L返回L1的导数ploynomial *p;Term term;for(p=L1->next; p!=NULL; p=p->next){if(p->term.expn==0){ continue;//指数为0时,导数为0 ,跳过此次循环}else{ term.coef=(p->term.coef)*(p->term.expn); //系数乘以指数term.expn=(p->term.expn)-1;//指数减一insertNode(L,term);}}}void visitList(LinkList L){//以类数学表达式的形式打印输出一元多项式L,//即指数或者系数为1的情况下省略1ploynomial* q=L;int flag;while(q->next!=NULL){q=q->next;flag=1;if(q->term.coef==0) continue;//系数为0 不输出if(q->term.expn==0&&flag==1) //指数为1{if(q->term.coef>0)printf("+%.2f",q->term.coef);elseprintf("%.2f",q->term.coef);flag=0;}if((q->term.coef==1||q->term.coef==-1)&&flag==1)//系数为1{if(q->term.expn==1){ if(q->term.coef==1)printf("+X"); elseprintf("-X");}else{if(q->term.coef==1)printf("+X^%d",q->term.expn); elseprintf("-X^%d",q->term.expn); } flag=0;}if(flag==1){ if(q->term.coef>0)printf("+%.2fX^%d",q->term.coef,q->term.expn);elseprintf("%.2fX^%d",q->term.coef,q->term.expn);} } printf("\n");}int main(){LinkList L1,L2; int n1,n2;printf("请输入多项式L1的项数:");scanf("%d",&n1);CreatPolyn(L1,n1);printf("请输入多项式L2的项数:");scanf("%d",&n2);CreatPolyn(L2,n2);printf("\n多项式L1:");visitList(L1);printf("\n多项式L2: ");visitList(L2);LinkListadd,sub,multiply,derivative1,derivative2;InitList(ad d);InitList(sub);InitList(multiply);InitList(derivative1);InitList(derivative2);derivativePol yn(derivative1,L1);derivativePolyn(derivative2,L2);printf("\nL1的导数:");visitList(derivative1);printf("\nL2的导数:");visitList(derivative2);addPolyn(add,L1,L2);SubtracatPolyn(sub,L1,L2);multiplyPolyn(multiply ,L1,L2);printf("\nL1 + L2: ");visitList(add);printf("\nL1 - L2: ");visitList(sub);printf("\nL1 * L2: ");visitList(multiply);}实验心得:无。
2016-2017学年第二学期学号1608220203 《网络工程》课程设计报告题目:一元稀疏多项式计算器专业:网络工程班级:网络工程(3)班姓名:代应豪指导教师:代美丽成绩:[键入文字] [键入文字] [键入文字]一、问题描述 (3)二、需求分析 (3)三、概要设计 (4)四、详细设计 (5)五、源代码 (6)六、程序测试 (19)七、使用说明 (25)八、课设总结 (26)一、问题描述1.1基本要求(1)输入并建立多项式;(2)输出多项式,输出形式为整数序列:n,c1,e1, c2,e2,,,,,,, cn,en,其中n 是多项式的项数,ci,ei,分别是第i项的系数和指数,序列按指数降序排序;(3)多项式a和b相加,建立多项式a+b;(4)多项式a和b相减,建立多项式a-b;(5)计算多项式在x处的值。
(6)计算器的仿真界面。
1.2设计目的数据结构是实践性很强的课程。
课程设计是加强学生实践能力的一个强有力手段。
课程设计要求学生在完成程序设计的同时能够写出比较规范的设计报告。
