太阳能电池基本原理-光生伏特原理-PN结-内建电场-等效电路
- 格式:doc
- 大小:47.50 KB
- 文档页数:2
太阳能电池基本原理基本原理——光生伏特效应太阳能光伏发电是利用太阳电池的光伏效应原理,直接把太阳辐射能转变为电能的发电方式。
典型太阳电池是一个 p-n 结半导体二极管。
光子把电子从价带(束缚)激发到导带(自由),并在价带内留下一个空穴(自由)——产生了自由电子-空穴对(光生载流子),p型材料中的电子与n型材料中的空穴将在与少子寿命相当的时间内,以相对稳定的状态存在,直到复合。
当载流子复合后,光生电子空穴对将消失,没有电流和功率产生。
光生电子-空穴对在耗尽层中产生后,立即被内建电场分离,光生电子被送进n区,光生空穴则被送进p区。
光能就以产生电子-空穴对的形式转变为电能。
内建电场当把N型和P型材料放在一起的时候,在N型材料中,费米能级靠近导带底,在P型材料中,费米能级靠近价带顶,当P型材料和N型材料连接在一起时,费米能级在热平衡时必定恒等,由于在P型材料中有多得多的空穴,它们将向N型一边扩散。
与此同时,在N型一边的电子将沿着相反的方向向P型区扩散。
由于电子和空穴的扩散,在p-n结区产生了耗尽层,即空间电荷区电场,又称为内建电场。
(1)光子吸收:在大部分有机太阳能电池中,因为材料的带隙过高,只有一小部分入射光被吸收,吸收只能达到30%左右。
(2)激子扩散:激子的扩散长度应该至少等于薄膜的厚度,否则激子就会发生复合,造成吸收光子的浪费。
(3)电荷分离:对于单层器件,激子在电极与有机半导体界面处离化,对于双层器件,激子在施主-受主界面形成的p-n结处离化。
(4)电荷传输:在有机材料中,电荷的传输是定域态间的跳跃,而不是能带内的传输,这意味着有机材料和聚合物材料中载流子的迁移率通常都比无机半导体材料的低。
(5)电荷收集:电荷的收集效率也是影响光伏器件功率转换效率的关键因素,金属与半导体接触时会产生一个阻挡层,阻碍电荷顺利地到达金属电极。
等效电路模型太阳能电池等效电路无光照时类似二极管特性,外加电压时单向电流ID称为暗电流;有光照时产生光生电流IL ;Rs、Rsh分别为太阳电池中的串、并联电阻RL为负载。
太阳能发电原理提到太阳能我们并不陌生,但通常想到的是太阳热能的利用,比如太阳能热水器,而对太阳能发电并不太熟悉。
很多人其实还不明白太阳能发电原理,本文主要讲述的是太阳能发电原理,感兴趣的朋友们速速围观。
一、太阳能发电原理光伏发电就是我们常说的太阳能发电,是根据光生伏特效应原理,利用太阳能光伏电池把太阳辐射能直接转变成电能的发电方式。
光子照在P-N结内形成电子——空穴对,电子在内建电场的作用下向电池负极移动,经过外电路达到正极形成电流。
它们主要由电子元器件构成,不涉及机械部件,所以,太阳能发电设备极为精炼,可靠稳定寿命长、安装维护简便。
理论上讲,太阳能发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源可以无处不在。
通常民间所说的太阳能发电往往指的就是太阳能光伏发电,简称光电。
太阳能电池板结构图太阳能发电的工作原理图二、太阳能发电系统构成太阳能发电系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜,太阳跟踪控制系统等设备组成。
其部分设备的作用是:电池方阵:在有光照的情况下,电池吸收光能,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏特效应”。
蓄电池组:其作用是贮存太阳能电池方阵受光照时发出的电能并可随时向负载供电。
控制器:是能自动防止蓄电池过充电和过放电的设备。
逆变器:是将直流电转换成交流电的设备。
