《动量守恒定律》单元测试题含答案(3)
- 格式:doc
- 大小:1.10 MB
- 文档页数:31
《动量守恒定律》单元测试题(含答案)一、动量守恒定律 选择题1.如图所示,A 是不带电的球,质量0.5kg A m =,B 是金属小球,带电量为2210C q -=+⨯,质量为0.5kg B m =,两个小球大小相同且均可视为质点。
绝缘细线长0.25m L =,一端固定于O 点,另一端和小球B 相连接,细线能承受的最大拉力为276N 。
整个装置处于竖直向下的匀强电场中,场强大小500N/C E =,小球B 静止于最低点,小球A 以水平速度0v 和小球B 瞬间正碰并粘在一起,不计空气阻力。
A 和B 整体能够做完整的圆周运动且绳不被拉断,210m /s g =。
则小球A 碰前速度0v 的可能值为( )A .27 m /sB .211 m /sC .215 m /sD .219 m /s2.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m3.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰C.小球第一次在半圆槽的最低点B时对槽的压力为133 mgD.物块最终的动能为15mgR4.如图所示,足够长的光滑细杆PQ水平固定,质量为2m的物块A穿在杆上,可沿杆无摩擦滑动,质量为0.99m的物块B通过长度为L的轻质细绳竖直悬挂在A上,整个装置处于静止状态,A、B可视为质点。
《动量守恒定律》测试题(含答案) 一、动量守恒定律 选择题1.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。
关于从A 、B 、C 三点抛出的小球,下列说法正确的是( )A .在空中运动时间之比为t A ∶tB ∶tC =1∶3∶5B .竖直高度之比为h 1∶h 2∶h 3=1∶2∶3C .在空中运动过程中,动量变化率之比为AC A B P P P t t t::=1∶1∶1 D .到达P 点时,重力做功的功率之比P A :P B :P C =1:4:9 2.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m-- C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --3.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g4.如图所示,质量为m 的小球从距离地面高度为H 的A 点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h 的B 点时速度减为零不计空气阻力,重力加速度为g 。
则关于小球下落过程中,说法正确的是A .整个下落过程中,小球的机械能减少了mgHB .整个下落过程中,小球克服阻力做的功为mg (H +h )C .在陷入泥潭过程中,小球所受阻力的冲量大于mD .在陷入泥潭过程中,小球动量的改变量的大小等于m5.如图所示,质量为M 、带有半径为R 的四分之一光滑圆弧轨道的滑块静置于光滑水平地面上,且圆弧轨道底端与水平面平滑连接,O 为圆心。
(完整版)动量守恒定律单元测试题一、动量守恒定律 选择题1.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==2.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L ,宽轨间距为2L 。
轨道处于竖直向下的磁感应强度为B 的匀强磁场中,质量分别为m 、2m 的金属棒a 、b 垂直于导轨静止放置,其电阻分别为R 、2R ,现给a 棒一向右的初速度v 0,经t 时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b 棒一直在宽轨上运动。
下列说法正确的是( )A .a 棒开始运动时的加速度大小为2203B L v RmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 3.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动4.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
一、选择题1.(0分)[ID :127065]人和冰车的总质量为M ,另一木球质量为m ,且M ∶m =31∶2。
人坐在静止于水平冰面的冰车上,以速度v (相对地面)将原来静止的木球沿冰面推向正前方向的固定挡板,不计一切摩擦阻力,设小球与挡板的碰撞是弹性的,人接住球后,再以同样的速度v (相对地面)将球推向挡板。
