生物医学测量及传感器(1)
- 格式:ppt
- 大小:1.83 MB
- 文档页数:49
1传感器在医学上的应用生物医学传感器的作用是将被测的生理参数转换为与之相应的电学量输出,以满足生物医学基础和临床诊断的研究与分析所需的数据和图象。
随着学科的发展和其它学科的渗透以及生物医学学科的进步,人们对人体的生理现象才能够通过直接或间接的有效方法,定量地诊断临床上的疑难病症,正确地断定生理现象,使医学科学进入了一个新阶段——定量医学。
从定性医学到定量医学的发展过程中,传感器起了重要作用,侍感器延伸了医生的感觉器官,扩大了医生的认识范围,并把定性的感觉扩展为定量的测量。
目前,传感器已成为生物医学测量、数据处理、信息转换、诊断、治疗中不可缺少的关键器件。
可以说传感器的作用和地位就相当于医生的五官。
要提取和捕捉生物体内各种生物信息,就需依靠各种各样的传感器,所以它是医学测量系统的第一个环节,如图1—1所示。
如果没有传感器对原始参数进行精确可靠的测量,那么后续各环节再先进,还是得不到正确的结果。
现在人们已经认识到,在医学测量系统的发展中,发展生物医学传感器的重要性。
因此,近年来新型的生物医学传感器不断出现。
图1—1医学测量系统框图在医学上,传感器的主要用途有:(1)检测生物体信息。
医学诊断以及基础研究都需检测生物体信息。
例如,先天性心脏病人在手术前必须用血压传感器铡量心内压力,以估计缺陷程度。
普查乳房癌,可用红外探测器扫描乳房温度分布(热像图)。
要深入研究心血管功能,需要用传感器直接在动物心脏内进行测量。
(2)监护。
连续测定某些生理参数,监视这些参数是否处于规定的范围内,以便了解病人复原过程,或在异常时及时报警,例如一个动过心内手术的病人,在他手术后头几天内,往往身体上要安置体温,脉搏、动脉压、静脉压、呼吸、心电等一系列传感器,用监护仪连续观察这些参数的变化。
(3)控制。
所谓控制,就是利用检测到的生理参数,控制人体的生理过程。
例如电子假肢,就是用肌电信号来控制人工肢体的运动。
在用同步呼吸器抢救病人时,需要换能器检测病人的呼吸信号,以此来控制呼吸器的动作与人体呼吸同步。
综合实验报告学院医学工程学院实验名称生物医学测量与传感器综合实验专业班级学生姓名学号指导教师成绩实验一应变片单臂特性实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε;式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。
(E为供桥电压)。
三、实验步骤:1位数显万用表2kΩ电阻档测量所有1、在应变梁自然状态(不受力)的情况下,用42应变片阻值;在应变梁受力状态(用手压、提振动台)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的4片应变片纵向受力阻值有变化;标有左右箭头的2片应变片横向不受力阻值无变化,是温度补偿片)。
如下图1—6所示。
2、差动放大器调零点:按图1—7示意接线。
将F/V表的量程切换开关切换到2V档,合上实验箱主电源开关,将差动放大器的拨动开关拨到“开”位置,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转半圈,调节调零电位器,使电压表显示电压为零。
差动放大器的零点调节完成,关闭主电源。
图1—7 差放调零接线图3、应变片单臂电桥特性实验:⑴将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为工作片)与电桥单元中R1、R2、R3组成电桥电路,电桥的一对角接±4V直流电源,另一对角作为电桥的输出接差动放大器的二输入端,将W1电位器、r电阻直流调节平衡网络接入电桥中(W1电位器二固定端接电桥的±4V电源端、W1的活动端r电阻接电桥的输出端),如图1—8示意接线(粗细曲线为连接线)。
生物医学传感器原理与应用
生物医学传感器原理与应用
一、定义
生物医学传感器是指以生物、化学或物理反应为基础,利用传感器原理和检测技术测量生物医学信号(如生物电、血液成分等)的设备。
二、传感原理
储存在生物体内的信息包括激活的物质和信号物质,以及具有不同电子极性的物质。
这些物质在外部因素的作用下,会形成电子信号,从而被传感器检测。
1、光电检测
光电检测可以通过分析光信号来检测生物医学信号,其原理是通过精密的光学技术观测生物体内反射回来的光谱信号,根据其特定频谱来推断出检测物的浓度,从而反应相应信号物的化学变化情况,可用于检测血液中的蛋白质含量、血糖浓度等生物医学信号。
