ANSYS非线形分析指南:接触分析
- 格式:doc
- 大小:170.50 KB
- 文档页数:47
ANSYS接触非线性算法详解本文将向读者详细介绍ANSYS接触非线性中的主要算法的计算原理,如图1所示给出了ANSYS Workbench结构模块中的接触算法选择面板。
1.完全罚函数法(Pure Penalty Method)完全罚函数法计算时需要提供法向和切向刚度矩阵。
完全罚函数的主要缺点是两个接触面之间的穿透量取决于这个刚度矩阵。
过高的刚度值会减小穿透总量,但会产生病态的总体刚度矩阵从而导致计算收敛困难。
2.增强的拉格朗日方法(Augmented Lagrangian Method)增强的拉格朗日方法是为了找到精确的拉格朗日乘子(即接触力),而对罚函数进行一系列修正迭代。
在方程的平衡迭代过程中增大接触附着力(压力和摩擦应力)以便最终的透穿值小于允许的容差值(FTOLN)。
与纯罚函数的方法相比,拉格朗日方法容易得到良态条件,对接触刚度的敏感性较小。
然而,在有些分析中,增进的拉格朗日方法可能需要更多的迭代,特别是在变形后网格变得太扭曲时。
图2 罚函数法的计算原理图3.MPC多点约束法MPC:多点约束是一个极为有效的接触模拟算法。
适用于绑定和不分离接触。
可以连接不同网格模型。
连接不同的单元类型:4.法向拉格朗日乘子法ANSYS提供了一种混合算法,即在接触法向使用拉格朗日乘子法,接触切向使用罚函数法。
对于粘结接触状态,这种方法强制施加零透穿值并且允许小滑动。
它也要求颤振控制参数FTOLN 和TNOP,还有允许的弹性滑动参数SLTO的最大值。
5.梁连接算法梁算法仅适用于绑定连接,该算法使用无质量的梁单元实现接触面和目标面的绑定连接。
《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言在当今的工程领域中,接触问题普遍存在于各种复杂机械系统和工程结构中。
ANSYS软件作为一种强大的工程仿真工具,在处理接触问题方面具有显著的优势。
本文将探讨基于ANSYS软件的接触问题分析方法及其在工程中的应用。
二、ANSYS软件中的接触问题分析1. 接触问题基本理论接触问题是一种高度非线性的问题,涉及到两个或多个物体在接触过程中产生的相互作用。
ANSYS软件通过建立接触对、定义接触面和目标面、设置接触参数等方式,实现对接触问题的模拟和分析。
2. ANSYS软件中的接触类型ANSYS软件支持多种类型的接触问题,包括点-点、点-面、面-面等接触类型。
此外,根据接触方式的不同,ANSYS还提供了刚性-柔性、柔性-柔性等多种接触方式。
用户可以根据实际问题的特点选择合适的接触类型和方式。
3. 接触问题的分析步骤(1)建立模型:在ANSYS中建立几何模型,定义材料属性和网格划分。
(2)定义接触对:选择合适的接触类型和方式,建立接触对。
(3)设置边界条件和载荷:设置模型的边界条件和载荷,包括约束、力、温度等。
(4)求解和分析:进行求解和分析,得到接触问题的解和结果。
三、ANSYS软件在工程中的应用1. 机械工程中的应用在机械工程中,ANSYS软件被广泛应用于分析各种机械零件和装配体的接触问题。
例如,齿轮传动系统的齿轮啮合、轴承的滚动接触等都可以通过ANSYS进行精确的模拟和分析。
此外,ANSYS还可以用于分析机械零件在运动过程中的应力分布和变形情况,为机械系统的设计和优化提供有力支持。
2. 土木工程中的应用在土木工程中,ANSYS软件可以用于分析建筑物、桥梁、隧道等工程结构的接触问题。
例如,建筑物外墙与支架的连接、桥梁的支座连接等都可以通过ANSYS进行模拟和分析。
此外,ANSYS还可以用于分析地震等自然灾害对工程结构的影响,为土木工程的设计和施工提供科学依据。
第五章接触分析5.1 概述接触问题是一种高度非线性行为,需要较多的计算机资源。
为了进行切实有效的计算,理解问题的物理特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在用户求解问题之前,用户通常不知道接触区域。
随载荷、材料、边界条件和其它因素的不同,表面之间可以接触或者分开,这往往在很大程度上是难以预料的,并且还可能是突然变化的。
其二,大多数的接触问题需要考虑摩擦作用,有几种摩擦定律和模型可供挑选,它们都是非线性的。
摩擦效应可能是无序的,所以摩擦使问题的收敛性成为一个难点。
注意 --如果在模型中,不考虑摩擦,且物体之间的总是保持接触,则可以应用约束方程或自由度藕合来代替接触。
约束方程仅在小应变分析( NLGEOM,off)中可用。
见《ANSYS Modeling and Meshing Guide》中的§12,Coupling and Constraint Equations。