人推多少次后不能再接到球( ) A .6次 B .7次 C .8次 D .9次2.(0分)[ID :127052]如图所示,将一光滑的质量为4m 半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨有一个质量为m 的物块,今让一质量也为m 的小球自左侧槽口A 的正上方高R 处从静止开始落下,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次到最低点B 的运动过程中,槽的支持力对小球不做功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为4:1C .小球第一次从C 点滑出后将做竖直上抛运动D .物块最终的动能为15mgR 3.(0分)[ID :127035]光滑绝缘水平桌面上存在与桌面垂直方向的匀强磁场,有一带电粒子在桌面上做匀速圆周运动,当它运动到M 点,突然与一不带电的静止粒子发生正碰合为一体(碰撞时间极短),则粒子的运动轨迹应是图中的哪一个(实线为原轨迹,虚线为碰后轨迹)( )A .B .C .D . 4.(0分)[ID :127031]如图,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止。
若救生员相对小船以速率v 水平向左跃入水中,则救生员跃出后小船相对水面的速率为( )A .0m v v M +B .0m v v M-C .0m v v M m ++D .00()m v v v M+- 5.(0分)[ID :127026]如图,A 、B 两个小球沿光滑水平面向右运动,取向右为正方向,则A 的动量p A =10kg·m/s ,B 的动量p B =6kg·m/s ,A 、B 碰后A 的动量增量△p A =-4kg·m/s ,则关于A 、B 的质量比应满足的条件为( )A .53AB m m > B .315A B m m ≤≤C .3553A B m m ≤<D .1A Bm m ≤ 6.(0分)[ID :127020]在如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧合在一起作为系统,则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能不守恒D .动量不守恒,机械能守恒7.(0分)[ID :127017]如图所示,轻弹簧的一端固定在竖直墙上,一个光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,让一个物块从槽上高h 处由静止开始下滑。
《动量守恒定律》单元测试题(含答案)一、动量守恒定律 选择题 1.如图所示,质量均为m 的A 、B 两物块用轻弹簧连接,放在光滑的水平面上,A 与竖直墙面接触,弹簧处于原长,现用向左的推力缓慢推物块B ,当B 处于图示位置时静止,整个过程推力做功为W ,瞬间撤去推力,撤去推力后( )A .当A 对墙的压力刚好为零时,物块B 的动能等于WB .墙对A 物块的冲量为4mWC .当B 向右运动的速度为零时,弹簧的弹性势能为零D .弹簧第一次伸长后具有的最大弹性势能为W2.如图所示,在光滑的水平面上放有一质量为M 的物体P ,物体P 上有一半径为R 的光滑四分之一圆弧轨道, 现让质量为m 的小滑块Q (可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A .P 、Q 组成的系统动量不守恒,机械能守恒B .P 移动的距离为m M m+R C .P 、Q 组成的系统动量守恒,机械能守恒 D .P 移动的距离为M m M +R 3.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
已知物块与木板之间的动摩擦因数为μ,整个过程中弹簧的形变均在弹性限度内,则( )A .木板先加速再减速,最终做匀速运动B .整个过程中弹簧弹性势能的最大值为204()Mmv M m + C .整个过程中木板和弹簧对物块的冲量大小为0Mmv M m+D .弹簧压缩到最短时,物块到木板最右端的距离为202()Mv M m g μ+ 4.如图所示,在光滑的水平杆上套有一个质量为m 的滑环.滑环上通过一根不可伸缩的轻绳悬挂着一个质量为M 的物块(可视为质点),绳长为L .将滑环固定时,给物块一个水平冲量,物块摆起后刚好碰到水平杆;若滑环不固定时,仍给物块以同样的水平冲量,则( )A .给物块的水平冲量为2M gLB .物块上升的最大高度为mL m M+ C .物块上升最高时的速度为2m gL D .物块在最低点时对细绳的拉力3Mg5.如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M ,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。
(完整版)动量守恒定律单元测试题一、动量守恒定律 选择题1.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中.若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,忽略空气阻力,则( )A .过程Ⅰ中钢珠动量的改变量小于重力的冲量B .过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C .过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D .过程Ⅱ中钢珠的动量改变量等于阻力的冲量2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 3.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2g=10m/s ,则( )A .物块滑上小车后,系统动量守恒和机械能守恒B .