理论力学第六章_刚体基本运动
- 格式:ppt
- 大小:501.00 KB
- 文档页数:15
理论力学中的刚体运动与角速度的计算刚体是指具有一定形状和大小,其内部各点间相对位置不会发生改变的物体。
在理论力学研究中,刚体运动是一个重要且常见的问题,其中角速度的计算是关键的一部分。
本文将介绍刚体运动的基本概念和相关计算方法。
一、刚体运动的基本概念刚体的运动可以分为平动和转动两种形式。
平动是指刚体整体沿直线运动,而转动则是刚体围绕某个轴旋转运动。
在刚体转动的过程中,角速度是一个重要的物理量。
角速度表示刚体某一点在单位时间内绕轴旋转的角度。
通常用符号ω表示,计量单位是弧度/秒。
二、角速度的计算方法1. 定义式计算:对于旋转角速度恒定的情况,可以通过定义式计算角速度。
角速度ω等于单位时间内转过的弧长与转动所需时间的比值。
ω = Δθ / Δt其中,Δθ是转过的弧长,Δt是转动所需时间。
2. 瞬时角速度计算:在某一时刻的瞬时角速度等于通过该点的切线所确定的线速度与该点到轴的距离之比。
即,ω = v / r其中,v表示质点在切线方向上的线速度,r表示质点到该轴的距离。
3. 利用转动惯量计算:转动惯量是刚体抵抗转动的特性参数。
利用转动惯量的计算公式,可以推导出角速度的表达式。
比如,对于圆盘形刚体绕垂直于其平面并通过质心的轴转动的情况,转动惯量I和角速度的关系公式为:Iω = L其中,I表示转动惯量,L表示刚体的角动量。
三、刚体运动与角速度的应用角速度的计算在刚体运动的分析和应用中发挥着重要作用。
下面以两个实例介绍其应用。
实例一:自转的地球地球自转是一个典型的刚体运动问题。
地球自转一周的周期是24小时。
将地球看作一个近似的刚体,其转动惯量与角速度的乘积等于地球的角动量。
通过计算地球的转动惯量和已知的角动量,可以求得地球的角速度。
实例二:陀螺稳定陀螺是另一个常见的刚体运动问题。
陀螺的稳定性与其角速度密切相关。
通过计算陀螺的角速度,可以分析陀螺的稳定性,并设计出能够保持平衡的陀螺。
总结:刚体运动与角速度的计算是理论力学中的重要内容。
力学中的刚体运动刚体运动是力学中的基础概念之一,涉及物体在空间中的平移和旋转运动。
刚体指的是一个具有无穷多个质点的物体,其内部任意两点之间的相对位置保持不变。
本文将介绍刚体运动的基本原理、刚体运动的类型以及刚体运动的相关公式。
一、刚体运动的基本原理刚体运动的基本原理是“刚体上的任一质点在任意时刻的平面运动状态都完全相同”。
这意味着无论刚体如何运动,刚体上的各个质点之间的相对位置都保持不变。
这种相对位置的不变性使得刚体的运动可以用一个简化的模型来描述。
二、刚体运动的类型刚体运动可以分为平面运动和空间运动两种类型。
1. 平面运动平面运动指的是刚体在一个平面内的运动。
在平面运动中,刚体的质心沿直线或曲线轨迹运动,同时围绕质心进行旋转。
平面运动可以进一步分为平行轴定理和垂直轴定理两种类型。
- 平行轴定理:当刚体的所有质点在一个平面内运动,且对于每个平行于该平面的轴,刚体质量对该轴的转动惯量都相等,则刚体的转动可以看作是质心绕着某个轴的转动。
- 垂直轴定理:当刚体的所有质点在一个平面内运动,且对于每个垂直于该平面的轴,刚体质量对该轴的转动惯量都相等,则刚体的转动可以看作是绕着该轴的转动。
2. 空间运动空间运动指的是刚体在三维空间中的运动。
在空间运动中,刚体的质心和各个质点都可以沿直线或曲线轨迹进行平移和旋转。
空间运动需要考虑刚体在三个方向上的运动和转动,其描述较为复杂,常用欧拉角和四元数等方法进行分析和计算。
三、刚体运动的相关公式刚体运动的描述离不开相关的公式和定理。
以下是一些常用的刚体运动公式:1. 质心运动的描述:- 质心速度公式:v = ds/dt,其中v为质心速度,s为质心位移,t为时间。
2. 刚体的平面运动:- 转动惯量公式:I = ∑mi ri²,其中I为转动惯量,mi为每个质点的质量,ri为质点到旋转轴的距离。
- 角动量公式:L = Iω,其中L为角动量,ω为刚体的角速度。
- 动能定理:∑(1/2mi vi²) = (1/2)Iω²,其中vi为每个质点的速度。
理论力学课后习题答案-第6章--刚体的平面运动分析第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。
试求动齿轮以圆心A 为基点的平面运动方程。
解:ϕc o s )(r R x A += (1) ϕsin )(r R y A+= (2)α为常数,当t = 0时,0ω=0ϕ= 0 221t αϕ= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R =ϕθr R =, ϕϕrrR A+=(4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R tr R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。