逆变器按运行方式,可分为独立运行逆变器和并网逆变器。
三、太阳能发电的优势太阳能作为一种能源,与煤炭、石油、天然气、核能等矿物燃料相比,具有以下明显的优点: 普遍,可直接开发和利用无害,无污染,清洁巨大,每年到达地球表面上的太阳辐射能约相当于130万亿吨标煤长久,太阳的能量取之不尽,用之不竭四、太阳能发电的应用类型太阳能发电按照运行方式可分为并网太阳能发电和离网太阳能发电。
并网太阳能发电并网太阳能发电是指与电网相连并向电网输送电力的光伏发电系统。
太阳电池工作原理简介PN结光生伏特效应的原理{光的吸收{空穴、电子对的产生{载流子的分离{产生光生电动势当一束光照射到半导体表面上,被半导体材料吸收的光会激发材料内的电子从价带跃迁到导带,从而产生电子空穴对;若电子空穴对产生于PN结内部,电子空穴对立刻就会被很强的PN结内建电场分离,空穴向P区运动,电子向N区运动,并被扫出势垒区;对于光在PN结势垒区外激发产生的电子空穴对,只要它们热运动到势垒区边缘,N区势垒边缘处的空穴会被立刻扫入势垒并渡越势垒进入P区,而P区势垒边缘处的电子则会被立刻扫入势垒并渡越势垒进入N区;这样会建立起从基区到势垒区以及发射区到势垒区的少数载流子的浓度梯度,使得光照在基区和发射区产生的非平衡少数载流子通过扩散运动源源不断地到达势垒区边缘,并被PN结内建电场扫入对方形成多数载流子;由此可知,光照产生的空穴会在P区积累,使P区的电势升高;光照产生的电子会在N区积累,使N区的电势降低;从而在PN结两端建立起光生电动势(与PN结内建电场的方向相反,并使PN结正向偏置)。
如果将PN结两端与包含负载的外电路相连,光生电动势就会在回路中产生电流,从而对负载做功,这就是太阳电池的基本工作原理——光生伏特效应。
太阳电池的等效电路图I L 代表光生电流,一个处于恒定光照下的太阳电池,其光电流不随负载变化,可以看成是一个恒流源;由于光生电动势使PN结正向偏置,因此存在一个流经二极管的漏电流,该电流是非线性的,并与光生电流的方向相反,会抵消部分光生电流,被称为暗电流ID ;由于存在电池边缘漏电或PN结结区漏电,用Rsh 代表太阳电池的并联电阻;Rs是太阳电池的串联电阻,它主要由金属电极与半导体材料的接触电阻造成。
太阳电池的工作特性方程二极管反向饱和电流的物理意义二极管反向饱和电流的表达式P max1/Rm•短路电流I•最佳工作点:当负载阻值从0→∞变化时,总存在一个负载值R m ,它可从太阳电池获得最大的输出功率P m 。
太阳能电池的原理太阳能电池是一种能够将太阳光直接转化为电能的器件,它是利用光生电压效应将太阳能转化为电能的装置。
太阳能电池的原理主要是基于光伏效应。
光伏效应是指当光线照射到半导体材料表面时,光子能量被半导体材料吸收,使得材料中的电子被激发到导带,形成电子-空穴对,从而产生电流。
太阳能电池就是利用这一效应将光能转化为电能。
太阳能电池的主要组成部分是P-N结。
P-N结是由P型半导体和N型半导体组成的。
P型半导体中的载流子主要是正电荷,而N型半导体中的载流子主要是负电荷。
当P-N结两侧分别连接上金属导体时,就形成了太阳能电池的基本结构。
在太阳能电池中,P-N结的两侧分别涂覆有透明导电薄膜,通常是氧化铟锡(ITO)薄膜。
这样可以使得光线能够透过透明导电薄膜照射到P-N结上,从而产生光伏效应。
当太阳能电池板受到阳光照射时,光子被半导体材料吸收,激发出电子-空穴对。
在P-N结中,由于P型半导体和N型半导体的电势差,电子-空穴对会被分离,电子会向N型半导体一侧移动,而空穴则会向P型半导体一侧移动。
这样就在P-N结两侧产生了电势差,形成了电场。
当外部电路连接到太阳能电池板上时,电子和空穴就会在外部电路中流动,从而产生电流。