2、电化学检测
电化学检测是一种以电解质反应为基础的检测方法,通过电解剂对电解质反应产生的电流和电压变化来表征物质浓度的变化,从而进行检测。
电化学检测可用于检测血液中的钠、钙和氯离子、血氧分压、血清谷丙转氨酶等生物医学信号。
三、应用
1、临床医学
生物医学传感器的应用非常广泛,如血氧仪、血液分析仪、脑电图仪、心电图仪等都是利用生物医学传感器原理和技术的应用,可用于检测心肺功能、血氧分压、血液成分等,对临床医学大有帮助。
2、环境监测
生物医学传感器也可用于环境监测,如可以用来检测大气污染物的浓度,检测地下水污染等,为环境保护和环境污染防治提供有力的支持。
四、总结
生物医学传感器是一种利用传感器原理来检测生物医学信号的设备,包括光电检测、电化学检测等原理,具有广泛的应用,如用于临床医学、环境监测等领域,为人类的医疗和环境保护提供了有力的支持。
生物医学电子学领域的医疗传感器(一)科幻剧《无敌金刚》(The Six MillionDollar Man)搬上电视荧屏距今已差不多有40 年时间,随着现代电子技术与纳米技术、高级植入技术、太阳能与光能设备,以及医学与生物学领域传感器重要发展的融合,科学幻想正在成为现实。
科学创新催生了增强和代替人体器官的基于传感器的电子设备。
这些电子设备包括WBAN(无线体域网)以及增强或代替眼睛和耳朵的设备。
本文第一部分描述了创新的传感器技术,以及从传感器直到微控制器的微型化、可植入以及无线电子接口方式。
第二部分将讨论肺、心脏和大脑。
传感器与无线通信设备的发展使我们能够设计出微型、高成本效益以及智能的生理传感器结点。
一个创新是可穿戴的健康监控系统,如WBAN.针对这一技术的IEEE802.15.4 标准规定了一个与医疗传感器体域网络相关的小功率低数据速率无线方案。
2011 年,意法半导体公司推出了自己的未来cyborg 技术,包括传感器和MEMS,以及iNEMO(惯性模块评估板)结点(图1)。
图1,意法半导体公司开发了一些用于个人与诊断的传感器应用在这一领域的其它供应商中,Analog Devices 也提供了一些先进的活动监控解决方案,以及传感器接口元件,而德州仪器公司提供了一个带Tmote Sky 的开发套件,这是下一代的mote 平台,即针对极低功耗、高数据速率传感器网络应用的远程平台,有容错和易于开发的双重设计目标。
TI 公司的Tmote Sky 套件号称有10KB 的片上RAM(所有mote 中的最大容量),IEEE 802.15.4 射频,以及一个125m 作用范围的集成板载天线。
帮助盲人重见光明视网膜修复技术可以帮助患视网膜退化疾病,如可能致盲的黄斑变性的人群恢复视力(参考文献1)。
研究人员做了临床植入研究,证明植入假体最终可弥。
生物医学工程学中的生物传感器随着科技的发展,生物传感器日渐成为生物医学工程学重要的一部分。
生物传感器是一种能够对生物体内或外的化学、生物或物理参量进行检测、测量、处理并转换为其他形式的信息的一种设备。
这种设备用于医学诊断、药物研发、临床监测、食品安全检测、环境污染控制等领域,成为了生物医学工程学的重要组成部分。
一. 生物传感器的分类生物传感器可分为三类:電化學傳感器、激光傳感器及免疫傳感器。
其中电化学传感器基础是电化学原理。
主要测量微生物、离子、分子等物质浓度和分子反应以及分子运动等数据。
激光传感器基于光学原理,通过激光光束的光谱反射来检测物质。
免疫传感器是基于免疫学的一种生物传感器。
通过免疫反应进行检测,如病菌感染,免疫细胞增生等。
二. 生物传感器的应用生物传感器在生物医学工程学的应用非常广泛。
例如,在药物研发过程中,生物传感器可以帮助研究人员掌握活体检测技术和细胞运动学技术,使用光学和显微技术帮助珍稀药物开发。
在医疗方面,通过生物传感器可以实现快速准确地检测疾病标记物,如血糖等生化指标。
此外,生物传感器在微型化和实时性方面具有很大的优势,可为临床检测提供更加准确、高效的检测手段。
在食品安全方面,生物传感器可以用于检测食品中的污染物和细菌,提供更加全面的食品安全分析。
此外,在环境污染领域,生物传感器还可以用于检测空气、土壤、水等环境中的污染物,监测和控制环境污染水平。
三. 生物传感器的进展和未来展望随着科技的不断进步,生物传感器已经成为生物医学工程学领域里非常重要的一部分。
未来,生物传感器将不断提高精度和灵敏度以适应不同的应用场景。
一些新颖的设计,如基于DNA、RNA、蛋白质素的传感器,正在开发。
这些新型传感器将不仅可以检测更多的生物标志物,还可以加强有效性,并能快速处理大量数据。
