漆安慎 杜禅英 力学习题及答案10章
- 格式:doc
- 大小:361.50 KB
- 文档页数:9
重要提示本书由本机构编写组多位高分在读研究生按照考试大纲、真题、指定参考书等公开信息潜心整理编写,仅供考研复习参考,不目标学校及研究生院官方无关,如有侵权请联系我们立即处理。
一、计算题1. 一粗细均匀、长为L 、质量为m 的细棒,其一端接一个大小可以丌计,质量为也为m 的小球,其水平轴O 在棒的一端,棒在水平位置由静止释放,求:(1)整个系统的转动惯量;(2)棒摆到竖直位置时,小球的速度。
【答案】(1)I=1/3mL 2+mL 2 (2)mgL/2+mgL=1/2I ω2lg23=ω gl l v 23==ω2. 质量为2.97kg ,长为1.0m 的均质等截面细杆可绕水平光滑的轴线O 转动,最初杆静止于铅直方向.一弹片质量为10kg ,以水平速度200m/s 射出并嵌入杆的下端,和杆一起运动,求杆的最大摆角θ.【答案】取子弹和杆为物体系。
分两个过程。
过程1:子弹嵌入前一瞬时开始到完全嵌入时为止。
此过程时间极短,可视为在原地完成。
此时受力为mg ,Mg,N 为转轴对杆的支承力,对于轴,外力矩为零。
有角动量守恒。
规定逆时针为转轴正方向。
得:20020m m I 1I M3νωω⎧=+⎪⎨=⎪⎩解得:2022m 2.0(rad /s)1Mm3νω==+ 过程2:由过程1末为始到物体系摆至最高点为止。
此过程中一切耗散力做功为零。
故物体系机械能守恒。
取杆的最低点为重力势能零点。
有2222111Mg m M (1cos )mg (1cos )Mg Mg 222322ωωθθ++=-+-+ 解得2211(M m)23cos 10.864M (m)g 230.3ωθθ+=-=+∴=3. 质量为2kg 的质点,所受外力为i t F6=(SI),该质点从t=0时刻由静止开始运动,试求前2s 内,外力所作的功.【答案】ma F =,)s m (3/2-⋅==t m F a t a t 3d /d ==v ,t t d 3d =v由⎰⎰=tt t 0d 3d v v ,得25.1t =v (m/s)故t=2s 时,v 2=6m/s根据动能定理,外力的功36210212222==-=v v m m W J4. 质量为5kg 的滑块在F=15N 的水平拉力作用下,由静止开始做匀加速直线运动,力F 在作用了6m 后撤去,若滑块不水平地面间的动摩擦因素为0.2,求:(1)滑块运动过程中的最大动能;(2)在撤去F 后滑块还能滑行多进?【答案】(1))(10N mg f ==μk E S f F =-)( J E k 30= (2)-30=-fS S=3m5. (1)一简谐振动的运动规律为)48cos(5π+=t x ,若计时起点提前0.5s ,其运动学方程如何表示?欲使其初相为零,计时起点应提前或推迟若干?(2)一简谐振动的运动学方程为)3sin(8π-=t x .若计时起点推迟1s ,它的初相是多少?欲使其初相为零,应怎样调整计时起点?(3)画出上面两种简谐振动在计时起点改变前后t 0=时旋转矢量的位置.【答案】(1))48cos(5π+=t x (1)计时起点提前0.5,则0.5t t '=+,代入(1)式,运动方程为:5cos[8(0.5))5cos[84)44x t t ππ''=-+=-+设计时起点提前0t 秒,可使初相为零,即0t t t ''=+,代入(1)式得: 05cos(88)5cos(8)4x t t t π''''=-+=有0080,432t t ππ-+==即即提前32π秒时计时可使其初相为零。
《力学》杜婵英漆安慎课后习题答案大全集《力学》是物理学的一个重要分支,对于理解自然界的运动规律和现象具有关键作用。
杜婵英和漆安慎所著的《力学》教材在众多物理学教材中备受青睐,而课后习题则是巩固和深化对知识理解的重要途径。
以下为您提供一份较为全面的课后习题答案大全集。
首先,让我们来谈谈第一章“质点运动学”的习题答案。
在涉及质点位置、位移和速度的问题中,我们要明确这些物理量的定义和关系。
例如,习题中可能会给出质点在不同时刻的位置坐标,要求计算位移和平均速度。
答案的关键在于准确计算坐标的变化量,并用时间相除得到平均速度。
对于瞬时速度的计算,则需要通过求导或者利用极限的概念来得出。
在加速度的相关习题中,要根据速度的变化量和时间来计算加速度。
同时,还需要理解加速度与力的关系,这在后续的章节中会有更深入的探讨。
第二章“牛顿运动定律”的习题答案有着重要的意义。
对于牛顿第一定律,要理解惯性的概念,以及物体在不受力或合力为零时保持静止或匀速直线运动的状态。
在习题解答中,可能会通过分析物体的运动状态来判断是否符合牛顿第一定律。
牛顿第二定律是这一章的核心,F =ma 这个公式的应用非常广泛。
在解题时,首先要确定研究对象,分析其所受的力,并正确分解和合成这些力。
然后,根据加速度的定义和公式计算加速度,进而求出物体的运动状态。
牛顿第三定律强调了作用力和反作用力的关系,大小相等、方向相反、作用在同一直线上。
在涉及相互作用的物体的习题中,要正确运用这一定律来分析问题。
第三章“动量守恒和能量守恒”的习题答案也颇具挑战。
动量守恒定律在碰撞、爆炸等问题中经常被应用。
在解答此类习题时,需要明确系统的范围,判断在某个过程中是否满足动量守恒的条件。
如果满足,就可以根据动量守恒定律列出方程求解。
能量守恒定律则涵盖了动能、势能、内能等多种形式的能量。
在习题中,可能需要分析物体在不同位置和状态下的能量变化,通过建立能量守恒的方程来解决问题。