通过这种方式,太阳能电池就能够将太阳光能转化为电能。
而且,太阳能电池板的电压和电流输出可以通过串联和并联的方式进行组合,以满足不同的功率需求。
总的来说,太阳能电池的原理就是利用光伏效应将太阳能转化为电能。
通过P-N结的形成和光子的吸收,太阳能电池能够产生电场,从而产生电流。
这种清洁、可再生的能源形式正在得到越来越广泛的应用,成为未来能源发展的重要方向之一。
太阳能电池的工作原理
太阳能电池是一种利用光能直接转换为电能的器件,它是利用光生电压效应将太阳光转化为电能的装置。
太阳能电池的工作原理主要是通过光生电压效应和PN结的作用来实现的。
首先,让我们来了解一下光生电压效应。
当光线照射到半导体材料上时,光子会激发半导体中的自由电子,使其跃迁到导带中,同时在价带中留下一个空穴。
这样就形成了电子-空穴对。
当这些电子-空穴对被电场分离时,就会产生电压,这就是光生电压效应。
这个电压就是太阳能电池的输出电压。
其次,我们来看一下太阳能电池的结构。
太阳能电池的主要结构是PN结。
PN结是由N型半导体和P型半导体组成的,它们之间形成了一个电场。
当太阳能电池受到光照时,光子激发了半导体中的电子-空穴对,这些电子-空穴对会被电场分离,形成电压,从而产生电流。
最后,让我们来看一下太阳能电池的工作过程。
当太阳能电池受到光照时,光子激发了半导体中的电子-空穴对,这些电子-空穴对被电场分离,形成电压和电流。
这样就实现了将太阳能转化为电
能的过程。
总的来说,太阳能电池的工作原理是利用光生电压效应和PN结的作用来将太阳能转化为电能。
通过光子激发产生的电子-空穴对在电场的作用下形成电压和电流,从而实现了太阳能电池的工作。
这种利用光能转化为电能的技术不仅具有环保、可再生的特点,而且在未来的能源领域有着广阔的应用前景。
太阳能电池基本原理
基本原理——光生伏特效应
太阳能光伏发电是利用太阳电池的光伏效应原理,直接把太阳辐射能转变为电能的发电方式。
典型太阳电池是一个p-n结半导体二极管。
光子把电子从价带(束缚)激发到导带(自由),并在价带内留下一个空穴(自由)——产生了自由电子-空穴对(光生载流子),p型材料中的电子与n型材料中的空穴将在与少子寿命相当的时间内,以相对稳定的状态存在,直到复合。
当载流子复合后,光生电子空穴对将消失,没有电流和功率产生。
光生电子-空穴对在耗尽层中产生后,立即被内建电场分离,光生电子被送进n区,光生空穴则被送进p区。
光能就以产生电子-空穴对的形式转变为电能。
内建电场
当把N型和P型材料放在一起的时候,在N型材料中,费米能级靠近导带底,在P型材料中,费米能级靠近价带顶,当P型材料和N型材料连接在一起时,费米能级在热平衡时必定恒等,由于在P型材料中有多得多的空穴,它们将向N型一边扩散。
与此同时,在N型一边的电子将沿着相反的方向向P型区扩散。
由于电子和空穴的扩散,在p-n结区产生了耗尽层,即空间电荷区电场,又称为内建电场。
(1)光子吸收:在大部分有机太阳能电池中,因为材料的带隙过高,只有一小部分入射光被吸收,吸收只能达到30%左右。
(2)激子扩散:激子的扩散长度应该至少等于薄膜的厚度,否则激子就会发生复合,造成吸收光子的浪费。
(3)电荷分离:对于单层器件,激子在电极与有机半导体界面处离化,对于双层器件,激子在施主-受主界面形成的p-n结处离化。
(4)电荷传输:在有机材料中,电荷的传输是定域态间的跳跃,而不是能带内的传输,这意味着有机材料和聚合物材料中载流子的迁移率通常都比无机半导体材料的低。
(5)电荷收集:电荷的收集效率也是影响光伏器件功率转换效率的关键因素,金属与半导体接触时会产生一个阻挡层,阻碍电荷顺利地到达金属电极。
等效电路模型
太阳能电池等效电路
无光照时类似二极管特性,外加电压时单向电流I
