大物习题册答案上册华中科技大学
- 格式:pdf
- 大小:12.50 MB
- 文档页数:79
第11章习题答案11-1 无限长直线电流的磁感应强度公式为B =μ0I2πa ,当场点无限接近于导线时(即a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。
公式aIB πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。
11-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理∑⎰=⋅ii I l d B 0μ得 0=⋅⎰l d B,说明圆形环路L 内的电流代数和为零,并不是说圆形环路L 上B 一定为零。
10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B的大小是否相等? (2)在闭合曲线c 上各点的B是否为零?为什么? 解: ⎰μ=⋅al B 08d⎰μ=⋅bal B 08d⎰=⋅cl B 0d(1)在各条闭合曲线上,各点B的大小不相等.(2)在闭合曲线C 上各点B 不为零.只是B的环路积分为零而非每点0=B .11-4 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释?习题11-2图答:弹簧会作机械振动。
当弹簧通电后,弹簧内的线圈电流可看成是同向平行的,而同向平行电流会互相吸引,因此弹簧被压缩,下端会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动11-5 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强度;(2)x 为何值时,B 值最大,并给出最大值B max .解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:rIB π=201μ2/1220)(12x dI +⋅π=μ2导线在P 点产生的磁感强度的大小为: r IB π=202μ2/1220)(12x d I+⋅π=μ1B 、2B的方向如图所示.P 点总场θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B )()(220x dId x B +π=μ,i x dId x B)()(220+π=μ(2) 当0d )(d =xx B ,0d )(d 22=<xx B 时,B (x )最大.由此可得:x = 0处,B 有最大值.11-6 如图所示被折成钝角的长直载流导线中,通有电流I =20 A ,θ=120°,a =2.0 mm ,求A 点的磁感应强度. 解:载流直导线的磁场)sin (sin 4120ββπμ-=dIBA 点的磁感应强度)))90sin(90(sin sin 40000θθπμ--+=a IB习题10-6图y习题10-7图dPr B 1B 2xy 12oxddθ θ)5.01(2/3100.2201037+⨯⨯⨯=--B =1.73⨯10-3T方向垂直纸面向外。
习题解答 习题一1-1 |r D |与r D 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r D 是位移的模,D r 是位矢的模的增量,即r D 12r r -=,12r r r-=D ;(2)t d d r 是速度的模,即t d d r ==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r += 式中trd d 就是速度径向上的分量,∴trt d d d d 与r 不同如题1-1图所示. 题1-1图(3)t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量. ∵有t t(v =v 表轨道节线方向单位矢),所以t vt v t v d d d d d d tt += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd t 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d t r而求得结果;又有人先计算速度和加速度的分v =22d d d d ÷øöçèæ+÷øöçèæt y t x 及a =222222d d d d ÷÷øöççèæ+÷÷øöççèæt y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=, jt y i t xt r a j t y i t x t r v222222d d d d d d dd d d d d +==+==\ 故它们的模即为22222222222222d d d d d d d d ÷øöçèæ+÷øöçèæ=+=÷øöçèæ+÷øöçèæ=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
大学物理上册习题答案大学物理上册习题答案大学物理是一门重要的基础课程,涵盖了广泛的知识领域,从力学到热学,从电磁学到光学。
学生们通过学习这门课程,可以掌握自然界中的物质和运动规律,培养逻辑思维和问题解决能力。
然而,对于初学者来说,物理习题往往是一个难题。
因此,在这篇文章中,我将给出一些大学物理上册习题的答案,希望能够帮助学生们更好地理解和掌握物理知识。
1. 问题:一个质点以初速度v0匀速沿水平方向运动,经过一段时间t后,它的速度变为v。
求加速度a。
