固相微萃取
- 格式:ppt
- 大小:2.06 MB
- 文档页数:22
固相微萃取操作步骤嘿,朋友们!今天咱来聊聊固相微萃取的操作步骤,这可是个有趣又实用的玩意儿呢!首先,你得准备好所有要用的东西,就像要出门得先把鞋穿上一样。
固相微萃取装置那肯定是不能少的啦,还有样品、萃取头啥的。
然后呢,就该让萃取头闪亮登场啦!把它插进装置里,就像给战士配上武器一样重要。
这萃取头可是有大用场的,它就像个小魔术棒,能把那些我们想要的东西给“变”出来。
接着,把带着萃取头的装置伸向样品,就像老鹰捉小鸡一样,要快、准、狠!让萃取头和样品来个亲密接触,让它们好好地“交流”一下。
这时候你就想象,萃取头在努力地工作,把那些有用的成分一点点地“揪”出来。
等它们“交流”够了,就该把萃取头收回来啦。
这就好比满载而归的渔夫,带着满满的收获回到岸边。
这还没完呢,接下来还得把萃取头放到分析仪器里,让那些被萃取出来的东西“现身”。
这就像是一场盛大的魔术表演,到了最后揭开谜底的时候,让人充满期待。
你可别小看这固相微萃取的操作步骤,每一步都得小心翼翼,就像走钢丝一样。
要是哪一步出了差错,那可就前功尽弃啦,就跟盖房子没打好地基一样。
比如说,要是萃取头没插好,那不就像战士没拿稳武器,还怎么打仗呀?再比如,和样品接触的时候不够认真,那能“揪”到多少有用的成分呢?所以说呀,做这个固相微萃取可不能马虎,得认真对待每一个细节。
这就跟做饭一样,调料放多放少味道可就不一样啦。
总之呢,固相微萃取的操作步骤虽然不复杂,但也得用心去做。
只有这样,才能让它发挥出最大的作用,给我们带来想要的结果。
大家可都要记住啦!。
色谱科Supelco固相微萃取一、概述色谱科(Supelco)是美国Sigma-Aldrich公司旗下的一个部门,主要致力于提供高质量的色谱产品和技术解决方案。
在色谱科的产品线中,固相微萃取(Solid Phase Microextraction, SPME)是一项重要的技术。
本文将对色谱科Supelco固相微萃取技术进行介绍,以及其在实际应用中的优势和发展前景。
二、固相微萃取概述1. 定义:固相微萃取是一种基于吸附分离原理的前处理技术,利用固相微萃取针(SPME fiber)将目标物质浓缩在针端上,达到富集和分离的作用。
2. 原理:SPME技术主要依赖于固相萃取材料对目标化合物的亲和力,通过吸附和解吸过程实现分析物质的富集和提取。
3. 类型:根据不同的固相材料和萃取方式,固相微萃取可分为直接固相微萃取、头空间固相微萃取、固相柱微萃取等不同类型。
三、色谱科Supelco固相微萃取技术1. 产品线:色谱科Supelco在固相微萃取领域拥有多种产品,包括SPME fiber、SPME针、SPME萃取仪等,涵盖了不同应用需求。
2. 技术优势:a. 高选择性:SPME fiber材料具有不同的亲和性,可选择性地提取目标化合物,减少干扰物质的干扰。
b. 高灵敏度:SPME技术能够将目标物质集中在针端,使样品预处理更为简化,提高了后续分析的灵敏度。
c. 环保节能:SPME技术可以在无需有机溶剂的情况下完成萃取和浓缩,符合绿色分析化学的发展理念。
3. 应用领域:色谱科Supelco固相微萃取技术在环境监测、食品安全、生物医学、药物分析等领域得到了广泛的应用,并取得了显著的效果。
四、色谱科Supelco固相微萃取技术的发展前景1. 技术改进:随着色谱科Supelco在固相微萃取领域的持续投入,技术不断改进,产品性能和稳定性得到了提升。
2. 专业定制:色谱科Supelco可以根据客户的具体需求,提供个性化的固相微萃取解决方案,满足复杂样品分析的要求。