除了上面两个难点外,许多接触问题还必须涉及到多物理场影响,如接触区域的热传导、电流等。
5.1.1 显式动态接触分析能力除了本章讨论的隐式接触分析外,ANSYS还在ANSYS/LS-DYNA中提供了显式接触分析功能。
显式接触分析对于短时间接触-碰撞问题比较理想。
关于ANSYS/LS-DYNA的更多的信息参见《ANSYS/LS-DYNA User"s Guide》。
5.2 一般接触分类接触问题分为两种基本类型:刚体─柔体的接触,柔体─柔体的接触。
在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度)。
一般情况下,一种软材料和一种硬材料接触时,可以假定为刚体─柔体的接触,许多金属成形问题归为此类接触。
柔体─柔体的接触是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有相似的刚度)。
柔体─柔体接触的一个例子是栓接法兰。
5.3 ANSYS接触分析功能ANSYS支持三种接触方式:点─点,点─面,面─面接触。
ANSYS有三种类型的接触单元:点对点:最终位置事先知道;只能用于低次单元点对面:接触区域未知,并且允许大滑动;面对面:接触区域未知,并且允许大滑动(相对点对面接触有几个优点)。
接触分析属于高度非线性分析,需要较多的计算资源,这对网格划分以及接触面的选择提出了较高要求。
ansys可完成的接触分析主要有三类:点点,点面,面面接触分析;接触分析主要分为两类:刚体—柔体接触以及柔体—柔体接触。
其中,金属成型分析是典型的刚体柔体接触,一般的接触的问题均为柔体——柔体接触。
★分析的难点在于:1.接触面的识别和选择;2.摩擦模型的选择。
ansys接触分析是通过建立一层接触单元覆盖在接触面之上点点接触一般较少使用,它适用于:预先知道接触位置,且相对滑动忽略,转动量很小,即使是几何非线性分析。
一些过盈装配问题可以采用点点接触代替面面接触;点面接触不需要知道确切接触位置,也不必保持网格一致,允许较大的变形和相对滑动。
这种接触推荐采用contact48而不是26来计算;面面接触是最为常见也是适用范围较广的接触类型:★几个原则(asymmetric contact):接触单元不能渗入目标面,但是目标(面上的)单元可以渗入接触面。
目标面总是刚性的,接触面总是柔性的。
平面或者凹面为目标面;网格细致的为接触面,网格粗糙的为目标面(目标面可以被渗入);The softer surface should be the contact surface and the stiffer surface should be the target surface.高阶单元为接触面,低阶为目标面;However, for 3-D node-to-surface contact, 低阶单元为接触面,高阶为目标面;面积大的是目标面。
In the case of 3-D internal beam-to-beam contact modeled by CONTA176 (a beam or pipe sliding inside another hollow beam or pipe),内部的为接触面,外部为目标面;However, when the inner beam is much stiffer than the outer beam, the inner beam can be the target surface.若不能很好的区分接触面和目标面(When there are several contact pairs involved in the model, and the graphical picking of contact and target surfaces is difficult, you can just define the symmetric contact pairs and, by setting KEYOPT(8) = 2)可采用对称接触分析(Symmetric Contact),即通过设置KEYPOINT(8)=2 实现。
Ansys帮助文档-接触分析侯峰整理1.接触分析overview接触问题是高度非线性的,需要大量的计算机资源来解决这类问题。
解决这类问题时,需要你对物理问题有足够的了解,花足够的时间建立模型,再用尽量好的计算资源进行求解。
接触问题有两个很明显的难点。
第一,在对问题求解之前,我们是不知道接触区域的位置的。
在不同的载荷、材料、边界条件以及其他一些因素的情况下,表面之间可能以不可预知的奇怪的方式在较大尺度上彼此侵入与分离接触面。
第二,大多数接触问题需要考虑到摩擦。
有几种摩擦准则与模型可供选择,他们都是非线性的。
由摩擦产生的反应可能很复杂,导致求解的收敛困难。