严格实施课程设计这一环节,对于学生基本程序设计素养的培养和软件工作者工作作风的训练,将起到显著的促进作用二、需求分析2.1设计开发环境:软件方面:系统windows 7编程软件:VC++ 6.02.2思路分析:①一般情况下的一元n次多项式可写成pn(x)=p1xe1+p2xe2+……+pmxem其中,p1是指数为ei的项的非零系数,且满足0≦e1<e2<……<em=n ,若用一个长度为m且每个元素有两个数据项(系数项和指数项)的线性表((p1,e1),(p2,e2),……,(pm,em))便可惟一确定多项式pn(x)。
②用两个带表头结点的单链表分别存储两个多项式③根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应系数相加,若其和不为零,则构成“和多项式”中的一项;④只需要将第二个多项式的系数改为其相反数,然后根据一元多项式相加的运算规则便可以得到其相应的“差多项式”三、概要设计图3-1功能模块图为实现上述程序功能,用带表头结点的单链表存储多项式。
课程设计(论文)任务书一、课程设计(论文)题目一元多项式计算器二、课程设计(论文)工作自2011 年 12 月 26 日起至 2011 年 12 月 30 日止三、课程设计(论文) 地点: 创新大楼机房四、课程设计(论文)内容要求:1.本课程设计的目的⑴训练学生灵活应用所学数据结构知识,独立完成问题分析,结合数据结构理论知识,编写程序求解指定问题;⑵初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能;⑶提高综合运用所学的理论知识和方法独立分析和解决问题的能力,巩固、深化学生的理论知识,提升编程水平。
2.课程设计的任务及要求1)基本要求:⑴要求从分析题目的需求入手,按设计抽象数据类型、构思算法、通过设计实现抽象数据类型、编写上机程序和上机调试等若干步骤完成题目,最终写出完整的报告;⑵在程序设计阶段应尽量利用已有的标准函数,加大代码的重用率;⑶程序设计语言推荐使用C/C++,程序书写规范,源程序需加必要的注释;⑷每位同学需提交可独立运行的程序和规范的课程设计报告。
2)课程设计论文编写要求⑴理论设计部分以课程设计论文的形式提交,格式必须按照课程设计论文标准格式进行书写和装订;⑵课程设计报告(论文)包括中文目录、设计任务、需求分析、概要设计、详细设计、编码实现、调试分析、课设总结、谢辞、参考文献、附录等;⑶设计部分应包含系统功能模块图,调试分析应包括运行截图等。
3)课程设计评分标准:⑴学习态度:10分;⑵系统设计:20分;⑶编程调试:20分;⑷回答问题:20分;⑸论文撰写:30分。
4)参考文献:⑴严蔚敏,吴伟民. 数据结构(C语言版)[M]. 清华大学出版社. 2010.3⑵严蔚敏,吴伟民. 数据结构题集(C语言版)[M]. 清华大学出版社. 1999.2⑶何钦铭,冯燕等. 数据结构课程设计[M]. 浙江大学出版社. 2007.85)课程设计进度安排⑴准备阶段(4学时):选择设计题目、了解设计目的要求、查阅相关资料;⑵程序模块设计分析阶段(4学时):程序概要设计、详细设计;⑶代码编写调试阶段(8学时):程序模块代码编写、调试、测试;⑷撰写论文阶段(4学时):总结课程设计任务和设计内容,撰写课程设计论文。
一元稀疏多项式计算器实验报告级班年月日学号_1.实验题目设计一个一元稀疏多项式简单计算器。
2.需求分析本程序用VC编写,实现一元浮点系数,整数指数稀疏多项式的创建、两个一元多项式相加、两个一元多项式相减、输出一元多项式。
①输入的形式和输入值的围:A.输入指定的数字,以此选择两个多项式的运算方式,运算方式有两个一元多项式相加、两个一元多项式相减。
B.创建多项式时,需要输入此多项式,每一项的系数和指数。
②输出的形式:每次输入一个完整的多项式后、每次得出多项式运算结果时,会以指定的方式输出多项式。
③程序所能达到的功能:实现一元稀疏多项式的创建、两个一元多项式相加、两个一元多项式相减、输出一元多项式。
④测试数据:输入数据:A.出现选择两个多项式的运算方式菜单时,输入1(即使两个多项式相加);B.首先输入多项式p的每一项系数和指数,当输入的指数为-5000时,表示该多项式输入完毕,输入的数据依次为:3,3,0,-5000;C.其次输入多项式q的每一项系数和指数,输入数据依次为:2,2,0,-5000。
输出结果:多项式q+p的结果为:多项式为:3x3+2x23.概要设计1)为了实现上述程序功能,需要定义多项式结点的抽象数据类型:class Term{数据对象:float coef; 该数据对象为多项式一项中的系数。
int exp; 该数据对象为多项式一项中的指数。
Term* link; 该数据对象为指向下一个多项式结点的指针。
基本操作:A. Term (float c, int e)初始条件:无操作结果:初始化多项式结点对象,将c赋值给该结点的数据成员coef(表示系数),将e赋值给该结点的数据成员exp(表示指数),将该结点的数据成员link赋值为0。