答案:根据匀加速直线运动的公式v = v0 + at,将题目中的数据代入,得到v = v0 + at。
解方程得到a = (v - v0) / t。
2. 问题:一个质点以初速度v0匀速沿水平方向运动,经过一段时间t后,它的位移变为s。
求加速度a。
答案:根据匀加速直线运动的公式s = v0t + (1/2)at^2,将题目中的数据代入,得到s = v0t + (1/2)at^2。
解方程得到a = 2(s - v0t) / t^2。
3. 问题:一个质点以初速度v0匀速沿斜面下滑,经过一段时间t后,它的速度变为v。
求加速度a。
答案:根据斜面下滑运动的公式v = v0 + gt,将题目中的数据代入,得到v = v0 + gt。
解方程得到a = (v - v0) / t。
4. 问题:一个质点以初速度v0自由落体运动,经过一段时间t后,它的位移变为s。
求加速度a。
答案:根据自由落体运动的公式s = v0t + (1/2)gt^2,将题目中的数据代入,得到s = v0t + (1/2)gt^2。
解方程得到a = 2(s - v0t) / t^2。
5. 问题:一个质点以初速度v0匀速沿水平方向运动,经过一段时间t后,它的速度变为v。
如果加速度为a,求位移s。
答案:根据匀加速直线运动的公式v = v0 + at,将题目中的数据代入,得到v = v0 + at。
解方程得到s = v0t + (1/2)at^2。
P S 1 S 2 r 1 n 1 n 2 t 2 r 2 t 1 一、选择题1.3165:在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等 [ ]2.3611:如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2。
路径S 1P垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (B)(C) (D)[ ]3.3664:如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的相位差为(A) 2πn 2e / ( n 1 λ1) (B)[4πn 1e / ( n 2 λ1)] + π(C) [4πn 2e / ( n 1 λ1) ]+ π (D) 4πn 2e / ( n 1 λ1) [ ]4.3169蓝色的滤光片遮盖另一条缝,则:(A) 干涉条纹的宽度将发生改变 (B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变 (D) 不产生干涉条纹[ ]5.3171:在双缝干涉实验中,两条缝的宽度原来是相等的。
若其中一缝的宽度略变窄(缝中心位置不变),则(A) 干涉条纹的间距变宽 (B) 干涉条纹的间距变窄(C) 干涉条纹的间距不变,但原极小处的强度不再为零 (D) 不再发生干涉现象[ ]6.3172:在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝 (B) 使两缝的间距变小 (C) 把两个缝的宽度稍微调窄(D) 改用波长较小的单色光源 [ ]7.3498:在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处 (A) 仍为明条纹 (B) 变为暗条纹 (C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹 [ ] 8.3612:在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离 相等,则观察屏上中央明条纹位于图中O 处。
习题答案3-1 运动员手持铁饼转动1.25圈后松手,此刻铁饼的速度值达到v=25m/s 。
设转动时铁饼沿半径为R=1.0m 的圆周运动并且均匀加速。
求:(1)铁饼离手时的角速度;(2)铁饼的角加速度;(3)铁饼在手中加速的时间(视铁饼为质点).解:(1)铁饼离手时的角速度为s rad R v /250.1/25/===ω(2)铁饼的角加速度为222/8.3925.122252s rad =⨯⨯==πθωα (3)铁饼在手中加速的时间为s t 628.02525.1222=⨯⨯==πωθ3-2 汽车发动机的转速在7.0s 内由2000r/min 均匀增加到3000r/min 。
求 (1)角加速度;(2)这段时间转过的角度;(3)发动机轴上半径为0.2m 的飞轮边缘上的一点在第 7.0s 末的加速度。
解:(1)初角速度为s rad /20960/20020=⨯=πω末角速度为s rad /31460/30002=⨯=πω 角加速度为20/150.7209314s rad t =-=-=ωωβ (2)转过的角度为rad t 301083.1723142092⨯=⨯+=+=ωωθ (3)切向加速度为2/32.015s m R a t =⨯==α法向加速度为2422/1097.12.0314s m R a n ⨯=⨯==ω 总加速度为2422/1097.1s m a a a nt ⨯=+= 总加速度与切向的夹角为998931097.1arctan arctan 4'=⨯==︒t n a a θ 3-3 一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间?解:设某时刻后的角速度为1ω,某时刻前飞轮转动了t 秒。
某时刻后't s 内飞轮转过θ∆。
则有3-4 一个哑铃由两个质量为m ,半径为R 的铁球和中间一根长为l 连杆组成,如图所示。