除上述两种困难之外,在许多接触问题中,我们不得不强调多域情况下的影响,例如材料的导热率,电流强度以及在接触区域内的磁通量等。
如果在你的模型中不需要考虑摩擦的影响,且体之间的交互影响是确定的,那么,你就可以采用内部的多点约束来对模型进行约束。
另外一个选择是使用约束等式或者成对的自由度约束来进行约束。
这些外部约束方程或者耦合方程仅仅适用于小应变的情况。
除在这个guide中讨论的间接的接触问题外,ansys也能够提供采用ansys ls-dyna动态分析的系列产品进行分析。
直接分析套件对于分析暂态问题非常有用。
1.1一般的接触分类方法接触问题分为两类:刚体-刚体与柔体-柔体问题。
在刚体-柔体接触问题中,一个或多个的接触面被认为是刚性的。
一般来说,任何时候,只要是分析一个硬质材料与一个较软材料的接触问题,都被假设为刚体-柔体问题。
另外一类的问题,即柔体-柔体分析,是更加常见的一类问题。
在这类问题中,两个接触面都被认为是可变形的。
1.2接触分析的能力1.3面-面接触分析单元Ansys提供刚体-柔体接触、柔体-柔体接触的面-面分析单元。
这类分析单元采用一个“目标面”与一个“接触面”来组成一个接触对。
●目标面用TARGE 169(2-D) 与TARGE 170(3-D)两类单元●接触面用CONTA 171、CONTA 172、CONTA 173 、CONTA 174四类单元。
ansys非线性接触分析中的接触行为ansys非线性接触分析中接触行为接触是状态改变非线性,经典ANSYS版本中共提供了7种接触行为,每一种都有其特点及相应的应用范围,在选用的时候应该谨慎。
(1)标准接触行为(standard)该接触行为包括了法向接触闭合和分开行为,在该接触模式中既考虑粘着摩擦同时也考虑了滑动摩擦。
如图上,AB与BC本来是分开的,中间通过B点连接,当在A点施加力F,AB慢慢贴近BC,最终靠在一起。
但F撤销后,AB在恢复力的作用下慢慢回复到初始分开状态。
标准接触行为包括了分开状态→闭合状态→分开状态。
当AB与BC靠在一起时,既存在正压力,同时还有沿BC圆弧切线方向的摩擦力。
(2)粗糙接触行为(rough)该接触行为包括了法向接触闭合和分开行为,但滑动行为在此是不会发生的。
原因是所有参与接触的表面都被假定为非常粗糙,以致于可以认为摩擦力无穷大而不能够产生相对滑动。
在这种接触行为中,接触的两个物体或部件之间,除了存在正压力外,还有切向摩擦力,但是接触部分之间不可以产生相对滑动。
(3)绑定接触行为(bonded)是指一旦接触关系建立,那么目标面及接触面就被假定为粘结在一起(不可以分开)。
(4)绑定接触行为(始终)(bonded(always))任何初始时在许可接触容差范围内探测到的接触点或者是那些即将进入接触的点在后续的分析中将被绑定在一起。
这种接触行为的典型应用,如在组装分析中将两种不同网络的组件“加”在一起。
线性静态分析也可以用该种接触行为来解决,虽然由于有接触单元的存在,分析中将会提示为非线性分析,但往往只要一步迭代就完成了。
(5)绑定接触行为(初始接触)(bonded(initial))绑定仅发生在初始状态下就接触的面上,初始状态下没有接触的部分将继续保持分开。
典型的例子是通过焊接连接在一起的两个物体,焊接部分始终保持连接,没有焊接的部分保持分离状态。
(6)不分开型(no separation)一旦接触关系建立,目标面及接触面便被约束在一起了,但还是允许接触面之间有滑动。
ANSYS-接触非线性分析的一个实例ANSYS - 接触非线性分析的一个实例这是在三维网上的一次试讲所使用的资料,现提供给大家分享,可以作为初学接触非线性时的参考。
下面通过一个2D 例子来演示ANSYS 接触分析中主要参数的设置和作用。
该例子为:一个(无限长) 圆柱置于一个(无限长) 长方体上,当圆柱承受压力载荷时,计算圆柱和长方体之间的接触应力。
该问题可以简化为2D 问题进行分析。
选择单元类型–二维4 节点四边形solid182 单元:单元行为:选择平面应变:设置材料属性: E = 201000 MPa; = 0.3:定义一个矩形:长度20 mm,高度5 mm:再定义一个实心圆,半径5 mm,刚好与矩形接触:为了能使用MAP 方式划分网格,先在圆内创建两条直线,以便将圆切分为 4 块:为了切分矩形,将圆中的竖线延长6 mm。
执行Area by Line,分割圆和矩形:首先选择两个Areas:点击Apply 后,选择水平和竖线,再点击OK,对面进行切割:面切割后,可以进行MAP 划分网格:下面划分网格:进入前处理-> Meshing 首先设置几何体的网格默认属性:设置单元边长,这里取为0.4采用MAP 方式划分网格:网格划分结果:设置约束条件:1 选择两条下边界线设置Uy = 0:为防止x 方向的刚体运动,选择矩形中间线设置为Ux = 0然后在圆柱顶部中间节点处施加压力选择Fy,输入力值-100,力沿着–y 方向,对圆柱构成压力下面准备采用接触向导来定义接触对。