固相萃取和固相微萃取一、概述固相萃取(SPE)和固相微萃取(SPME)是两种常见的样品前处理技术,它们可以用于分离和富集目标化合物。
SPE通常用于大样品量的分析,而SPME则适用于小样品量的分析。
二、固相萃取1. 原理固相萃取是一种样品前处理技术,通过将目标化合物从复杂的混合物中吸附到特定的固相材料上,然后再用洗脱剂将其洗脱出来。
这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。
2. 步骤(1)选择适当的固相材料;(2)将样品加入到固相柱中;(3)用洗脱剂洗脱目标化合物;(4)将洗脱液收集并进行进一步分析。
3. 固相材料常见的固相材料包括C18、C8、Silica gel等。
不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。
4. 应用领域SPE广泛应用于环境、食品、药物等领域的样品前处理中。
例如,可以用SPE技术来富集水中的有机污染物、食品中的农药残留等。
三、固相微萃取1. 原理固相微萃取是一种无机溶剂的萃取技术,通过将特定的固相材料包裹在针头上,然后将其插入样品中进行吸附和富集目标化合物。
这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。
2. 步骤(1)选择适当的固相材料;(2)将固相材料包裹在针头上;(3)将针头插入样品中进行吸附和富集目标化合物;(4)用洗脱剂洗脱目标化合物;(5)将洗脱液收集并进行进一步分析。
3. 固相材料常见的固相材料包括PDMS、CAR等。
不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。
4. 应用领域SPME广泛应用于环境、食品、药物等领域的样品前处理中。
例如,可以用SPME技术来富集水中的有机污染物、食品中的农药残留等。
四、比较1. 样品量SPE适用于大样品量的分析,而SPME则适用于小样品量的分析。
2. 富集效率SPE和SPME都可以有效地去除其他干扰物质,并提高目标化合物的浓度。
固相微萃取固相微萃取(Solid-Phase Microextraction,SPME)是在固相萃取基础上发展起来的,保留了其所有的优点,摒弃了其需要柱填充物和使用溶剂进行解吸的弊病,它只要一支类似进样器的固相微萃取装置即可完成全部前处理和进样工作。
该装置针头内有一伸缩杆,上连有一根熔融石英纤维,其表面涂有色谱固定相,一般情况下熔融石英纤维隐藏于针头内,需要时可推动进样器推杆使石英纤维从针头内伸出。
分析时先将试样放入带隔膜塞的固相微萃取专用容器中,如需要同时加入无机盐、衍生剂或对pH值进行调节,还可加热或磁力转子搅拌。
固相微萃取分为两步,第一步是萃取,将针头插入试样容器中,推出石英纤维对试样中的分析组分进行萃取;第二步是在进样过程中将针头插入色谱进样器,推出石英纤维中完成解吸、色谱分析等步骤。
固相微萃取的萃取方式有两种:一种是石英纤维直接插入试样中进行萃取,适用于气体与液体中的分析组分;另一种是顶空萃取,适用于所有基质的试样中挥发性、半挥发性分析组分。
1.原理固相微萃取主要针对有机物进行分析,根据有机物与溶剂之间“相似者相溶”的原则,利用石英纤维表面的色谱固定相对分析组分的吸附作用,将组分从试样基质中萃取出来,并逐渐富集,完成试样前处理过程。
在进样过程中,利用气相色谱进样器的高温,液相色谱、毛细管电泳的流动相将吸附的组分从固定相中解吸下来,由色谱仪进行分析。
2.固相微萃取技术条件的选择2.1.萃取效果影响因素的选择2.1.1.纤维表面固定相选用何种固定相应当综合考虑分析组分在各相中的分配系数、极性与沸点,根据“相似者相溶”的原则,选取最适合分析组分的固定相。