例如,在涉及机械能守恒的问题中,要注意只有重力或弹力做功时机械能才守恒。
面向21世纪课程教材-普通物理学教程-力学-第二版-漆安慎 杜婵英 思考题习题解析第一章 物理学和力学思 考 题1.1解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2解答,(1)由量纲1dim -=LT v ,2 dim -=LT a ,h km h km h km s m /6.3/36001036001/10/33=⨯==-- 2223232/36006.3/360010)36001/(10/h km h km h km s m ⨯=⨯==-- 改为以h (小时)和km (公里)作为时间和长度的单位时,,36006.3216.320at t v s ⨯⨯+=(速度、加速度仍为SI 单位下的量值) 验证一下: 1.0h 3600s t ,4.0m /s a ,/0.220====s m v 利用,2120at t v s += 计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,36006.3216.320at t v s ⨯⨯+= 计算得:)(2.25927259202.71436006.321126.32km s =+=⨯⨯⨯⨯+⨯⨯= (2). 仅时间单位改为h 由量纲1 dim -=LT v ,2 dim -=LT a 得h m h m h m s m /3600/360036001//=== 222222/3600/3600)36001/(/h m h m h m s m === 若仅时间单位改为h ,得:,3600213600220at t v s ⨯+=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,3600213600220at t v s ⨯+=计算得:)(259272002592000072001436002112360022m s =+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h 由量纲1 dim -=LT v ,得:sm h km h km h km s m /6.31/,/6.3)36001/(10/3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s 得:,216.3120at t v s +=验证一下: 1.0h 3600s t ,4.0m/s a ,/0.220====s m v利用,2120at t v s +=计算得:)(259272002592000072003600421360022m s =+=⨯⨯+⨯=利用,216.3120at t v s +=计算得:)(25927200259200007200360042136003600/11026.3123m s =+=⨯⨯+⨯⨯⨯=- 1.3解答,,ksv f ,22=∝sv f][][][][][[?]][][]?[][32242222222222mkgsv f s m kgms sv f s m v m s N f k s m v m s k N f ====----物理意义:体密度。
第二章基本知识小结⒈基本概念 22)(dt r d dt v d a dt rd v t r r====)()()(t a t v t r⇔⇔(向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件:000,,v v r r t t===)⒉直角坐标系 ,,ˆˆˆ222z y x r k z j y ix r ++=++= r与x,y,z轴夹角的余弦分别为 r z r y r x /,/,/.v v v v v k v j v i v v zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 v v v v v v z y x /,/,/.a a a a a k a j a i a a zy x z y x ,,ˆˆˆ222++=++=与x,y,z 轴夹角的余弦分别为 ./,/,/a a a a a a z y x222222,,,,dtz d dt dv a dt y d dt dv a dt x d dt dv a dtdzv dt dy v dt dx v z z yy x x z y x =========),,(),,(),,(z y x z y x a a a v v v z y x ⇔⇔⒊自然坐标系 ||,,ˆ);(ττττv v dtds v v v s r r ====ρτττττ22222,,,ˆˆv a dts d dt dv a a a a n a a a n n n ===+=+= )()()(t a t v t s ττ⇔⇔⒋极坐标系 22,ˆˆ,ˆθθθv v v v r v v r r r r r +=+==dtd r v dt dr v r θθ==, ⒌相对运动 对于两个相对平动的参考系',0't t r r r =+=(时空变换)0'v v v+= (速度变换) 0'a a a+= (加速度变换)若两个参考系相对做匀速直线运动,则为伽利略变换,在图示情况下,则有: zz y y x x z z y y x x a a a a a a v v v v V v v tt z z y y Vt x x =====-====-=',','',','',',','y y'Vo x o' x' z z'2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=⑴ j t i t r ˆ)14(ˆ)32(-+-= ⑵,求质点轨迹并用图表示.解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y x2.1.2 质点运动学方程为kj e i e r t t ˆ2ˆˆ22++=-.⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