需要做一些准备工作:根据结构情况,选择圆柱面(这里是圆周线) 作为接触面,矩形上边界作为目标面,使用面–面接触。
为了方便,需要预先定义好相关的节点组。
分别选择圆周下边界中间部位的若干节点和矩形上边界中间部位的若干节点,定义两个节点组(N-contact 和N-target),便于创建接触对时使用。
先选择下面两个圆柱面,再select -> everything below -> area 和plot -> element 汇出对应的单元和节点。
ANSYS 分线性接触问题分析汇总接触非线性是一门复杂的学科,ANSYS 关于计算非线性接触的设置选项多只又多,很多人摸不到头脑,本文就基于ANSYS 模拟过的几个接触实例,研究了相关设置选项对接触结果的影响。
实例1:橡胶密封圈配合接触研究—非线性求解设置对结果的影响密封圈配合模型简图见图1,左右两端为刚体,中间圆部分为橡胶密封圈,将刚体2沿刚体1方面移动,从而实现橡胶圈密封作用,采用plane182单元,设置轴对称行为,建立橡胶密封圈与刚体接触模型,见图2。
图1 密封圈配合模型简图 图2 密封圈配合有限元模型图接触对采用默认设置,摩擦系数取0.10,研究非线性求解器设置对收敛方面的影响,大变形静态(Large Displacement Static )效应打开,自动时间步长(Automatic time stepping )打开,子步数(Number of substeps )设置为50,线性搜索(Line search )打开。
1 收敛准则对结果的影响此实例收敛准则默认采用力收敛结合力矩收敛准则(基于L2范数),收敛容差(Tolerance )默认为0.001,工程上认为0.05的收敛容差足够满足要求。
表 1 收敛容差对计算结果的影响收敛容差 最大应力/ MPa报错与否? 0.001 4.12364报错 0.05 4.12785 报错 0.14.12996报错查看报错信息,见图3,表示单元过于扭曲,建议提高子步数或降低时间步长,需要提高网格质量,也要考虑材料属性,接触对及约束方程的合理性,若在第一步迭代就如此,需要预先执行单元形状检查。
图3 报错信息刚体1刚体2密封圈橡胶密封圈配合Von Mises应力云图见图4。
图4 橡胶密封圈配合Von Mises应力2 子步数对结果的影响此实例子步数设置为50、100、200、500,收敛容差(Tolerance)默认为0.001,研究子步数对收敛的影响。
Ansys非线性接触分析和设置设置实常数和单元关键选项程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。
参见《ANSYS Elements Reference》中对接触单元的描述。
实常数在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。
剩下的用来控制接触面单元。
R1和R2 定义目标单元几何形状。
FKN 定义法向接触刚度因子。
FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。
ICONT 定义初始闭合因子。
PINB 定义“Pinball"区域。
PMIN和PMAX 定义初始穿透的容许范围。
TAUMAR 指定最大的接触摩擦。
CNOF 指定施加于接触面的正或负的偏移值。
FKOP 指定在接触分开时施加的刚度系数。
FKT 指定切向接触刚度。
COHE 制定滑动抗力粘聚力。
TCC 指定热接触传导系数。
FHTG 指定摩擦耗散能量的热转换率。
SBCT 指定Stefan-Boltzman 常数。
RDVF 指定辐射观察系数。
FWGT 指定在接触面和目标面之间热分布的权重系数。
FACT 静摩擦系数和动摩擦系数的比率。
DC 静、动摩擦衰减系数。
命令:RGUI:main menu> preprocessor>real constant对实常数FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和FKT,用户既可以定义一个正值,也可以定义一个负值。
程序将正值作为比例因子,将负值作为绝对值。
程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和PMIN 的参考值。
例如ICON = 表明初始闭合因子是“*下层单元的厚度”。
然而,ICON = 则表示真实调整带是单位。
如果下伏单元是超单元,则将接触单元的最小长度作为厚度。
参见图5-8。