D 称为暗电流;有光照时产生光生电流I
L
;
R s 、R
sh
分别为太阳电池中的串、并联电阻R
L
为负载。
(1)恒流源:在恒定光照下,一个处于工作状态的太阳电池,其光电流不随工作状态而变化,
在等效电路中可把它看做恒流源。
(2)暗电流I
D :光电流一部分流经负载R
L
,在负载两端建立起端电压U,反过来,它又正向
偏置于PN结,引起一股与光电流方向相反的暗电流I
D。
(3)串联电阻R
S
:由于前面和背面的电极接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免的引入附加电阻。
流经负载的电阻经过它们时,必然引起损耗。
在等效电路中,他们
的总效果用一个串联电阻R
S
表示。
并联电阻R
SH
由于电池边沿的漏电和制作金属电极时在微裂纹、划痕等处形成的金属桥漏电等,
使一部分本应通过负载达到电流短路,这种作用的大小可以用一个并联电阻R
SH
等效。
决定太阳能电池能量转换效率的三个参数分别是短路电流(I
sc )、开路电压(V
oc
)和填充因子
(FF)。
因为电流(I)与太阳能电池的面积(A)成正比例关系,因此一般用电流密度(J)取代电
流,来描述太阳能电池的伏安特性。
当电池在光照下,得到的端电压和电路中通过负载的工作电流的关系曲线,叫做光电池的伏安
特性曲线。
如图红色线所示,图上所示的第四象限中与红色线相交的方形区域面积就代表太阳能电池的最大输出功率,对应的点为最佳工作点。
太阳能电池在没有光照时可以视为一个二极管,电压和电流的关系如图蓝色线所示,为太阳能电池的暗特性曲线。
太阳能电池的伏安特性曲线
(1)开路电压(V
OC
)
一般来说,对于金属-绝缘体-金属(MIM)型的器件,其开路电压V
OC
取决于两个金属电极功函数之差。
而对于p-n结,其最大的可用电压则是由n-型掺杂半导体与p-型掺杂半导体两者的准费
米能级之差所决定,开路电压现行的依赖于给体的HOMO能级与受体的LUMO能级。
增加V
oc
的途径有减少复合以减小反向饱和电流,增加各区掺杂浓度等。
(2)短路光电流(I
SC
)
短路电流的大小与上面提到的光电转换过程的5个步骤的效率相关,要得到大的短路电流:第一,需要光伏材料在可见区有宽光谱和强的吸收,以提高太阳光的利用率;第二,需要吸收光子后产生的激子有较长的寿命和较短的到达给体/受体异质结界面的距离,使得激子都能够扩散到异质结界面上;第三,需要激子在给体/受体界面上有高的电荷分离效率,使到达界面的激子都能够分离成位于受体LUMO能级上的电子和位于给体HOMO能级上的空穴,这要求给体的LUMO和HOMO能级分别高于受体的对应能级0.4eV以上,以克服激子的束缚能而发生电子和空穴的电荷分离;第四,光伏材料有高的纯度和高的电荷载流子迁移率;第五,使用高功函数的正极和低功函数的负极也非常重要;最后,要求电极/活性层界面是欧姆接触,并且界面接触电阻要小。
提高Jsc的途径在于提高光生载流子产生率G、增加各区少子寿命和减少表面复合。
(3)填充因子(FF)
最大输出功率与(V
OC ?I
SC
)之比称为填充因子,用FF表示。
对于开路电压V
OC
和短路电流I
SC
一定的特性曲线来说,填充因子越接近于1,电池效率越高,伏安特性线弯曲越大。
因此FF也称曲线因子,表示式为
FF是用以衡量太阳电池输出特性好坏的重要指之一。
在一定光强下,FF愈大,曲线愈方,输出功率越高。
对于有合适效率的电池,该值应在0.70-0.85范围之内。
(4)光电转换效率
电池的输出电功率与入射光功率之比η称为光电转换效率,简称效率
光电转换效率η是表征太阳电池性能的最重要的参数,要提高太阳电池的效率,必须提高开路电压、短路电流和填充因子这三个基本参量。