还需考虑石英纤维表面固定相的体积,即石英纤维长度和涂层膜厚,如非特殊定做,一般石英纤维长度为1 cm,膜的厚度通常在10~100 mm之间,小分子或挥发性物质常用厚膜,大分子或半挥发性物质常用薄膜,综合考虑试样的挥发性还可选择中等厚度。
具体选择可以查阅有关文献并需要结合试样情况进行摸索。
固相萃取分类固相萃取(Solid-phase extraction,简称SPE)是一种常用的样品前处理方法,广泛应用于化学分析、环境监测、食品安全等领域。
它通过将待分析样品中的目标化合物吸附到固定相上,再用洗脱剂将目标化合物从固相上洗脱下来,从而实现对目标化合物的分离和富集。
固相萃取的分类主要包括以下几种:1. 正相固相萃取(Normal phase solid-phase extraction):正相固相萃取是指固定相表面具有极性官能团,适用于极性化合物的富集。
常用的固定相材料包括硅胶、氨基硅胶等。
正相固相萃取的原理是通过样品溶剂与固定相之间的亲和作用,使样品中的目标化合物在固定相上发生吸附。
随后,使用洗脱剂将目标化合物从固定相上洗脱下来。
2. 反相固相萃取(Reverse phase solid-phase extraction):反相固相萃取是指固定相表面具有疏水性官能团,适用于非极性或疏水性化合物的富集。
常用的固定相材料包括C18、C8等疏水性材料。
反相固相萃取的原理是通过样品溶剂与固定相之间的疏水作用,使样品中的目标化合物在固定相上发生吸附。
随后,使用洗脱剂将目标化合物从固定相上洗脱下来。
3. 混合模式固相萃取(Mixed-mode solid-phase extraction):混合模式固相萃取是指固定相表面同时具有正相和反相性质的官能团,适用于同时富集极性和非极性化合物的样品。
通过在固定相上引入具有不同官能团的化合物,可以实现对不同性质的化合物的选择性富集。
4. 选择性固相萃取(Selective solid-phase extraction):选择性固相萃取是指通过选择特定的固定相材料或添加适当的修饰剂,实现对特定化合物的选择性富集。
常用的选择性固相萃取方法包括分子印迹固相萃取、固相微萃取等。
分子印迹固相萃取通过在固相上引入与目标化合物具有亲和性的模板分子,实现对目标化合物的高选择性富集。
固相微萃取法固相微萃取法是一种新型的样品前处理技术,它将传统的液液萃取方法简化为一步操作,具有操作简便、时间短、灵敏度高、选择性好等优点。
本文将从以下几个方面详细介绍固相微萃取法。
一、固相微萃取法的基本原理固相微萃取法是利用固定在小柱或膜上的吸附剂对样品中的目标物进行富集和分离。
其基本原理是,将样品溶解于适当的溶剂中,通过注射器或自动进样器将样品进入吸附柱或吸附膜中,在适当条件下使目标物质被吸附在柱或膜上,然后用洗脱剂将目标物质洗出,并进行分析。
二、固相微萃取法的优点1. 操作简便:只需将样品加入到吸附柱或膜中即可完成富集和分离过程,省去了传统液液萃取方法复杂的步骤。
2. 时间短:整个富集和分离过程只需几分钟至几十分钟不等。
3. 灵敏度高:由于富集的目标物质被高度净化和富集,所以检测灵敏度得到大幅提高。
4. 选择性好:通过选择不同的吸附剂,可以实现对不同化合物的选择性富集和分离。
5. 可靠性高:固相微萃取法不受样品矩阵的影响,因此在复杂矩阵中也能实现目标物质的富集和分离。
三、固相微萃取法的应用1. 环境监测:固相微萃取法可用于水、土壤、空气等环境样品中有机污染物的富集和分离。
2. 食品安全:固相微萃取法可用于食品中农药、兽药、食品添加剂等有害物质的检测。