第五章 一、基本知识小结⒈力矩力对点的力矩F r o力对轴的力矩F r k zˆ ⒉角动量质点对点的角动量 p r L o质点对轴的角动量p r k L zˆ ⒊角动量定理适用于惯性系、质点、质点系⑴质点或质点系对某点的角动量对时间的变化率等于作用于质点或质点系的外力对该点的力矩之和dtL d 0外⑵质点或质点系对某轴的角动量对时间的变化率等于作用于质点或质点系的外力对该轴的力矩之和dtdL zz ⒋角动量守恒定律适用于惯性系、质点、质点系⑴若作用于质点或质点系的外力对某点的力矩之和始终为零,则质点或质点系对该点的角动量保持不变⑵若作用于质点或质点系的外力对某轴的力矩之和始终为零,则质点或质点系对该轴的角动量保持不变⒌对质心参考系可直接应用角动量定理及其守恒定律,而不必考虑惯性力矩。
二、思考题解答5.1下面的叙述是否正确,试作分析,并把错误的叙述改正过来: (1)、一定质量的质点在运动中某时刻的加速度一经确定,则质点所受的合力就可以确定了,同时作用于质点的力矩也就确定了。
(2)、质点作圆周运动必定受到力矩的作用;质点作直线运动必定不受力矩的作用。
(3)、力与z 轴平行,所以力矩为零;力与z 轴垂直,所以力矩不为零。
(4)、小球与放置在光滑水平面上的轻杆一端连结,轻杆另一端固定在铅直轴上。
垂直于杆用力推小球,小球受到该力力矩作用,由静止而绕铅直轴转动,产生了角动量。
所以,力矩是产生角动量的原因,而且力矩的方向与角动量方向相同。
(5)、作匀速圆周运动的质点,其质量m ,速率v 及圆周半径r 都是常量。
虽然其速度方向时时在改变,但却总与半径垂直,所以,其角动量守恒。
答:(1)不正确. 因为计算力矩, 必须明确对哪个参考点. 否则没有意义. 作用于质点的合力可以由加速度确定. 但没有明确参考点时, 谈力矩是没有意义的. (2)不正确. 质点作圆周运动时, 有两种情况: 一种是匀速圆周运动, 它所受合力通过圆心; 另一种是变速圆周运动, 它所受的合力一般不通过圆心. 若对圆心求力矩, 则前者为零, 后者不为零.质点作直线运动, 作用于质点的合力必沿直线. 若对直线上一点求力矩, 必为零; 对线外一点求力矩则不为零。
力学(第二版)漆安慎习题解答数学预备知识第一章物理学和力学数学常识一、微积分1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y ⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸x e y sin = ⑹x e y x 100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx x x )2()13(23⑵⑴ ⎰⎰⎰⎰+--++dxb ax dxdx x x dx e x x x x x x)sin()cos (sin )2(22113⑹⑸⑷⑶⎰⎰⎰⎰⎰⎰-+-dxxdxdx xe xdx x dx e xx x b ax dx x ln 222)12(cos )11(cos sin 2⑽⑼⑻⑺ 解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-cx x xd dx c x x dx x xdx ce x d e dx xe c x x xd xdx x c b ax b ax d b ax c ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e cx dx x dx dx x cx x x dx xdx dx x dx x x xx x x x aab ax dxxx x aax dxx x x x xxx x dxx xx x x x 221ln 4121212212213312222/112212************/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分⎰⎰⎰⎰⎰⎰⎰⎰++--++--2/021114/6/2111ln 12/12/111421)sin 3(2cos )()1()122πππ⑻⑺⑹⑸⑷⑶⑵(⑴dxx x dx xdxdx e dx dx e e dx x x xxex xxdx xx︒===-=-=--=--=-=-=----⎰⎰⎰⎰⎰⎰60|arcsin )1(|)1()1()1()1(||)132/12/12/12/111551105514143532421213221212/121223π⑶⑵(解:⑴x e e e d e dx e e x x dx dx xdx x xdx x x x x xπππππππππ412832/02/0212/0210101143214/6/4/6/21214/6/221211112211ln 1)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(2+=-+=+︒===-===+-=+=+=+=++=⎰⎰⎰⎰⎰⎰⎰⎰⎰++dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x x x x eee xx πππ⑻⑺⑹⑸⑷示这些定积分。