试以杆与铅垂线的夹角θ 表示杆的角速度。
解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。
作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。
则角速度杆AB习题6-1图A BCv 0hθ 习题6-2图 P ωAv CA BC v oh θ 习题6-2解图为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。
试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。
解:Rv R v A A ==ωRv R v B B 22==ωB A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。
设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30︒,ϕ=60︒,BC =270mm 。
理论力学运动学知识点总结第一篇:理论力学运动学知识点总结运动学重要知识点一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。
2.刚体平行移动。
·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。
·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。
·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。
3.刚体绕定轴转动。
• 刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。
• 刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。
• 角速度ω表示刚体转动快慢程度和转向,是代数量,以用矢量表示。
,当α与ω。
角速度也可• 角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α 与ω异号时,刚体作匀减速转动。
角加速度也可以用矢量表示。
• 绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。
速度、加速度的代数值为。
• 传动比。
一、点的运动合成知识点总结1.点的绝对运动为点的牵连运动和相对运动的合成结果。
• 绝对运动:动点相对于定参考系的运动;• 相对运动:动点相对于动参考系的运动;• 牵连运动:动参考系相对于定参考系的运动。
2.点的速度合成定理。
• 绝对速度:动点相对于定参考系运动的速度;• 相对速度:动点相对于动参考系运动的速度;• 牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。
3.点的加速度合成定理。
• 绝对加速度:动点相对于定参考系运动的加速度;• 相对加速度:动点相对于动参考系运动的加速度;• 牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;• 科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。
• 当动参考系作平移或 = 0,或与平行时,= 0。
理论力学中的刚体运动与力学参数计算理论力学是力学的基础理论之一,研究物体在力的作用下的运动规律以及相关力学参数的计算。
刚体运动是理论力学研究的重要内容之一,刚体是指在外力作用下,物体内部各部分的相对位置保持不变的物体。
本文将针对理论力学中的刚体运动进行探讨,并介绍相关的力学参数计算方法。
一、刚体运动的类型刚体运动主要包括平动和转动两种类型。
平动是指刚体的质心沿直线轨迹运动,质心速度相等。
而转动是指刚体围绕某一轴旋转,各点角速度相等,且轴上任意两点连线垂直于轴。
根据刚体的运动类型,可以采用不同的方法进行力学参数的计算。
二、平动刚体运动的力学参数计算1. 速度:平动刚体的速度由质心速度来表示,质心速度的计算公式为v = Δx/Δt,其中Δx为质心位置变化的距离,Δt为质心位置变化所经过的时间。
2. 加速度:平动刚体的加速度由质心加速度来表示,质心加速度的计算公式为a = Δv/Δt,其中Δv为质心速度变化的差值,Δt为质心速度变化所经过的时间。