增大物块与车面间的动摩擦因数,摩擦生热不变C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24sD .若要保证物块不从小车右端滑出,则0v 不得大于5m/s4.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落 C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落5.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 6.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v gμ 7.如图所示,在光滑的水平面上有体积相同、质量分别为m =0.1kg 和M =0.3kg 的两个小球A 、B ,两球之间夹着一根压缩的轻弹簧(弹簧与两球不相连),A 、B 两球原来处于静止状态.现突然释放弹簧,B 球脱离弹簧时的速度为2m/s ;A 球进入与水平面相切、半径为0.5m 的竖直面内的光滑半圆形轨道运动,PQ 为半圆形轨道竖直的直径,不计空气阻力,g 取10m/s 2,下列说法正确的是( )A .A 、B 两球离开弹簧的过程中,A 球受到的冲量大小等于B 球受到的冲量大小 B .弹簧初始时具有的弹性势能为2.4JC .A 球从P 点运动到Q 点过程中所受合外力的冲量大小为1N ∙sD .若逐渐增大半圆形轨道半径,仍然释放该弹簧且A 球能从Q 点飞出,则落地的水平距离将不断增大8.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 9.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动10.如图所示,一木块静止在长木板的左端,长木板静止在水平面上,木块和长木板的质量相等均为M ,木块和长木板之间、长木板和地面之间的动摩擦因数都为μ。
(完整版)动量守恒定律单元测试题一、动量守恒定律选择题1.如图所示,轻弹簧的一端固定在竖直墙上,一质量为m的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切。
一质量为2m的小物块从槽顶端距水平面高h处由静止开始下滑,重力加速度为g,下列说法正确的是()A.物块第一次滑到槽底端时,槽的动能为43mghB.在下滑过程中物块和槽之间的相互作用力对物块始终不做功C.全过程中物块、槽和弹簧所组成的系统机械能守恒,且水平方向动量守恒D.物块第一次被弹簧反弹后能追上槽,且能回到槽上距水平面高h处2.如图所示,一质量为0.5 kg的一块橡皮泥自距小车上表面1.25 m高处由静止下落,恰好落入质量为2 kg、速度为2.5 m/s沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取210m/sg=,不计空气阻力,下列说法正确的是A.橡皮泥下落的时间为0.3 sB.橡皮泥与小车一起在水平地面上运动的速度大小为2 m/sC.橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D.整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5 J3.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是A.小球在槽内运动的全过程中,小球、半圆槽组成的系统机械能守恒B.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统水平动量守恒C.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动D.若小球刚好到达C点,则12mh RM M=+4.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m + D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR Mm M m + 5.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==6.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
(完整版)动量守恒定律单元测试题 一、动量守恒定律 选择题1.质量为m 、半径为R 的小球,放在半径为3R 、质量为3m 的大空心球内,大球开始静止在光滑水平面上。