图5-8 下层单元的厚度在模型中,如果单元尺寸变化很大,而且在实常数如ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。
ansys 接触分析详解ansys是一种广泛使用的有限元分析软件,可用于许多工程领域,包括接触问题的解决。
接触分析是模拟不同组件之间的接触和相互作用的过程,包括机械接触问题、磨损问题和摩擦问题等。
在这篇文章中,我们将深入探讨ansys接触分析的基础知识和应用。
首先,ansys的接触分析功能主要是基于两个主要的接触算法:拉格朗日法和欧拉法。
拉格朗日法是一种基于位移的方法,它根据接触点的相对位移计算接触力,并将其应用于固体上。
欧拉法是一种基于速度的方法,它通过基于刚体动力学计算接触力。
两种方法各有优缺点,应根据具体问题选择合适的方法。
接下来,我们将介绍ansys中用于接触分析的工具和技术:1. 接触配对:在模拟接触问题时,需要对参与接触的两个组件进行配对。
ansys可以自动完成这个过程,并且用户可以通过手动指定匹配方式来进行更精确的模拟。
2. 接触条件:ansys支持多种接触条件,包括无摩擦、粘滞、线性弹簧和非线性弹簧。
用户可以根据实际情况选择合适的接触条件,并根据需要进行调整。
3. 接触分析类型:ansys支持两种接触分析类型:静态接触分析和动态接触分析。
静态接触分析用于研究静止状态下的接触问题,而动态接触分析用于模拟动态接触问题,例如冲击和振动。
4. 接触网格:接触分析需要对网格进行紧密的划分,以准确地表示接触面的几何形状。
为此,ansys提供了多种接触网格工具,包括自动网格划分、手动网格划分和基于接触表面的划分。
用户可以根据需要使用这些工具。
5. 接触后处理:完成接触分析后,还需要进行结果的后处理。
ansys提供了多种接触后处理工具,例如接触力分布图、接触区域和应力分布。
用户可以使用这些工具对结果进行深入的分析。
最后,ansys接触分析的应用范围非常广泛,例如机械工程、航空航天、汽车、船舶、建筑和医疗设备等领域。
ansys的接触分析功能可以帮助工程师准确地模拟接触问题,并提供精确的结果,从而帮助他们做出更好的决策和设计。
《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言在复杂的工程结构中,不同部分之间的接触问题是一项重要而又具有挑战性的问题。
近年来,ANSYS软件作为一款多功能有限元分析软件,其在处理各种复杂的工程问题中扮演了关键的角色。
本文将详细介绍基于ANSYS软件的接触问题分析方法,并探讨其在工程中的应用。
二、ANSYS软件接触问题分析1. 接触问题分析基础ANSYS软件中的接触问题分析基于有限元法,通过对物体表面之间的相互作用进行建模和分析,以解决接触问题。
接触问题通常涉及到两个或多个物体在力、热、电等作用下的相互作用,其中力是接触问题研究的主要对象。
2. 接触类型及模型ANSYS软件支持多种接触类型和模型,如点对点、点对面、面对面等。
根据不同的接触情况,选择合适的接触类型和模型对于准确分析接触问题至关重要。
例如,在机械工程中,常常需要分析零件之间的摩擦接触;在热工程中,需要分析热传导过程中的热接触等。
3. 接触问题分析流程使用ANSYS软件进行接触问题分析的流程包括建立模型、定义材料属性、划分网格、设置接触对、加载及求解等步骤。
其中,定义接触对是关键步骤之一,需要正确选择主从面、接触类型及模型等参数。
三、ANSYS软件在工程中的应用1. 机械工程在机械工程中,ANSYS软件被广泛应用于分析零件之间的摩擦接触、螺栓连接等工程问题。
通过建立精确的有限元模型,可以预测零件在实际工作过程中的应力分布、变形等情况,为优化设计提供依据。
2. 热工程在热工程中,ANSYS软件可用于分析热传导过程中的热接触问题。
例如,在电子设备散热设计中,通过ANSYS软件分析不同材料之间的热传导及热阻抗,可以优化散热结构,提高设备的性能和寿命。
3. 土木工程在土木工程中,ANSYS软件可用于分析建筑物、桥梁等结构在地震、风载等作用下的动力响应及结构稳定性。
通过建立结构的有限元模型,可以预测结构的变形、应力分布等情况,为结构设计和抗震设计提供依据。
ANSYS接触分析ANSYS是一种广泛使用的工程仿真软件,能够进行各种工程问题的数值分析和模拟。
接触分析是ANSYS中的一种重要分析方法,用于研究和评估两个或多个物体之间的接触行为。
接触分析在机械、土木、汽车、航空航天等领域都有广泛应用,在设计和优化工程系统时提供了重要指导。
接触分析的基本原理是通过建立接触面上的接触条件和力学行为模型,来预测接触过程中的应力、应变和接触面的变形情况。
使用接触分析可以评估接触面上的压力分布、接触面的形状变化、摩擦力和接触面之间的滑动行为等。