最新《力学》漆安慎(第二版)答案章第十一章流体力学力学(第二版)漆安慎习题解答第11章流体力学习题解答力学(第二版)漆安慎课后答案第十一章流体力学基本知识小结⒈理想流体就是不可压缩、无粘性的流体;稳定流动(或称定常流动)就是空间各点流速不变的流动。
⒉静止流体内的压强分布相对地球静止:dpgdy,p1p2gh(h两点间高度)相对非惯性系静止:先找出等压面,再采用与惯性系相同的方法分析。
⒊连续性方程:当不可压缩流体做稳定流动时,沿一流管,流量守恒,即Qv11v22恒量⒋伯努力方程:当理想流体稳定流动时,沿一流线,2pgh1v恒量2⒌粘性定律:流体内面元两侧相互作用的粘性力与面元的面积、速度梯度成正比,即f⒍雷诺数及其应用Redvdy.为粘性系数,与物质、温度、压强有关。
vl,l为物体某一特征长度⑴层流、湍流的判据:ReRe临,层流;ReRe临,湍流⑵流体相似律:若两种流体边界条件相似,雷诺数相同,则两种流体具有相同的动力学特征。
⒎泊肃叶公式:粘性流体在水平圆管中分层流动时,距管轴r处的流速v(r)p1p22(Rr2)4l2第11章流体力学习题解答力学(第二版)漆安慎课后答案11.2.1若被测容器A内水的压强比大气压大很多时,可用图中的水银压强计。
⑴此压强计的优点是什么?⑵如何读出压强?设h1=50cm,h2=45cm,h3=60cm,h4=30cm,求容器内的压强是多少大气压?解:⑴优点:可以测很高的压强,而压强计的高度不用很大⑵设界面处压强由右向左分别为p0,p1,p2,p3,水和水银的密度分别用ρ,ρ'表示,据压强公式,有:p1p0'gh1,p1p2gh2,p3p2'gh3,pAp3gh4h1h3h2Ah4pAgh4p3gh4'gh3p2gh4'gh3gh2p1gh4'gh3gh2'gh1p0g(h4h2)'g(h1h3)p0用大气压表示:pA1hh3h4h230455060112.43atm13.6767613.6767611.2.2A,B两容器内的压强都很大,现欲测它们之间的压强差,可用图中装置,Δh=50cm,求A,B内的压强差是多少厘米水银柱高?这个压强计的优点是什么?解:由压强公式:pAp1gh1p1p2'gh,pBp2g(hh2)pApB(p1gh1)(p2gh2gh)(p1p2)g(h1h2h)'ghgh用厘米水银柱高表示:pApBhh/13.65050/13.646.3cmHgh1h2也可以忽略管中水的重量,近似认为压强差为50cmHgAB优点:车高雅差方便,压强计的高度不需太大。
《力学》杜婵英漆安慎课后习题答案大全集《力学》是物理学的一个重要分支,对于理解自然界的运动和相互作用起着关键作用。
杜婵英、漆安慎所著的《力学》教材备受广大师生的青睐,而课后习题则是巩固知识、检验学习效果的重要环节。
下面为大家带来《力学》杜婵英漆安慎课后习题的答案大全集。
首先,让我们来看第一章的习题。
第一章通常是对力学基本概念的介绍,如质点、参考系、位移、速度等。
例如,有一道习题是:一个质点在平面上运动,其位置矢量为 r = 3t i + 4t² j (其中 i 和 j 分别是x 和 y 方向的单位矢量,t 为时间),求其速度和加速度。
对于这道题,我们首先对位置矢量求导得到速度 v = dr/dt = 3 i +8t j 。
然后再对速度求导得到加速度 a = dv/dt = 8 j 。
接下来是第二章关于牛顿运动定律的习题。
牛顿运动定律是力学的核心内容之一。
比如,有这样一道题:一个质量为 m 的物体在水平地面上受到一个水平力 F 的作用,摩擦力为 f,求物体的加速度。
根据牛顿第二定律 F f = ma ,可得加速度 a =(F f) / m 。
在解答这类问题时,关键是要正确分析物体所受的力,并合理运用牛顿定律。
第三章的习题可能涉及到动量和冲量的概念。
像这样一道题:一个质量为 2kg 的物体以 5m/s 的速度运动,受到一个与运动方向相反的10N 的力作用 2s,求物体的末速度。
首先计算冲量 I =FΔt =-20 N·s ,根据动量定理 mv₂ mv₁= I ,可得 2v₂ 2×5 =-20 ,解得 v₂=-5 m/s 。
第四章关于功和能的习题也十分重要。
比如:一个物体在力 F = 2x i (其中 x 为位置坐标)的作用下沿 x 轴运动,从 x = 0 到 x = 5m ,求力所做的功。
这需要通过积分来计算功 W =∫F·dx =∫2x dx ,积分上限为 5 ,下限为 0 ,计算可得 W = 25 J 。
漆安慎杜婵英《力学(第三版)》知识点总结
第一章物理学和力学
1、物理学本科专业的基本理论知识体系包括7个知识领域:
(1)机械运动现象与规律:力学、理论力学
(2)热运动现象与规律:热学、热力学与统计物理学
(3)电磁和光现象与规律:电磁学、光学、电动力学
(4)物质微观结构和量子现象与规律:原子物理学、量子力学(5)凝聚态物质结构及性质:固体物理学
(6)时空结构:力学、电动力学、量子力学
(7)物理学中的数学方法:数学物理方法、计算物理基础
2、时间的计量单位秒(s)的定义