当小球从如图所示的位置(两球心在同一水平面上)无初速度沿内壁滚到最低点时,大球移动的距离是( )A .2RB .125RC .4RD .34R 2.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 3.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤ab 一定不相碰D .若2b a μμ>,则a 可能从木板左端滑落4.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )A .加速度大小为0t F F m -B .速度大小为()()021t F F t t m-- C .动量大小为()()0212tF F t t m -- D .动能大小为()()220218tF F t t m --5.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间6.如图所示,A 、B 、C 三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A =2kg,m B =3kg,m C =1kg,初状态三个小球均静止,BC 球之间连着一根轻质弹簧,弹簣处于原长状态.现给A 一个向左的初速度v 0=10m/s,A 、B 碰后A 球的速度变为向右,大小为2m/s ,下列说法正确的是A .球A 和B 碰撞是弹性碰撞B .球A 和B 碰后,球B 的最小速度可为0C .球A 和B 碰后,弹簧的最大弹性势能可以达到96JD .球A 和B 碰后,弹簧恢复原长时球C 的速度可能为12m/s7.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s8.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
高中物理选择性必修一第一章一、选择题(1-7单选题,8-10多选题)1.2024年春天,中国航天科技集团研制的50kW级双环嵌套式霍尔推力器,成功实现点火并稳定运行,标志着我国已跻身全球嵌套式霍尔电推进技术领先行列。
嵌套式霍尔推力器不用传统的化学推进剂,而是使用等离子体推进剂,它的一个显著优点是“比冲”高。
比冲是航天学家为了衡量火箭引擎燃料利用效率引入的一个物理量,英文缩写为I sp,是单位质量的推进剂产生的冲量,比冲这个物理量的单位应该是( )A.m/s B.kg⋅m/s2C.m/s2D.N⋅s2.物理在生活和生产中有广泛应用,以下实例没有利用反冲现象的是( )A.乌贼喷水前行B.电风扇吹风C.火箭喷气升空D.飞机喷气加速3.如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。
关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小不相等4.人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( )A.减小地面对人的冲量B.减小人的动量的变化C.增加人对地面的冲击时间D.增大人对地面的压强5.在光滑的水平面上,质量为m1的小球以速率v0向右运动。
在小球的前方有一质量为m2的小球处于静止状态,如图所示,两球碰撞后粘合在一起,两球继续向右运动,则两球碰撞后的速度变为( )A.仍为v0B.m1v0(m1+m2)C.m2v0(m1+m2)D.v0(m1+m2)6.重量为mg的物体静止在水平地面上,物体与地面之间的最大静摩擦力为F m,从0时刻开始,物体受到水平拉力F的作用,F与时间t的关系如图a所示,为了定性地表达该物体的运动情况,在图b所示的图象中,纵轴y应为该物体的()A.动量大小P B.加速度大小a C.位移大小xD.动能大小E k7.一质量为0.1kg的小球自t=0时刻从水平地面上方某处自由下落,小球与地面碰后反向弹回,不计空气阻力,也不计小球与地面弹性碰撞的时间,小球距地面的高度h与运动时间t关系如图所示,取g=10m/s2.则()A .小球第一次与地面弹性碰撞后的最大速度为10m /sB .小球与地面弹性碰撞前后动量守恒C .小球第一次与地面弹性碰撞时机械能损失了19JD .小球将在t =6s 时与地面发生第四次弹性碰撞8.如图所示,质量为M 的带有四分之一光滑圆弧轨道的小车静止置于光滑水平面上,圆弧的半径为R(未知),一质量为m 的小球以速度v 0水平冲上小车,恰好达到圆弧的顶端,此时M 向前走了0.25R ,接着小球又返回小车的左端。
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
《动量守恒定律》单元测试题含答案(3)一、动量守恒定律 选择题1.如图所示,质量均为1.0kg 的木板A 和半径为0.2m 的14光滑圆弧槽B 静置在光滑水平面上,A 和B 接触但不粘连,B 左端与A 相切。
现有一质量为2.0kg 的小滑块C 以5m/s 的水平初速度从左端滑上A ,C 离开A 时,A 的速度大小为1.0m/s 。
已知A 、C 间的动摩擦因数为0.5,重力加速度g 取10m/s 2。
下列说法正确的是( )A .木板A 的长度为0.85mB .滑块C 能够离开B 且离开B 后做竖直上抛运动C .整个过程中A 、B 、C 组成的系统水平方向动量守恒D .B 的最大速度为5m/s2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 3.如图,在光滑水平面上放着质量分别为2m 和m 的A 、B 两个物块,弹簧与A 、B 栓连,现用外力缓慢向左推B 使弹簧压缩,此过程中推力做功W 。