3. 药物分析:固相微萃取法可用于药物血浆、尿液等生物样品中药物代谢产物的富集和分离。
4. 化学分析:固相微萃取法可用于化学反应体系中产生的有机产物或催化剂残留等有害成分的富集和分离。
四、固相微萃取法与其他技术的比较1. 与传统液液萃取法相比,固相微萃取法操作简便、时间短、灵敏度高、选择性好。
2. 与固相萃取法相比,固相微萃取法使用的吸附剂量更少,富集时间更短,且不需要使用大量有机溶剂。
3. 与固相微萃取法相比,固相微萃取-气相色谱/质谱联用技术具有更高的灵敏度和更好的分离效果。
五、总结固相微萃取法作为一种新型的样品前处理技术,在环境监测、食品安全、药物分析、化学分析等领域得到了广泛应用。
固相萃取的概念、步骤和操作概念:利用固体吸附剂将样品中的目标分析物吸附,与样品的基质和干扰物分离,然后再用有机溶剂或加热解吸附,达到分离、纯化及浓缩目标物的目的。
固相萃取(SPE)是利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰化合物分离,然后再用洗脱液洗脱,达到分离和富集的目的。
先使液体样品通过一装有吸附剂(固相)小柱,保留其中某些组分,再选用适当的溶剂冲洗杂质,然后用少量溶剂迅速洗脱,从而达到快速分离净化与浓缩的目的。
SPE可以用于所有类型样品的处理,但是液体样品是最容易处理的与液液萃取(LLE)相比,固相萃取具有如下优点:①回收率和富集倍数高;②有机溶剂消耗量低,减少对环境的污染;③更有效的将分析物与干扰组分分离;④无相分离操作过程,容易收集分析物;⑤能处理小体积试样;⑥操作简便、快速,费用低,易于实现自动化及与其他分析仪器联用。
固相萃取的基本原理:吸附剂上的活性部分对目标物和样品基质的分子作用力存在差异固相萃取保留或洗脱的机制取决于被分析物与吸附剂表面的活性基团,以及被分析物与液相之间的分子作用力。
洗脱模式:一种是目标化合物比干扰物与吸附剂之间的亲和力更强,因而被保留,洗脱时采用对目标化合物亲和力更强的溶剂;另一种是干扰物比目标化合物与吸附剂之间的亲和力更强,则目标化合物被直接的洗脱。
通常采用前一种洗脱方式。
一、固相萃取的分离模式:反相固相萃取、正相固相萃取、离子交换萃取、免疫亲和1、反相固相萃取:吸附剂(固定相)是非极性或弱极性的,如硅胶键合C18, C8, C4,C2,-苯基等。
流动相为极性(水溶液)或中等极性样品基质。
吸附剂的极性小于洗脱液的极性。
应用:可以从强极性的溶剂中(如水样)萃取非极性或弱极性的化合物。
作用机理:非极性-非极性相互作用(疏水作用),如范德华力或色散力。
例如水中PAHs,利用C18柱,甲醇洗脱剂洗脱。
2、正相固相萃取:(1)吸附剂:极性键合相,如硅胶键合氨基-NH2、氰基-CN,-Diol(二醇基);(2)极性吸附剂,如silica、Florisil、(A-,N-,B-)alumina、硅藻土等。
说明液相微萃取和固相微萃取的主要相同之处和不同之处哎呀,今天我们来聊聊化学世界里的两个“小伙伴”:液相微萃取和固相微萃取。
这俩名字听上去是不是有点拗口?别急,咱们就把它们当成两个化学界的“好朋友”,坐下来慢慢聊聊它们的相同之处和不同之处。
别担心,我们不会用那些让人头疼的术语,而是用最简单的语言、最接地气的方式来讲清楚。
走,跟我一块儿探究这个话题吧!1. 一起看“兄弟俩”的相同之处1.1 都是萃取的一部分首先,液相微萃取(LPME)和固相微萃取(SPME)这俩家伙,都是萃取技术中的一员。
萃取呢,说白了,就是把想要的成分从复杂的混合物里提取出来的过程。
你可以把它们想象成厨房里的筛网,筛出你想要的细面粉或者香料。