铯-133原子基态的两个超精细能级间跃迁相对应的辐射的9192631770个周期的持续时间作为1s。
{口诀:食色性也(时铯性也)} 3、长度的计量单位米(m)的定义
光在真空中传播(1/299792458)s时间间隔内所经路径的长度为1m。
4、国际单位制中的七个基本单位
(1)长度——m
(2)时间——s
(3)质量——kg
(4)电流——A
(5)热力学温度——K
(6)光强度——cd
(7)物质的量——mol
{口诀:长治光电热食物(长质光电热时物)}
5、物质有两种存在形式
粒子、场
6、自然界存在四种相互作用力
引力、电磁相互作用力、强相互作用力、弱相互作用力。
第十章波动基本知识小结⒈平面简谐波方程 )cos()(cos kx t A t A y V xωω==;v V T v k T λπλπω====,/1,2,2。
⒉弹性波的波速仅取决媒质性质:弹性体中横波的波速ρ/N V =,弹性体中纵波的波速ρ/Y V =,流体中纵波波速ρ/k V =,绳波波速ρ/T V =。
⒊波的平均能量密度2221Aρωε=,波的平均能流密度 VA I 2221ρω=。
⒋波由波密射向波疏媒质,在边界处,反射波与入射波相位相同;波由波疏射向波密媒质,在边界处,反射波比入射波相位落后π,相当损失半个波长;例如:在自由端无半波损失,在固定端有半波损失。
⒌振动方向相同、频率相同、位相差恒定的二列波叫相干波,相干波叠加叫波的干涉。
⒍振幅相同、传播方向相反的两列相干波叠加产生驻波现象;驻波方程 t x A y ωλπcos cos 22=;波节两边质元振动相位相反,两个波节之间质元振动相位相同;相邻波节或相邻波腹间距离为λ/2,相邻波腹波节间距离为λ/4。
⒎多普勒公式:v v SV V V V --=0',在运用此公式时,以波速V 为正方向,从而确定V 0、V S 的正负。
频率在20至20000Hz 的弹性波能使人耳产生听到声音的感觉。
0ºC 时,空气中的声速为331.5m/s,求这两种频率声波的波长。
解:mv V v V v V 58.16/,/,205.33111≈===∴=λλλ mv V 3221058.1620/5.331/-⨯≈==λ一平面简谐声波的振幅A=0.001m ,频率为1483Hz ,在20ºC 的水中传播,写出其波方程。
解:查表可知,波在20ºC 的水中传播,其波速V=1483m/s.设o-x 轴沿波传播方向,x 表示各体元平衡位置坐标,y 表示各体元相对平衡位置的位移,并取原点处体元的初相为零,则:)22966cos(001.0)(2cos x t t v A y V xπππ-=-=已知平面简谐波的振幅A=0.1cm,波长1m,周期为10-2s,写出波方程(最简形式).又距波源9m 和10m 两波面上的相位差是多少?解:取坐标原点处体元初相为零,o-x 轴沿波传播方向,则波方程的最简形式为)100(2cos 10)(2cos )(cos 3x t A t A y xT t V x -=-=-=-ππωλ πππ2)10100(2)9100(2=---=∆Φt t写出振幅为A,频率v =f ,波速为V=C,沿o-x 轴正向传播的平面简谐波方程.波源在原点o,且当t=0时,波源的振动状态是位移为零,速度沿o-x 轴正方向。
2023年力学第二版(漆安慎著)课后答案下载2023年力学第二版(漆安慎著)课后答案下载力学(mechanics) 研究物质机械运动规律的科学。
自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗拉、纤维、晶体,到微观的分子、原子、基本粒子。
通常理解的力学以研究天然的或人工的宏观对象为主。
但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。
机械运动亦即力学运动,是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等,而平衡或静止则是其中的一种特殊情况。
机械运动是物质运动最基本的形式。
物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。
机械运动常与其他运动形式共同存在。
只是研究力学问题时突出地考虑机械运动这种形式罢了;如果其他运动形式对机械运动有较大影响,或者需要考虑它们之间的相互作用,便会在力学同其他学科之间形成交叉学科或边缘学科。
力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。
静止和运动状态不变,都意味着各作用力在某种意义上的平衡。
力学,可以说是力和(机械)运动的`科学。
力学是一门独立的基础学科,是有关力、运动和介质(固体、液体、气体和等离子体),宏、细、微观力学性质的学科,研究以机械运动为主,及其同物理、化学、生物运动耦合的现象。
力学是一门基础学科,同时又是一门技术学科。
它研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系。
力学可区分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。
现代的力学实验设备,诸如大型的风洞、水洞,它们的建立和使用本身就是一个综合性的科学技术项目,需要多工种、多学科的协作。
力学第二版(漆安慎著):简介点击此处下载力学第二版(漆安慎著)课后答案力学第二版(漆安慎著):研究方法力学研究方法遵循认识论的基本法则:实践——理论——实践。