然后撤去外力,则( )A .从撤去外力到A 离开墙面的过程中,墙面对A 的冲量大小为mWB .当A 离开墙面时,B 2mWC .A 离开墙面后,A 89W mD .A 离开墙面后,弹簧的最大弹性势能为23W 4.如图,固定的光滑斜面倾角θ=30°,一质量1kg 的小滑块静止在底端A 点.在恒力F作用下从沿斜面向上作匀加速运动,经过时间t=2s,运动到B点,此时速度大小为v1,到B点时撤去F再经过2s的时间,物体运动到AB的中点C,此时速度大小为v2,则以下正确的是A.v2=2v1B.B点到C点的过程中,物体动量改变量为2kg·m/sC.F=7ND.运动过程中F对小滑块做功28J5.如图,质量分别为m A、m B的两个小球A、B静止在地面上方,B球距地面的高度h=0.8m,A球在B球的正上方. 先将B球释放,经过一段时间后再将A球释放. 当A球下落t=0.3s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小为g=10 m/s2,忽略空气阻力及碰撞中的动能损失.下列说法正确的是()A.B球第一次到达地面时的速度为4m/sB.A、B球在B球向上运动的过程中发生碰撞C.B球与A球碰撞后的速度为1m/sD.P点距离地面的高度0.75m6.从高处跳到低处时,为了安全,一般都要屈腿(如图所示),这样做是为了()A.减小冲量B.减小动量的变化量C .增大与地面的冲击时间,从而减小冲力D .增大人对地面的压强,起到安全作用7.3个质量分别为m 1、m 2、m 3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触.现把质量为m 1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等.若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m 1:m 2:m 3为( )A .6:3:1B .2:3:1C .2:1:1D .3:2:18.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g ,下列说法正确的是A .物体第一次滑到槽底端时,槽的动能为3mgh B .物体第一次滑到槽底端时,槽的动能为6mgh C .在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D .物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h 处9.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽10.如图所示,离地H 高处有一个质量为m 、带电量为q +的物体处于电场强度随时间变化规律为0E E kt =-(0E 、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知0qE mg μ<.t=0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑4H 后脱离墙面,此时速度大小为2gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是A .当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动B .摩擦力对物体产生的冲量大小为202E q k μ C .摩擦力所做的功18W mgH = D .物体与墙壁脱离的时刻为gH t g= 11.如图所示,一辆质量M =3kg 的小车A 静止在光滑的水平面上,A 上有一质量m =1kg 的光滑小球B ,将一左端固定于A 上的轻质弹簧压缩并锁定,此时弹簧的弹性势能E p =6J ,B 与A 右壁距离为l 。
解除锁定,B 脱离弹簧后与A 右壁的油灰阻挡层(忽略其厚度)碰撞并被粘住,下列说法正确的是( )A .碰到油灰阻挡层前A 与B 的动量相同B .B 脱离弹簧时,A 的速度为1m/sC .B 和油灰阻挡层碰撞并被粘住,该过程B 受到的冲量大小为3N·sD .整个过程B 移动的距离为34l 12.如图所示,足够长的光滑水平面上有一质量为2kg 的木板B ,质量为1kg 的木块C 叠放在B 的右端点,B 、C 均处于静止状态且B 、C 之间的动摩擦因数为μ = 0.1。
质量为1kg 的木块A 以初速度v 1 = 12m/s 向右滑动,与木板B 在极短时间内发生碰撞,碰后与B 粘在一起。
在运动过程中C 不从B 上滑下,已知g = 10m/s 2,那么下列说法中正确的是( )A .A 与B 碰撞后A 的瞬时速度大小为3m/sB .A 与B 碰撞时B 对A 的冲量大小为8N∙sC .C 与B 之间的相对位移大小为6mD .整个过程中系统损失的机械能为54J13.如图所示,一轻质弹簧固定在墙上,一个质量为m 的木块以速度v 0从右侧沿光滑水平面向左运动并与弹簧发生相互作用。
设相互作用的过程中弹簧始终在弹性限度范围内,那么,到弹簧恢复原长的过程中弹簧对木块冲量I 的大小和弹簧对木块做的功W 的大小分别是( )A .I =0,W =mv 02B .I =mv 0,202mv W =C .I =2mv 0,W =0D .I =2mv 0,202mv W = 14.如图所示,一个质量为m 、半径足够大的1/4光滑圆弧体,静止放在光滑水平面上.有一个质量也为m 的小球,以v 0的初速度从最低点冲上圆弧体到又滑回到最低点的过程中,下列结论正确的是(已知重力加速度为g )( )A .整个过程中,圆弧体的速度先增大后减小B .小球能上升的最大高度为204v gC .圆弧体所获得的最大速度为v 0D .在整个作用的过程中,小球对圆弧体的冲量大于mv 015.