液相微萃取就是在液体中进行这场“筛选”,而固相微萃取则是在固体中完成这项任务。
不过,尽管操作环境不同,它们的目标都是一样的:提取出你需要的成分,去除其他杂质。
1.2 都是非常细致的操作不管是液相还是固相微萃取,这俩小伙伴都有一个共同的特点,那就是它们都特别讲究“细致”。
换句话说,就是它们可以把极其微量的成分都挑选出来。
这就好比你在沙滩上找贝壳,即便有时候只有一两粒沙子中藏着漂亮的贝壳,这些萃取方法都能准确地把它们找出来。
所以说,无论你用的是哪种方法,它们都非常擅长处理复杂的样品,像个化学界的“显微镜”。
2. 液相微萃取和固相微萃取的差别在哪里呢?2.1 萃取的介质不同接下来,我们得聊聊这两个小伙伴的主要不同点。
首先就是它们萃取的介质完全不同。
液相微萃取,顾名思义,就是在液体里操作的。
想象一下,你把某种液体(比如饮料、药液)倒进一个容器里,然后用特制的液体做萃取,就像是把某种香料提取到饮料里去。
而固相微萃取呢,它是在固体中进行的。
比如说,你有一堆土壤或者植物样品,这时候固相微萃取就像是把这些固体样品中的有效成分给“挖掘”出来。
2.2 设备和操作的差异另外一个区别就是它们的设备和操作方式。
液相微萃取通常需要使用特制的液体萃取剂和一些专门的仪器,这些仪器就像是你的“化学工具箱”,能精准地进行操作。
固相微萃取原理与应用固相微萃取(SPME, solid-phase microextraction)是一种无溶剂、非破坏性的预处理技术,用于提取和浓缩分析样品中的目标化合物。
它采用了一种特殊的固相纤维,通常是聚二甲基硅氧烷(PDMS),将目标分析化合物从样品中以固相吸附的方式捕集起来。
其优点包括简便、快速、高效,可以应用于多种样品类型和化合物类别。
SPME的原理基于分配系数(partition coefficient)的概念。
分析目标物分布在气相、液相和固相之间,SPME纤维通过吸附和解吸过程在气相和固相之间平衡分配,实现了目标物从样品到纤维上的转移。
SPME的应用广泛涉及环境、食品、药物、生物、石油化工等领域。
例如在环境领域中,SPME可用于挥发性有机化合物(VOCs)和揮發性残留有机物(VROs)的分析。
在食品领域中,SPME被广泛应用于食品中的香气和风味分析,如葡萄酒、咖啡、奶制品等。
SPME的操作流程简单。
首先,选择合适的纤维类型和形式,比如直接插入纤维或通过样品瓶盖压合等方式使纤维与样品接触。
然后,通过吸附、温度控制、搅拌等条件,使目标化合物在固相纤维上固定。
最后,将纤维转移到分析设备中,如气相色谱(GC)、液相色谱(HPLC)等进行分析。
SPME的优点包括:1.无需溶剂:与传统的液液萃取相比,SPME不需使用有机溶剂,减少了对环境的污染。
2.非破坏性:SPME不需要破坏样品结构,适用于有限样品量或不可再生样品。
3.高灵敏度:SPME可实现对低浓度目标物的捕集和浓缩,提高了灵敏度。
4.快速:SPME操作简便,分析时间短。
5.可在线监测:SPME技术可以与其他分析方法(如气相色谱质谱联用)相结合,实现实时或在线分析。
然而,SPME技术也存在一些限制:1.纤维选择:选择合适的纤维类型和形式对于捕集目标物的选择性和灵敏度至关重要。
没有一种纤维可以适用于所有化合物。
2.矩阵效应:复杂样品基质中的共存物可能会影响分析结果,例如干扰分析目标物的捕集或解吸。
8.1.4.1 固相微萃取的原理固相微萃取(solid—phase microextraction,SPME)技术是20世纪90年代初期兴起的一项样品前处理与富集技术,它最先由加拿大Waterloo大学Pawliszyn教授的研究小组于1989年首次研制成功,属于非溶剂型选择性萃取法,是一种集采样、萃取、浓缩、进样于一体的分析技术。
