低温等离子体工作原理

  • 格式:doc
  • 大小:93.00 KB
  • 文档页数:2

下载文档原格式

  / 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低温等离子体工作原理

拥有自主知识产权的DDBD技术采用双介质阻挡放电形式产生等离子体,所产生的密度是其他同类技术产生等离子体密度的1500倍,该技术是由派力迪公司与复旦大学共同研发成功的,用于工业恶臭、异味、有毒有害气体处理。该技术可广泛应用于石油化工、垃圾焚烧、制药、食品、污水处理厂、涂料、皮革加工、感光材料、汽车制造等诸多行业有机废气的治理以及采用其它方法很难解决的废气的治理。

该技术的工作原理如下:

低温等离子体净化废气的工作原理图示:

介质阻挡放电过程中,电子从电场中获得能量,通过碰撞将能量转化为污染物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气中的氧气和水分在高能电子的作用下也可产生大量的新生态氢、臭氧和羟基氧等活性基团,这些活性基团相互碰撞后便引发了一系列复杂的物理、化学反应。从等离子体的活性基团组成可以看出,等离子体内部富含极高化学活性的粒子,如电子、离子、自由基和激发态分子等。废气中的污染物质与这些具有较高能量的活性基团发生反应,最终转化为CO2和H2O等物质,从而达到净化废气的目的。

等离子体化学反应过程大致如下:

从以上反应过程可以看出,电子先从电场获得能量,通过激发或电离将能量转移到污染物分子中去,那些获得能量的污染物分子被激发,同时有部分分子被电离,从而成为活性基团。然后这些活性基团与氧气、活性基团与活性基团之间相互碰撞后生成稳定产物和热。

另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。这类负离子具有很好的化学活性,在化学反应中起着重要的作用。