如图,为一足够长的光滑水平面,右侧挡板C 与轻质弹簧一端相连,接触面均光滑的三角形斜劈A 静止放在水平面上,另一可视为质点的小球B 从斜劈顶端距地面高h 处静止释放,且3A m m =,B m m =,小球B 滑下后与弹簧作用后反向弹回,下列说法正确的有( )A .小球离开斜劈时两者水平位移3AB x x =B .小球下滑过程中,支持力对小球要做功C .弹簧可以获得的最大弹性势能为34mgh D .小球反向弹回后能追上斜劈,并滑上斜劈端h 高处16.如图所示,质量为2m 的物体A 放在光滑水平面上,右端与一水平轻质弹簧相连,弹簧另一端固定在墙上,质量为m 的物体B 以速度0v 向右运动,与A 相碰后一起压缩弹簧,直至B 与A 分离的过程中,下列说法正确的是A .在弹簧被压缩的过程中,物体B 、A 组成的系统机械能守恒B .弹簧的最大弹性势能为2016mv C .物体A 对B 做的功为2049mv D .物体A 对B 的冲量大小为043mv 17.如图,一绝缘且粗糙程度相同的竖直细杆与两个等量异种点电荷+Q 、-Q 连线的中垂线重合,细杆和+Q 、-Q 均固定,A 、O 、B 为细杆上的三点,O 为+Q 、-Q 连线的中点,AO =BO 。
现有电荷量为q 、质量为m 的小球套在杆上,从A 点以初速度v 0向B 滑动,到达B 点时速度恰好为0。
则可知A .从A 到B ,小球的电势能始终不变,受到的电场力先增大后减小B .从A 到B ,小球的加速度先减小后增大C .小球运动到O 点时的速度大小为022v D .小球从A 到O 与从O 到B ,重力的冲量相等18.带有14光滑圆弧轨道、质量为M 的小车静止置于光滑水平面上,如图所示,一质量为m 的小球以速度0v 水平冲上小车,到达某一高度后,小球又返回车的左端,则( )A .小球一定向左做平抛运动B .小球可能做自由落体运动C .若m M =,则此过程小球对小车做的功为2012Mv D .若m M <,则小球在弧形槽上升的最大高度将大于204v g19.如图所示,光滑水平直轨道上有三个质量均为m =3kg 静止放置的物块A 、B 、C ,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计)。
若A 以v 0=4m/s 的初速度向B 运动并压缩弹簧(弹簧始终在弹性限度内),当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动。
假设B 和C 碰撞时间极短,则以下说法正确的是( )A .从A 开始运动到弹簧压缩最短时A 的速度大小为2m/sB .从A 开始运动到弹簧压缩最短时C 受到的冲量大小为4N·sC .从A 开始运动到A 与弹簧分离的过程中整个系统损失的机械能为3JD .在A 、B 、C 相互作用过程中弹簧的最大弹性势能为16J20.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
已知物块与木板之间的动摩擦因数为μ,整个过程中弹簧的形变均在弹性限度内,则( )A .木板先加速再减速,最终做匀速运动B .整个过程中弹簧弹性势能的最大值为204()Mmv M m + C .整个过程中木板和弹簧对物块的冲量大小为0Mmv M m+ D .弹簧压缩到最短时,物块到木板最右端的距离为202()Mv M m gμ+ 二、动量守恒定律 解答题21.如图所示,质量为m c =2m b 的物块c 静止在倾角均为α=30°的等腰斜面上E 点,质量为m a 的物块a 和质量为m b 的物块b 通过一根不可伸长的匀质轻绳相连,细绳绕过斜面顶端的小滑轮并处于松驰状态,按住物块a 使其静止在D 点,让物块b 从斜面顶端C 由静止下滑,刚下滑到E 点时释放物块a ,细绳正好伸直且瞬间张紧绷断,之后b 与c 立即发生完全弹性碰撞,碰后a 、b 都经过t =1 s 同时到达斜面底端.已知A 、D 两点和C 、E 两点的距离均为l 1=0.9m ,E 、B 两点的距离为l 2=0.4m .斜面上除EB 段外其余都是光滑的,物块b、c与EB段间的动摩擦因数均为μ=33,空气阻力不计,滑轮处摩擦不计,细绳张紧时与斜面平行,取g =10 m/s2.求:(1)物块b由C点下滑到E点所用时间.(2)物块a能到达离A点的最大高度.(3)a、b物块的质量之比abmm.22.消防车的供水系统主要由水泵、输水管道和水炮组成.如图所示,消防水炮离地高度为H=80 m,建筑物上的火点离地高度为h=60 m,整个供水系统的效率η=60%(供水效率η定义为单位时间内抽水过程水所获得的机械能与水泵功率的比值×100%).假设水从水炮水平射出,水炮的出水速度v0=30 m/s,水炮单位时间内的出水量m0=60 kg/s,取g =10 m/s2,不计空气阻力.(1)求水炮与火点的水平距离x,和水炮与火点之间的水柱的质量m;(2)若认为水泵到炮口的距离也为H=80 m,求水泵的功率P;(3)如图所示,为流速稳定分布、体积不可压缩且粘性可忽略不计的液体(比如水)中的一小段液柱,由于体积在运动中不变,因此当S1面以速度v1向前运动了x1时,S2面以速度v2向前运动了x2,若该液柱前后两个截面处的压强分别为p1和p2,选用恰当的功能关系证明:流速稳定分布、体积不可压缩且粘性可忽略不计的液体水平流动(或者高度差的影响不显著)时,液体内流速大的地方压强反而小.23.如图所示,一长L=9.0m的传送带以v=2m/s的速度顺时针旋转,传送带的倾角为θ=37°,一质量M=3kg的A物体随传送带一起(与传送带共速)向上运动,A与传送带间的动摩擦因数为 1.0μ=。