SPME装置略似进样器,在特制注射器筒内的不锈钢细管顶端分别连接一根穿透针和纤维固定针,针头上连接一根熔融石英纤维,上面涂布一层多聚物固定相,注射器的柱塞控制纤维的进退。
当纤维暴露在样品中时,涂层可从液态/气态基质中吸附萃取待测物,经过一段时间后,已富集了待测物的纤维可直接转移到仪器(通常是气相色谱仪,即SPME—GC)中,通过一定的方式解吸附,然后进行分离分析。
典型的SPME装置如图8一12所示。
SPME熔融石英纤维涂布固定相与样品或其顶空充分接触,待测物在两相间分配达到平衡后,两相中待测物浓度关系如下式:N。
一KⅥV。
C。
/(KU+V。
) (8—2)式中,N。
为固定相中待测物的分子数;K为两相间待测物的分配系数;V。
为固定液体积;U为样品体积;c。
为样品中待测物浓度。
因为U》V。
,故式(8—2)可简化为:N。
=Ku%(8-3)由式(8-3)可知,固定液吸附待测物分子数与样品中待测物浓度呈线性关系,即样品中待测物浓度越高,SPME吸附萃取的分子数越多。
当样品中待测物浓度一定时,萃取分子数主要取决于固定液体积和分配系数。
同时,方法的灵敏度和线性范围的大小也取决于这两个参数。
固定液厚度越大(即y。
越大),萃取选择性越高(K越大),则方法的灵敏度越高。
由此可见,选择合适的固定液对于萃取结果是很重要的。
目前,SPME装置已实现商品化。
该装置主要由两部分组成:一部分是作为支撑用的微量注射器底座;另一部分是类似于注射针头形状的熔融石英纤维,其半径一般为15mm,上面涂布着固定体积(/g度为10~100ttm)的聚合物固定液。
固相微萃取仪说明1. 固相微萃取工作原理固相微萃取(Solid Phase Micro Extration)简称SPME,是在固相萃取基础上发展起来的一种新的萃取分离技术。
与液-液萃取和固相萃取相比,具有操作时间短、样品量小、无须萃取溶剂、重现性好等优点,适于分析挥发性与非挥发性物质。
2. SPME装置结构SPME装置外形如一只微量进样器,由手柄和萃取头或纤维头两部分构成。
萃取头是一根1 cm长、涂有不同吸附剂的熔融纤维,接在不锈钢丝上,外套为细不锈钢管(保护石英纤维不被折断),纤维头在钢管内可伸缩或进出,细不锈钢管可穿透橡胶或塑料垫片进行取样或进样,手柄用于安装或固定萃取头。
手动操作如图1所示。
图1 固相微萃取装置示意图(a)固相微萃取装置(b)局部放大图1—手柄 2—活塞 3—外套 4—活塞固定杆 5—Z沟槽6—连接器观察窗口 7—可调节针头导轨8—不锈钢隔垫穿孔针头 9—不锈钢纤维套管10—带涂层的硅纤维/萃取头SPME的关键是石英纤维上的涂层(吸附剂),涂层只吸附目标化合物,不吸附干扰化合物和溶剂。
通常而言,涂层的极性应与目标物一致,即非极性涂层适用于吸附非极性的目标物,极性涂层适用于吸附极性的目标物。
目前已有的商品萃取头涂层及其应用列于表1中。
表1 已有的商品萃取头涂层及其应用注:PDMS—聚二甲基硅氧烷; PA—聚酰胺; DVB—二苯乙烯; PEG —聚乙二醇; Carboxen—碳分子筛;BTEX—苯系物; PCB—多氯联苯。
3. SPME的采样和进样SPME的采样方法是将针管(不锈钢套管)穿过样品瓶密封垫,插入样品瓶中,然后推出萃取头,将萃取头浸入样品(浸入方式)或置于样品上部空间(顶空方式),进行萃取,萃取时间以达到目标化合物吸附平衡为准,一般2~30min,最后缩回萃取头,将针管拔出,该萃取过程如图2。
图2 SPME的采样和进样操作过程示意图固相微萃取采样完成后,进一步利用色谱进行测定,可用于GC,也可用于HPLC,如图2-20所示。