B.Term (float c, int e, Term* next)初始条件:无操作结果:初始化多项式结点对象,将c赋值给该结点的数据成员coef(表示系数),将e赋值给该结点的数据成员exp(表示指数),将next赋值给该结点的数据成员link(link表示指向下一个多项式结点的指针)。
1、课程设计目的1.1、本次课程设计的主要目的是设计一个一元多项式简单计算器,体会链式存存储结构和顺序存储结构各自的优缺点和适用性;1.2、了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力;1.3、初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技1.4、提高综合运用所学的理论知识和方法独立分析和解决问题的能力;1.5、加深对常用数据结构的理解,强化学生的逻辑思维能力和动手能力,巩固良好的编程习惯,掌握工程软件设计的基本方法,为后续课程的学习打下坚实基础。
2、课程设计的准备和功能要求2.1、需求环境本课程设计需要的设备为硬件要求和软件配置要求具体要求如下:①硬件要求:一台计算机。
②软件配置:windows XP或windows 7、VC++6.0。
2.2、目标程序的功能要求集合链式存储结构和顺序存储结构实现一元多项式计算器的设计,并使该计算器具有以下功能:①能够按照多项式变量的指数降序创建一个多项式;②能够对已创建的多项式进行显示;③能够对已创建的多项式之间的加法运算;④能够对已创建的多项式之间的减法运算;⑤能够对已创建的多项式进行删除;⑥能够实现计算器退出操作;2.3、系统总框图3、课程设计过程3.1、菜单界面设计考虑到计算器的操作应具备简易性,我们采取用户和计算机的对话方式执行,即程序运行时,在计算机终端上显示该计算器的功能 菜单栏,其中包括对应的选项共用户选择输入;当用户根据选项中的“提示信息”在键盘上输入多项式的项数及各项的系数和指数,然后 进行显示、相加运算、相减运算、多项式删除以及计算器退出操作。
如下所示:用户菜单多项式的显示多项式的相加多项式的相减多项式的删除退出 菜单多项式的建立3.2、菜单选项的实现对于计算器菜单中各选项的设计处理,我们采用了switch (menu) 语句并将各选项前的数字定义为字符型。
然后根据所输入的不同的memu列出对应的6种case分支情况。
3.3、数据类型和数据存储结构的选择(1)结构体:当许多项都与某一项相关联时(如本程序:多项式的项数,项的系数和指数都与某多项式的名称有关联),如果将系数,指数分别定义为互相独立的简单变量,则难以反映他们之间的关系,于是便利用数据结构中的结构体把他们组织成一个组合项,这种方法相当于高级语言的“记录”。
其中,声明一个结构体类型的一般形式为:typedef struct PolyNode{float coef;(各项系数)int expn; (各项指数)struct PolyNode *next;(各项的后一项所对应的下一项的地址)};(2)指针数组:(顺序存储结构)考虑到指针数组比较适合用来指向若干个字符串,使字符串处理更加方便更加灵活,因此我们选择用顺序结构的指针数组来描述一个多项式。
分别定义一些多项式头指针而头指针后面可以根据需要创建并接上更多单项,如果想对已经创建的各个头指针进行随机存取,不必改动各头指针的位置,只需改动指针数组中各元素的指向(即改变各元素的值,这些值都是各头指针的首地址)。
这样,各多项式的长度可以不同,而且移动指针变量的值(地址)要比移动字符串所花的时间要少得多。
采用自定义类型typedef,同时建立一个新的结构体类型名和结构体指针类型名。
代码表示为:typedef struct PolyNode{float coef;int expn;PolyNode *next;}Poly,*P_Poly;定义结构体指针数组:P_Poly PolyHead[26]={0};//定义结构体指针数组,一元多项式的名称结构体指针数组的应用:READ_CHAR(name);printf (" *\n");if (NULL!=PolyHead[name-'a']) { //限制多项式名称只能为26个小写字母之一printf (" * 此多项式名不合法! *\n");break;}(3)线性链表线性表的链式存储结构的特点是用一组任意的存储单元存储线性表的数据元素(这存储单元可以是连续的,也可以是不连续的)。
用线性链表表示线性表的时候,数据元素之间的逻辑关系是由结点中的指针指示的。
也就是说,指针为数据元素中间的逻辑关系的映像,则逻辑上相邻的两个数据元素其存储的物理位置不要求相邻。
考虑到一元多项式的项数不确定性,我们放弃采用顺序结构线性表大量初始化存储单元的方式,而选择线性链表从而能够使设计的程序灵活的对多项式进行加项、减项、删除等操作。