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y ⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸x e y sin = ⑹x e y x 100+=-2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分 解:4. 求下列定积分解:1|cos si n 22/0=-=⎰ππx xdx 6.计算由y=3x 和y=x 2所围成的平面图形的面积。
解:如图所示,令3x=x 2,得两 条曲线交点的x 坐标:x=0,3. 面积7.求曲线y=x 2+2,y=2x,x=0和x=2诸线所包围的面积。
解:面积A8.一物体沿直线运动的速度为v=v 0+at,v 0和a 为常量,求物体在t 1至t 2时间内的位移。
解:位移S ⎰+=21)(0t t dtat v 1.2.3.4.5.6.7.略 8.二矢量如图所示A=4,B=5,α=25o ,β=36.87o ,直接根据矢量标积定义和正交分解法求B A⋅。
解:直接用矢量标积定义:用正交分解法:∵A x =4cos α=3.6A y =4sin α=1.7,B x =5cos(90o +β)= - 5sin β=-3,B y =5sin(90o +β)=5cos β=4∴447.1)3(6.3-=⨯+-⨯=+=⋅y y x x B A B A B A9.的夹角。
2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=ϖ⑴j t i t r ˆ)14(ˆ)32(-+-=ρ⑵,求质点轨迹并用图表示.解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y x2.1.2 质点运动学方程为k j e ie r t t ˆ2ˆˆ22++=-ϖ.⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y ex t t,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e i e e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆ϖϖϖ j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x r ϖϖϖϖγβα轴夹角与轴夹角与轴夹角与2.1.3质点运动学方程为j t it r ˆ)32(ˆ42++=ϖ. ⑴求质点轨迹;⑵求质点自t=0至t=1的位移. 解:⑴32,42+==t y t x ,消去参数t 得:2)3(-=y x⑵j i j j ir r r ˆ2ˆ4ˆ3ˆ5ˆ4)0()1(+=-+=-=∆ρρρ2.2.1雷达站于某瞬时测得飞机位置为︒==7.33,410011θm R 0.75s 后测得︒==3.29,424022θm R ,R 1,R 2均在铅直面内,求飞机瞬时速率的近似值和飞行方向(α角)解:tRt R R v v ∆∆=∆-=≈ϖϖϖϖϖ12,在图示的矢量三角形中,应用余弦定理,可求得:xx5/1mR R R R R 58.3494.4cos 42004100242404100)cos(22221212221=︒⨯⨯-+=--+=∆θθ s m t R v v /8.46575.0/58.349/≈=∆∆=≈据正弦定理:)180sin(/)sin(/1221αθθθ--︒=-∆R R︒=∴︒≈--︒≈︒=∆-=--︒89.34,41.111180,931.058.349/4.4sin 4240/)sin()180sin(12121ααθθθαθR R2.2.2 一圆柱体沿抛物线轨道运动,抛物线轨道为y=x 2/200(长度:毫米)。
普通物理学漆安慎力学第四版答案1.下列物理量中属于标量的是() [单选题] *A.速度B.加速度C.力D.质量(正确答案)2.某列高铁11点 02分从“怀化南”站开出,运行1小时31分,到达“长沙南”站。
下列说法正确的是() [单选题] *A.“11点 02分”和“ 1小时31分”均指时间间隔B.“11点 02分”和“ 1小时31分”均指时刻C.“11点 02分”指时间间隔,“1小时31分”指时刻D.“11点 02分”指时刻,“1小时31分”指时间间隔(正确答案)3.一根轻质弹簧,在弹性限度内,伸长量为2 cm时,弹簧弹力大小为4 N;则当压缩量为4 cm时,弹簧弹力大小为() [单选题] *A.8 N(正确答案)B.6 NC.4 ND.2 N4.在“探究小车速度随时间变化的规律”的实验中打出的纸带如图所示,图中A、B、C、D、E为连续打下的五个点。
打B、D两点时纸带的速度分别为vB、vD的大小关系是()[单选题] *A.vB<vD(正确答案)B.vB=vDC.vB>vDD.无法确定5.质量为2 kg的物体A静止在水平面上,质量为1 kg的物体B在水平桌面上做匀速直线运动。
关于两物体惯性大小的比较,下列说法正确的是() [单选题] *A.A的惯性大(正确答案)B.B的惯性大C.A、B的惯性一样大D.A、B的惯性大小无法比较6.如图所示,置于水平桌面上的物体,在水平拉力F作用下处于静止状态,则物体所受摩擦力Ff与拉力F之间的大小关系是()[单选题] *A.Ff>FB.Ff=F(正确答案)C.Ff<FD.不确定7.大小相同而质量不同的两个小球,从同一高度同时静止释放,落到同一水平地面上,不计空气阻力,则() [单选题] *A.质量大的小球先落地B.质量小的小球先落地C.两小球同时落地(正确答案)D.两小球落地先后无法确定答案解析:两小球同时从同一高度由静止释放,不计空气阻力只受重力,两小球做自由落体运动,下落的高度相同,所经历的时间相同,故两小球同时落地,C正确,A、B、D错误。