接触分析能够帮助工程师优化设计,提高系统可靠性和效率。
ANSYS提供了多种接触分析方法,包括接触与非线性分析(contact and nonlinear analysis)、接触单元分析(contact element analysis)和基于拉格朗日和欧拉方法的接触分析(Lagrange and Euler contact analysis)等。
不同的方法适用于不同的接触问题,例如铰链接触、摩擦接触和完全粘连接触等。
在进行接触分析时,首先需要定义接触区域,即两个或多个物体之间的接触面。
接触面可以是平面、曲面或曲线,可以通过CAD模型导入或手动创建。
接下来,需要定义接触材料的特性,包括弹性模量、泊松比和摩擦系数等。
然后,需要为接触面上的节点或单元分配合适的边界条件,例如约束条件和荷载。
最后,可以运行接触分析并获得结果。
ANSYS的接触分析模块提供了丰富的分析结果和可视化工具,可以帮助用户理解接触行为并进行设计优化。
常见的结果包括两个物体之间的接触面积、接触面的法向压力分布、接触区域的摩擦力和切向位移等。
通过分析这些结果,可以评估接触性能和接触界面的强度。
总结来说,ANSYS接触分析是一种重要的工程仿真方法,可以用于评估两个或多个物体之间的接触行为。
它能够帮助工程师优化设计,提高系统可靠性和效率。
通过定义接触区域、材料特性和边界条件,运行接触分析并分析结果,可以得到关于接触性能和接触界面强度的重要信息。
ANSYS接触分析精华ANSYS是一款广泛应用于工程领域的有限元分析软件,可以帮助工程师进行各种结构和材料的力学性能分析。
在ANSYS中,接触分析是一个重要的模块,它可以模拟在不同物体之间的接触行为。
本文将介绍ANSYS接触分析的精华内容及其应用。
1. 接触分析的基本原理接触分析是通过建立不同物体之间的节点接触来模拟物体间的接触行为。
在ANSYS中,通过采用节点到节点的接触关系,来模拟物体之间的接触和相互影响。
接触分析的基本原理是基于虚功原理和平衡方程,利用迭代计算方法求解出物体之间的接触压力、接触应力分布、接触区域等参数。
2. 接触问题的分类在ANSYS中,接触问题可分为无接触和有接触两类。
无接触问题是指物体之间不存在接触行为,而有接触问题则包括有限元模型中物体间的相互接触。
有接触问题又可细分为针对不同接触类型的分析,如点对面接触、面对面接触或多物体接触等。
ANSYS提供了不同类型接触分析的功能模块,可以根据实际情况选择合适的接触类型进行模拟。
3. 接触分析的关键步骤3.1 几何建模:在进行接触分析前,需要首先进行几何建模。
ANSYS提供了丰富的几何建模工具,可以创建各种复杂形状的模型。
3.2 网格划分:在进行接触分析前,需要将模型进行网格划分。
合适的网格划分能够保证分析结果的准确性和计算效率。
3.3 材料属性定义:在ANSYS中,需要对物体的材料属性进行定义,包括材料的弹性模量、泊松比、压力限制等。
3.4 边界条件设定:在接触分析中,需要对物体的边界条件进行设定,包括约束条件和加载条件等。
3.5 接触参数设定:在进行接触分析前,需要对接触参数进行设定,如摩擦系数、接触模型类型等。
3.6 求解与后处理:设置好模型后,可以进行求解和后处理。
ANSYS提供强大的求解器用于求解接触问题,并可根据需要进行后处理和结果分析。
4. ANSYS接触分析的应用领域ANSYS接触分析广泛应用于机械、土木、航空航天、汽车等工程领域。
《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着现代工程技术的快速发展,接触问题在各种工程领域中变得越来越重要。
ANSYS软件作为一款强大的工程仿真软件,其在接触问题上的分析和处理能力得到了广泛应用。
本文将介绍基于ANSYS软件的接触问题分析及在工程中的应用。
二、ANSYS软件接触问题分析1. 接触问题基本理论接触问题是一种典型的非线性问题,涉及到两个或多个物体在力、热、电等作用下的相互作用。
在ANSYS中,接触问题主要通过定义接触对、设置接触面参数、定义接触刚度等方式进行模拟。
2. ANSYS软件接触问题处理流程(1)建立模型:在ANSYS中建立涉及接触问题的物理模型。
(2)定义材料属性:设置模型中各部分的材料属性,包括弹性模量、密度、泊松比等。
(3)划分网格:对模型进行网格划分,以便更好地进行后续的数值分析和计算。
(4)定义接触对:根据实际需求,定义接触对,并设置相应的接触面参数。
(5)求解设置:设置求解器、求解参数等。
(6)结果分析:对求解结果进行分析,包括应力分布、位移变化等。
三、ANSYS软件在工程中的应用1. 机械工程领域在机械工程领域,ANSYS软件被广泛应用于分析各种机械零件的接触问题。