3. 质量:平动刚体的质量常用m来表示,可以通过测量质心处的物体质量来得到,计算公式为m = F/g,其中F为物体所受合力的大小,g为重力加速度。
三、转动刚体运动的力学参数计算1. 角速度:转动刚体的角速度由角位移与时间的比值来表示,角速度的计算公式为ω = Δθ/Δt,其中Δθ为角位移的变化值,Δt为变化所经过的时间。
2. 角加速度:转动刚体的角加速度由角速度变化的差值与时间变化量的比值来表示,角加速度的计算公式为α = Δω/Δt,其中Δω为角速度的变化差值,Δt为角速度变化所经过的时间。
3. 转动惯量:转动刚体的转动惯量常用I来表示,转动惯量决定了物体在旋转运动中的惯性大小。
转动惯量的计算公式为I = ΣmiRi^2,其中mi为物体质点的质量,Ri为质点到转轴的距离。
四、力学参数计算实例以平动刚体为例,假设一个质量为m的物体受到一个水平方向的恒定力F作用,求该物体在t时间后的速度v。
第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。
试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。
即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。
后因刹车,该点以)/(1.02s m t a t =作减速运动。
设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。
解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。
刚体的基本运动
答案:
刚体的基本运动形式包括平动、转动(分为定轴转动和非定轴转动)以及平面运动(随质心的平动、绕质心的转动)。
平动是指刚体在运动过程中,整体上以同一速度沿直线运动的现象,其特点是刚体内各点的运动轨迹完全相同。
转动则是刚体绕某一轴心进行旋转的运动,根据轴心的位置不同,可以分为定轴转动和非定轴转动。
平面运动则包括了随质心的平动和绕质心的转动,这种运动形式在工程实际中也是常见的。
复合运动,即平动和转动的组合运动,是刚体运动的一种特殊形式。
例如,自行车在平地上行驶时,既有整车质心的平动,又有轮胎相对于地面的转动。
因此,复合运动确实是刚体的基本运动形式之一。
延伸:
刚体指在运动中和受力作用后,形状和大小不变,而且内部各点相对位置不变的物体。
绝对刚体实际上只是一种理想模型,因为任何物体在受力作用后,都或多或少地变形,如果变形的程度相对于物体本身几何尺寸来说极为微小,在研究物体运动时变形就可以忽略不计。
把许多固体视为刚体,所得到的结果在工程上一般已有足够的准确度。
刚体的特点:刚体上任意两点的连线在平动中是平行且相等的。
刚体上任意质元的位置矢量不同,相差一恒矢量,但各质元的位移、速度和加速度却相同。
因此,常用“刚体的质心”来研究刚体的平动。
第6章 运动学基础一、是非题(正确的在括号内打“√”、错误的打“×”)1.动点速度的大小等于其弧坐标对时间的一阶导数,方向一定沿轨迹的切线。
( √ ) 2. 动点加速度的大小等于其速度大小对时间的一阶导数,方向沿轨迹的切线。
( × ) 3.在实际问题中,只存在加速度为零而速度不为零的情况,不存在加速度不为零而速度为零的情况。
( × ) 4.两个刚体做平动,某瞬时它们具有相同的加速度,则它们的运动轨迹和速度也一定相同。
( × ) 5.定轴转动刚体的角加速度为正值时,刚体一定越转越快。
( × ) 6.两个半径不等的摩擦轮外接触传动,如果不出现打滑现象,两接触点此瞬时的速度相等,切向加速度也相等。
( √ )二、填空题1. 描述点的运动的三种基本方法是矢径法、直角坐标法和自然坐标法。
2. 点做圆周运动,加速度由切向加速度和法向加速度组成,其中切向加速度反映了速度大小随时间的变化率,方向是沿圆周的切线;法向加速度反映了速度的方向随时间的变化率,方向是沿圆周的法线。
3. 质点运动时,如果d d st和22d d s t 同号,则质点做加速运动,反之则做减速运动。
4. 刚体运动的两种基本形式为平动和定轴转动。
5. 刚体平动的运动特征是刚体在运动的过程中其内的任一直线始终和原来的位置平行。
6. 定轴转动刚体上点的速度可以用矢积表示,它的表达式为r ωv ⨯=;刚体上点的加速度可以用矢积表示,它的表达式为v ωr εa ⨯+⨯=。
7. 刚体绕定轴转动时,在任一瞬时各点具有相同的角速度和角加速度,且各点轨迹均为 圆周。
8. 定轴转动刚体内点的速度分布规律为任何一条通过轴心的直径上各点的速度,若将速度矢的端点连成直线,此直线通过轴心。
9. 半径均为R 的圆盘绕垂直于盘面的O 轴做定轴转动,其边缘上一点M 的加速度如图6.23所示,试问两种情况下圆盘的角速度和角加速度的大小分别为:图(a):=ω0;=εRa。