固相萃取概述固相萃取是建立在传统的液液萃取基础上,填料为一般硅胶基键合固定相,基于spe 固体填料与样品中的目标化合物产生各种作用力,将目标物与样品基质分离,再用洗脱液洗脱,达到分离和富集目标化合物的目的。
固相萃取是一种纯化提取物,改善结果准确度和重现性的快速而经济的技术。
1.固相萃取分类及萃取柱填料选取根据分离模式不同,固相萃取可分为正相、反相、离子交换、混合机理分离模式。
(1)反相固相萃取填料硅胶表面的亲水硅醇基通过硅烷化学反应,键合非极性烷基或芳香基、聚合物等材料作为反相固定相,被测物的碳氢键与固定相表面官能团产生非极性的范德华力或色散力,使得极性溶剂中的非极性以及弱极性的物质保留在固定相上,达到净化、富集样品的目的。
反相固相萃取萃取柱填料一般有以下几种:C18、C8、C4、CN、Ph。
(2)正相固相萃取正相固相萃取利用被测物的极性官能团与填料表面的极性官能团通过氢键、π-π键间、偶极-偶极和偶极-诱导偶极相的相互作用力保留溶于非极性介质中的极性物质,常用极性溶剂作为洗脱液。
反相固相萃取萃取柱填料一般有以下几种:极性官能团键合硅胶(如 CN、NH2、二醇基)和极性吸附物质(Al2O3、硅、硅酸镁、活性炭等)(3)离子交换固相萃取根据被测物的带电荷基团与键合硅胶上的带电荷基团相互静电吸引实现吸附分离。
离子交换分为阴离子(WAX、SAX)和阳离子(WCX、SCX)交换,阳离子填料通常用硅胶上键合磺酸钠盐、碳酸钠盐等作为阳离子交换固定相,阴离子常用脂肪族季铵盐、氨基键合作为固定相,离子型化合物在柱中的保留与洗脱与其pH、离子强度和反离子强度有关,对于酸性分析物在离子交换柱中保留时,样品溶液pH要比其pKa大2个单位,并有低的离子强度,处于离子状态的目标物才能靠静电吸引到键合填料中,在洗脱该药物时,洗脱液pH应小于其pKa 2个单位或加入高离子强度溶液,分析物才能被洗脱。
碱性分析物则相反。
(4)混合型固相萃取随着固相萃取技术的发展,多种萃取模式相结合的固相萃取柱也渐渐被商品化,为了实现多残留同时检测,混合型固相萃取柱为多残留技术的研究提供了有利的工具。
固相微萃取原理
固相微萃取(SPE)是一种用于样品前处理的技术,它在分析化学领域中得到
了广泛的应用。
固相微萃取的原理是利用固相萃取材料对目标化合物进行选择性吸附和脱附,从而实现对样品的富集和净化。
这种方法具有操作简便、富集效果好、消耗少量有机溶剂等优点,因此在环境监测、食品安全、药物分析等领域得到了广泛的应用。
固相微萃取的原理基于化学吸附和脱附过程。
在固相微萃取过程中,样品溶液
首先通过固相萃取柱,目标化合物会与固相材料发生化学吸附,而其他干扰物质则会被排除。
接着,通过改变溶剂的极性或pH 值等条件,使得目标化合物发生脱附,从而得到富集的目标化合物。
固相微萃取的原理主要包括亲合吸附、离子交换、疏水相互作用等。
亲合吸附
是指固相萃取材料与目标化合物之间存在化学亲和力,从而实现选择性吸附。
离子交换则是利用固相材料上的功能基团与溶液中的离子发生反应,实现目标离子的选择性吸附。
疏水相互作用则是通过固相材料的疏水性实现对目标化合物的富集。
固相微萃取的原理虽然简单,但在实际应用中需要根据样品的特性选择合适的
固相材料、溶剂和萃取条件。
固相微萃取技术的发展也在不断完善,例如固相萃取柱的材料不断更新,新型固相萃取材料的研发等,为该技术的应用提供了更多的选择。
总的来说,固相微萃取技术以其简便、高效、环保的特点,成为了样品前处理
中的重要手段。
通过对固相微萃取原理的深入理解,可以更好地应用该技术于实际分析中,为分析化学领域的发展提供更多可能性。