例如,齿轮传动中齿轮与齿轮之间的接触问题、轴承中滚动体与内外圈的接触问题等。
通过ANSYS软件的分析,可以有效地预测机械零件的应力分布、疲劳寿命等,为机械产品的设计和优化提供有力支持。
2. 土木工程领域在土木工程领域,ANSYS软件被广泛应用于分析土与结构之间的接触问题。
例如,桥梁、大坝等结构物与地基之间的相互作用、地震作用下建筑结构的动力响应等。
通过ANSYS软件的分析,可以有效地评估结构的稳定性和安全性,为土木工程的设计和施工提供有力支持。
3. 汽车工程领域在汽车工程领域,ANSYS软件被广泛应用于分析汽车零部件的接触问题。
例如,汽车发动机的缸体与缸盖之间的密封问题、汽车轮胎与地面的摩擦问题等。
一般的接触分类2ANSYS接触能力2点─点接触单元2点─面接触单元2面─面的接触单元3执行接触分析4面─面的接触分析4接触分析的步骤:4步骤1:建立模型,并划分网格4步骤二:识别接触对4步骤三:定义刚性目标面5步骤4:定义柔性体的接触面9步骤5:设置实常数和单元关键字11步骤六:22步骤7:给变形体单元加必要的边界条件23步骤8:定义求解和载步选项23第十步:检查结果24点─面接触分析26点─面接触分析的步骤27点-点的接触36接触分析实例(GUI方法)40非线性静态实例分析(命令流方式)43接触分析接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一般的接触分类接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS接触能力ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。
为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。
如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。
点─点接触单元点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。
点─面接触单元点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。
如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。
使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。
Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。
面─面的接触单元ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用Conta171,Conta172,Conta173,Conta174来模拟。
一个目标单元和一个接单元叫作一个“接触对”程序通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常的号。
与点─面接触单元相比,面─面接触单元有好几项优点,·支持低阶和高阶单元·支持有大滑动和摩擦的大变形,协调刚度阵计算,单元提法不对称刚度阵的选项。
·提供工程目的采用的更好的接触结果,例如法向压力和摩擦应力。
·没有刚体表面形状的限制,刚体表面的光滑性不是必须允许有自然的或网格离散引起的表面不连续。
·与点─面接触单元比,需要较多的接触单元,因而造成需要较小的磁盘空间和CPU时间。
·允许多种建模控制,例如:·绑定接触·渐变初始渗透·目标面自动移动到补始接触·平移接触面(老虎梁和单元的厚度)·支持死活单元使用这些单元,能模拟直线(面)和曲线(面),通常用简单的几何形状例如圆、抛物线、球、圆锥、圆柱采模拟曲面,更复杂的刚体形状能使用特殊的前处理技巧来建模。
执行接触分析不同的接触分析类型有不同的过程,下面分别讨论面─面的接触分析在涉及到两个边界的接触问题中,很自然把一个边界作为“目标”面而把另一个作为“接触”面,对刚体─柔体的接触,“目标”面总是刚性的,“接触”面总是柔性面,这两个面合起来叫作“接触对”使用Targe169和Conta171或Conta172来定义2-D接触对,使用Targe170和Conta173或Conta174来定义3-D接触对,程序通过相同的实常收号来识别“接触对”。
接触分析的步骤:执行一个典型的面─面接触分析的基本步骤列示如下:1.建立模型,并划分网格2.识别接触对3.定义刚性目标面4.定义柔性接触面5.设置单元关键字和实常的6.定义/控制刚性目标面的运动7.给定必须的边界条件8.定义求解选项和载荷步9.求解接触问题10.查看结果步骤1:建立模型,并划分网格在这一步中,你需要建立代表接触体几何形状的实体模型。