第十章一、波动基本知识小结⒈平面简谐波方程 )cos()(cos kx t A t A y Vxωω==; v V T v k T λπλπω====,/1,2,2。
⒉弹性波的波速仅取决媒质性质:弹性体中横波的波速ρ/N V =,弹性体中纵波的波速ρ/Y V =,流体中纵波波速ρ/k V =,绳波波速ρ/T V =。
⒊波的平均能量密度2221A ρωε=,波的平均能流密度 V A I 2221ρω=。
⒋波由波密射向波疏媒质,在边界处,反射波与入射波相位相同;波由波疏射向波密媒质,在边界处,反射波比入射波相位落后π,相当损失半个波长;例如:在自由端无半波损失,在固定端有半波损失。
⒌振动方向相同、频率相同、位相差恒定的二列波叫相干波,相干波叠加叫波的干涉。
⒍振幅相同、传播方向相反的两列相干波叠加产生驻波现象;驻波方程 t x A y ωλπcos cos 22=;波节两边质元振动相位相反,两个波节之间质元振动相位相同;相邻波节或相邻波腹间距离为λ/2,相邻波腹波节间距离为λ/4。
⒎多普勒公式:v v SV V V V --=0',在运用此公式时,以波速V 为正方向,从而确定V 0、V S 的正负。
二、思考题解答10.1 根据波长、频率、波速的关系式u λν=,有人认为频率高的波传播速度大,你认为对否?答:否。
弹性波在连续介质中的传播速度取决于介质的性质和状态,如固体、液体的形变模量和密度以及气体的体变模量和气体的状态等。
在给定的非色散介质中,弹性波相位的传播速度(即波速)是一定的,与频率无关。
由u λν=可知,波的频率越高在介质中的波长越短。
介质对于电磁波的传播不是必要的,介质中电磁波相位的传播速度与介质的介电常量ε和磁导率μ有关。
当ε和μ为常数(非色散介质)时,相速度u 与频率无关,真空中电磁波的相位传播速度即为光速c 。
比值cnu =,n 为介质的折射率。
10.2 当波从一种介质透入另一介质时,波长、频率、波速、振幅各量中,哪些量会改变?哪些量不会改变?答:参照上题,简谐波在连续介质中传播时,介质中各质点振动的频率是由波源决定的。
当简谐波从一种介质透射到另一种弹性介质时,波的频率不会改变。
两种介质的性质不同,简谐波在其中传播的相速不同,由u λν=可知,在两种介质中的波长也是不同。
当波从一种介质透射到另一介质时,在它们的界面,伴随有波(能量)的反射。
频率一定时,波的能量正比于振幅的平方,所以透射波的振幅小于入射波的振幅。
第10章波动习题解答69 第10章波动习题解答10.3 波的传播是否是介质质点“随波逐流”?“长江后浪推前浪”这句话从物理上说,是否有根据? 答:波的传播是介质中质点振动状态(相位)的传播过程,质点本身并不随波逐流,仅在各自的平衡位置附近振动。
因此介质中的质点“随波逐流”的说法是错误。
而“长江后浪推前浪”这句话,从波传播能量和波的形成来看随颇为形象,但本质上不具备“相位的传播”和“质点本身并不随波移动”的特征,因此用这句话来描述波动也是不确切的。
10.4 (1)在波的传播过程中,每个质元的能量随时间而变,这是否违反能量守恒定律?(2)在波的传播过程中,动能密度与势能密度相等的结论,对非简谐波是否成立?为什么?答:(1)否。
波的传播过程是能量的传播过程,每个质元通过所含大量质量的以相位联系的振动来周期性地接受,放出波的能量,起传递能量的作用。
这不违反能量守恒定律。
(2)否。
对简谐波而言,动能密度正比于单位体积介质内所有质点振动速度的平方,势能密度正比于介质的相对形变量的平方。
非简谐波可以看作是若干个频率、振幅不同的简谐波之和,即级数和,它对坐标x 的变化率的平方2()y x ∂∂以及对时间变化率的平方2()y t ∂∂都有非线性效应。
所以,对非简谐波而言,介质内动能密度与势能密度相等的结论,是不成立的。
10.5 两列简谐波叠加时,讨论下列各种情况: (1)若两波的振动方向相同,初相位也相同,但频率不同,能不能发生干涉? (2)若两列的频率相同,初相位方向也相同,但振动方向不同,能不能发生干涉?(3)若两列的频率相同,振动方向也相同、初相位也相同,但振幅不同,能不能发生干涉? 答:两列简谐波在空间相遇时,都满足叠加原理,是否能发生干涉现象,则需根据相干条件判断。
(1)两列波的振动方向相同,初相位也相同,但频率不同时,介质中各质点的合振动仍为两个分振动的合成,两波仍满足叠加原理,但叠加后的合成波的空间不能形成稳定的加强和减弱分布;因此不会出现波的干涉现象。
(2)两波的频率相同,初相位也相同,但振动方向不同时,若将其中一个波的振动按另一个波的振动方向可分解为平行和垂直的两个分量,则两个平行振动的叠加可产生波的叠加现象,但干涉条纹的可见度因存在垂直的振动分量而下降。
若两波的振动方向互相垂直,则不产生干涉。
(3)两列的频率相同,振动方向也相同,但两列在空间相遇处的振动相位差不能保持恒定时,对每个瞬时在相遇区域内各质点振动的叠加虽有确定的加强和减弱的分布,但在一段可观察的时间间隔内,因各质点的振动相位差时刻在变化,致使在两波相遇区域内各质点振动加强和减弱的分布也时刻在变化,得不到稳定的分布,因此就观察不到稳定的加强和减小的干涉现象。