实现代码如下:for (i=0;i<n;i++){p=(Poly*)malloc(sizeof(Poly)); //(创建新链结,添加新单项式) printf (" * 请输入第%d项(系数,指数)(输完按空格):",i+1);cscanf ("%f,%d",&(p->coef),&(p->expn));printf (" *");printf (" ");tail->next=p;tail=p;}3.4、多项式创建功能的设计(1)多项式创建功能的实现,采用函数:int CreatPoly(P_Poly*,int);(2)多项式输出功能的实现,采用函数:void OutP_Poly(P_Poly PolyHead)(3)求多项式和的功能的实现,采用函数:void AddPoly(P_Poly* P_PolyHead,P_Poly PolyHead1,P_Poly PolyHead2) (4)求多项式差的功能的实现,采用函数:void DecPoly(P_Poly* P_PolyHead,P_Poly PolyHead1,P_Poly PolyHead2) (5)删除多项式功能的实现,采用函数:void DelPoly(P_Poly* P_PolyHead)(6)计算器退出操作,实现代码:case '6': {tuichu=1;break; //选择退出***}}if(tuichu==1)break;}return OK;}4、程序设计问题的解决程序设计过程中遇到的*号输入问题case '1':{int n;printf (" * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n");printf (" * 请输入要创建的多项式的名称(单个小写字母表示)");cscanf("%c",&name);printf (" *\n");if (NULL!=PolyHead[name-'a']) //限制多项式名称只能为26个小写字母之一{printf (" * 此多项式名不合法! *\n");break;}printf (" * 请输入项数(输入数字后按空格):");cscanf ("%d",&n);printf (" *\n");if(CreatPoly(&PolyHead[name-'a'],n))printf (" * 多项式%c创建完毕! *\n",name);printf (" * * * * * * * * * * * * * * * * * ** * * * * * * * * * *\n");break;}case '2':{printf (" * * * * * * * * * * * * * * * * * * ** * * * * * * * * *\n");printf (" * 请输入要输出的多项式的名称:");cscanf("%c",&name);printf (" *\n");printf (" * * * * * * * * * * * * * * * * * ** * * * * * * * * * *\n");if (NULL==PolyHead[name-'a']){printf ("此多项式不存在!\n");break;}OutP_Poly(PolyHead[name-'a']);break;}4.1、按照我们的设计方案,该多项式计算器的菜单栏是被我们用多个*号框起来显示的,而同时我们也试图在选定每一个菜单选项后所出现的该选项的下一步输入提示(以及提示后的输入)也会被自动包含在*型框中。
但是如果在出现下一步输入提示后,当代码采用READ(name)替代上文代码中的cscanf("%c",&name);输入时,输入后会出现自动换行,而不能将输入数据也包含在*型框中,如:所以为解决这个问题我们通过网络找到了cscanf函数并改用:cscanf("%c",&name);这样上面的问题得到解决。
4.2、但是这样新的问题又出现了。
采用cscanf函数后当执行菜单选项1,创建完成一个多项式后,下一步菜单操作的执行中无论选择那个操作选项,运行操作会自动跳过cscanf操作,而出现乱码输出,但是接下来继续从菜单中选择操作选项后却可以顺利执行出来。
如:情况一,继续再次操作2却可以顺利进行:情况二类似:首先创建好一个多项式后,再创建一个则出现:No:10总之,问题就是:只有当创建完第一个多项式后,接下来的第一个操作中的cscanf函数会被跳过,但是继续选择菜单操作则不再出现。
这就是我们一直苦恼的地方。
为了解决这个问题,我们通过资料查找和咨询老师,最后得出问题的症结在于:因为宏定义RADE()中的getchar函数是从stdio读数据,而cscanf是从console 读数据,混合使用出现了问题。
因而我们通过建立一个新函数:void READ_CHAR (char& c){do{cscanf("%c",&c);}while(c=='\n' || c==' ' || c=='\t');}在case2 中读入字符的地方都调用函数READ_CHAR(name)代替cscanf("%c",&name); ,以去掉空白符。