与其它分析过程一样,设置单元类型,实常的,材料特性。
用恰当的单元类型给接触体划分网格。
命令:AMESHVMESHGUI:Main Menu>Preprocessor>mesh>Mapped>3 or4 SidedMain Menu>Pneprocessor>mesh>mapped>4 or 6 sided步骤二:识别接触对你必须认识到,模型在变形期间哪些地方可能发生接触,一是你已经识别出潜在的接触面,你应该通过目标单元和接触单元来定义它们,目标和接触单元跟踪变形阶段的运动,构成一个接触对的目标单元和接触单元通过共享的实常号联系起来。
接触环(区域)可以任意定义,然而为了更有效的进行计算(主要指CPU 时间)你可能想定义更小的局部化的接触环,但能保证它足以描述所需要的接触行为,不同的接触对必须通过不同的实常数号来定义(即使实常数号没有变化)。
由于几何模型和潜在变形的多样形,有时候一个接触面的同一区域可能和多个目标面产生接触关系。
在这种情况下,应该定义多个接触对(使用多组覆盖层接触单元)。
每个接触对有不同的实常数号。
步骤三:定义刚性目标面刚性目标面可能是2—D的或3─D的。
在2—D情况下,刚性目标面的形状可以通过一系列直线、圆弧和抛物线来描述,所有这些都可以用TAPGE169来表示。
另外,可以使用它们的任意组合来描述复杂的目标面。
在3—D情况下,目标面的形状可以通过三角面,圆柱面,圆锥面和球面来推述,所有这些都可以用TAPGE170来表示,对于一个复杂的,任意形状的目标面,应该使用三角面来给它建模。
控制结点(Pilot)刚性目标面可能会和“pilot结点“联系起来,它实际上是一个只有一个结点的单元,通过这个结点的运动可以控制整个目标面的运动,因此可以把pilot结点作为刚性目标的控制器。
整个目标面的受力和转动情况可以通过pilot结点表示出来,“pilot结点”可能是目标单元中的一个结点,也可能是一个任意位置的结点,只有当需要转动或力矩载荷时,“pilot结点”的位置才是重要的,如果你定义了“pilot结点”ANSYS程序只在“pilot结点”上检查边界条件,而忽略其它结点上的任何约束。
对于圆、圆柱、圆锥、和球的基本图段,ANSYS总是使用条一个结点作为“pilot 结点”基本原型你能够使用基本几形状来模拟目标面,例如:“圆、圆柱、圆锥、球。
直线、抛物线、弧线、和三角形不被允许、虽然你不能把这些基本原型彼此合在一起,或者是把它们和其它的目标形状合在一起以便形成一个同一实常数号的复杂目标面。
但你可以给每个基本原型指定它自己的实常的号。
单元类型和实常数在生成目标单元之前,首先必须定义单元类型(TARG169或TARG170)。
命令:ETGUI:main menu>preprocessor>Element Type> Add/Edit/Delete随后必须设置目标单元的实常数。
命令:RealGUI:main menn>preprocessor>real constants对TARGE169和TARGE170仅需设置实常数R1和R2,而只有在使用直接生成法建立目标单元时,才需要从为指定实常数R1、R2,另外除了直接生成法,你也可以使用ANSYS网格划分工具生成目标单元,下面解释这两种方法。
使用直接生成法建立刚性目标单元为了直接生成目标单元,使用下面的命令和菜单路径。
命令:TSHAPGUI:main menu>preprocessor>modeling-create>Elements>Elem Attributes随后指定单元形状,可能的形状有:·straight line (2D)·parabola (2-D)·clockwise arc(2-D)·counterclokwise arc (2-D)·circle(2-D)·Triangle (3-D)·Cylinder (3-D)·Cone (3-D)·Sphere (3-D)·Pilot node (2-D和3-D)一旦你指定目标单元形状,所有以后生成的单元都将保持这个形状,除非你指定另外一种形状。
然后你就可以使用标准的ANSYS直接生成技术生成结点和单元。
命令:NEGUI:main menu>pnoprocessor> modeling- create> nodesmain menu>pnoprocessor> modeling- create>Elements在建立单元之后,你可以通过列示单元来验证单元形状命令:ELISTGUI:utility menu>list>Elements>Nodes+Attributes使用ANSYS网格划分工具生成刚性目标单元你也可以使用标准的ANSYS网格划分功能让程序自动地生成目标单元,ANSYS 程序将会以实体模型为基础生成合适的目标单元形状而忽略TSHAP命令的选项。