单一频率的自然光源较难实现干涉,原因就在于此。
(4)两波的频率相同,振动方向相同,初相位也相同,但振幅不同时,可以发生干涉现象,但因干涉减弱处的合振动不为零,将影响干涉条纹的可见度。
10.6 (1)为什么有人认为驻波是不是波? (2)驻波中,两波节间各个质点均作用相位的简谐运动,那么,每个振动质点的能量是否保持不变? 答:(1)驻波可被看作是特殊形态的合成波,是由两列沿相反方向传播的相干波因叠加而形成的干涉现象。
驻波与行波有共同的特征:各质点振动位移的分布形成波形曲线,波形随时间变化,具有时空周期性,驻波相对于行波的特殊处在于:驻波既不传播振动形态,也不传播能量,即驻而不行。
所以有人认为驻波不是波,而是质量的一种集体振动状态。
(2)驻波中,两波节间各个质点以不同的恒定振幅作用相位的简谐振动,一波节两侧各个质点作简谐振动的相位相反,就单个质点而言振动能量是守恒的,但各质元在振动过程中能量不断变化,如:波节处质元的动能始终为零,其势能则随着两侧质元振动引起的相对形变的变化而不断变化;波腹处质元的动能不断变化,其势能则始终为零。
各质元见不断交换能量,但总能量始终停留在驻波所在范围内,并不传播出去 三、习题解答10.2.1 频率在20至20000Hz 的弹性波能使人耳产生听到声音的感觉。
0ºC 时,空气中的声速为331.5m/s,求这两种频率声波的波长。
解:m v V v V v V 58.16/,/,205.33111≈===∴=λλλmv V 3221058.1620/5.331/-⨯≈==λ10.2.2 一平面简谐声波的振幅A=0.001m ,频率为1483Hz ,在20ºC 的水中传播,写出其波方程。
解:查表可知,波在20ºC 的水中传播,其波速V=1483m/s.设o-x 轴沿波传播方向,x 表示各体元平衡位置坐标,y 表示各体元相对平衡位置的位移,并取原点处体元的初相为零,则:)22966cos(001.0)(2cos x t t v A y V xπππ-=-=10.2.3 已知平面简谐波的振幅A=0.1cm,波长1m,周期为10-2s,写出波方程(最简形式).又距波源9m 和10m 两波面上的相位差是多少? 解:取坐标原点处体元初相为零,o-x 轴沿波传播方向,则波方程的最简形式为 )100(2cos 10)(2cos )(cos 3x t A t A y xT t V x -=-=-=-ππωλ πππ2)10100(2)9100(2=---=∆Φt t10.2.4 写出振幅为A,频率v =f ,波速为V=C,沿o-x 轴正向传播的平面简谐波方程.波源在原点o,且当t=0时,波源的振动状态是位移为零,速度沿o-x 轴正方向。
解:设波源振动方程为)cos(φω+=t A y .∵t=0时,2,0sin ,0cos πφφωφ-=∴>-====A u A y dt dy∴波方程])(2cos[])(2cos[22ππππ--=--=C x V x t f A t v A y10.2.5 已知波源在原点(x=0)的平面简谐波方程为),cos(cx bt A y -=A,b,c 均为常量.试求:⑴振幅、频率、波速和波长;⑵写出在传播方向上距波源l 处一点的振动方程式,此质点振动的初相位如何?解:⑴将)cos(cx bt A y -=与标准形式)cos(kx t A y -=ω比较,ω=b,k=c,∴振幅为A,频率v =ω/2π=b/2π,波速V=ω/k=b/c,波长λ=V/v =2π/c.⑵令x=l , 则)cos(cl bt A y -=,此质点振动初相为 – c l .第10章波动习题解答71 第10章波动习题解答10.2.6 一平面简谐波逆x 轴传播,波方程为),3(2cos ++=V xt v A y π试利用改变计时起点的方法将波方程化为最简形式。
解:令t’=t+3,则)'(2cos Vxt v A y +=π,即将计时起点提前3s,即可把方程化为如上的最简形式。
10.2.7 平面简谐波方程)(2cos 54xt y +=π,试用两种方法画出s t 53=时的波形图(SI )。
解:由波方程可知:A=5, v=4, v =1, λ=v/v =4s t 53=时,)(cos 5)(2cos 55122453+=+=x y x ππ方法一:令512'+=x x ,先画出'cos 52x y π=的波形图,然后将y 轴右移512即可。
方法二:找出x 、y 的对应点,根据余弦函数规律描出。
10.2.8 对于平面简谐波)(2cos λπx Tt r S -=中,r=0.01m,T=12s,λ=0.30m,画出x=0.20m 处体元的位移-时间曲线。
画出t=3s,6s 时的波形图。
解:波方程)(2cos 01.0)(2cos 3.012xt x Tt r S -=-=ππλ⑴令x=0.20,)8(cos 01.0)(2cos 01.063.02.012-=-=t S tππ;令t'=t-8,根据T=12s 及余弦曲线的规律,先画出'cos 01.0'6t S π=的S’-t’曲线,再把S'轴向左移动8秒,即得S-t 曲线。
⑵令t=3, )(2cos 01.0)(2cos 01.01233.03.0123-=-=x x S ππ=)(cos 01.0403320-x π.令403'-=x x ,根据m 40343.0⨯==λ及余弦曲线的规律,先画出'cos 01.0'320x S π=的S’-x’曲线,再把S’轴向左移动3/40m ,即得S-x 曲线。