同时,利用纳米技术等新技术开发的生物传感器,能够获得更高的性能指标,成为研究生物学和医学问题的重要工具。
总的来说,生物传感器是生物医学工程学领域重要的一部分。
生物医学工程专业优质课生物传感器技术与应用生物医学工程专业优质课: 生物传感器技术与应用生物传感器技术是生物医学工程领域的重要组成部分,它利用生物分子与传感器之间的相互作用来检测、分析和监测生物体内的生物信息。
生物传感器技术的研究与应用为临床诊断、药物研发、生命科学研究等领域提供了强有力的支持。
本文将对生物传感器技术的原理、分类和应用进行探讨,旨在为生物医学工程专业的学生提供一些有益的参考和指导。
一、生物传感器技术的原理生物传感器是一种将生物反应与传感器相结合的装置,其工作原理基于生物分子与传感器之间的特定相互作用。
常用的生物传感器技术包括光学传感器、电化学传感器、生物阻抗传感器等。
以光学传感器为例,其工作原理是利用生物分子与特定的荧光探针结合后,探针的荧光性质发生改变,从而实现对生物分子的定量检测。
电化学传感器则是通过测量生物反应产生的电信号来获取与生物分子浓度相关的信息。
二、生物传感器技术的分类根据生物传感器的检测目标和工作原理,可以将其分为多种类型,如化学传感器、生物传感器、光学传感器等。
其中,化学传感器主要用于检测化学物质的浓度或组成,生物传感器用于检测生物分子(如蛋白质、DNA等)的存在和含量,而光学传感器则利用光学信号来检测生物样品的变化。
此外,还有温度传感器、压力传感器等根据测量参数进行分类。
三、生物传感器技术的应用1. 临床诊断应用:生物传感器技术在临床诊断中具有广泛的应用前景。
例如,利用生物传感器对体液中特定蛋白质和代谢产物进行检测,可以为早期肿瘤、心血管疾病等提供辅助诊断手段。
此外,生物传感器还可以用于检测药物浓度、蛋白质相互作用等,为药物研发和剂量控制提供支持。
2. 环境监测应用:生物传感器技术在环境监测领域也发挥着重要作用。
通过检测环境中的污染物浓度和种类,可以实现对水质、空气质量等重要参数的监测和预警。
生物传感器技术的灵敏度高、选择性好,使其成为环境监测的理想工具。
3. 生命科学研究应用:生物传感器技术在生命科学研究中具有广泛应用。
生物医学传感器课程简介生物医学传感器是一门研究利用传感技术来监测和检测生物体内生理参数的学科。
该课程旨在介绍生物医学传感器的原理、设计和应用,培养学生在医学和生物领域中应用传感器技术解决问题的能力。
1. 课程简介生物医学传感器课程主要包括传感器的基本概念和原理、传感器的设计和制备技术、生物医学传感器的应用和前沿研究等内容。
通过该课程的学习,学生将了解到传感器在医学领域中的重要性和应用前景。
2. 传感器的基本概念和原理在生物医学传感器课程中,学生将学习传感器的基本概念和原理。
传感器是一种能够将生物体内的物理、化学或生物信号转化为可测量的电信号的装置。
学生将了解到传感器的工作原理、信号转换和放大技术等基本概念。
3. 传感器的设计和制备技术生物医学传感器的设计和制备是该课程的重要内容。
学生将学习到传感器设计的基本流程,包括传感器的选择、传感元件的选取和组装等。
此外,学生还将了解到传感器制备的技术,如微纳加工技术、生物成像技术等。
4. 生物医学传感器的应用生物医学传感器在医学和生物领域中有广泛的应用。
学生将学习到生物医学传感器在生理参数监测、疾病诊断和治疗、药物筛选等方面的应用。
课程将介绍不同类型的生物医学传感器,如心电图传感器、血糖传感器、生物成像传感器等,并探讨其在临床实践中的应用案例。
5. 生物医学传感器的前沿研究生物医学传感器领域的研究正在不断发展,涌现出许多前沿技术和应用。
学生将了解到生物医学传感器领域的最新研究进展,如基于纳米技术的传感器、柔性生物医学传感器等。
课程还将介绍国内外相关研究团队和学术会议,帮助学生了解当前领域的研究动态。
总结:生物医学传感器课程旨在培养学生在医学和生物领域中应用传感器技术解决问题的能力。
通过学习传感器的基本概念和原理、传感器的设计和制备技术、生物医学传感器的应用和前沿研究,学生将了解到生物医学传感器在医学领域中的重要性和应用前景,为未来从事相关研究和工作打下坚实基础。
生物医学传感器和检测技术随着科技的不断发展,生物医学传感器和检测技术被广泛应用于医疗领域。
生物医学传感器是一种可以感知人体生理和生化变化、记录并传输这些变化数据的设备,它可以帮助监测疾病的进展、评价药物疗效、诊断疾病等。
本文将围绕生物医学传感器和检测技术的原理、应用和发展趋势等方面进行探讨。
一、原理生物医学传感器的原理主要是依靠物理、化学、生物学等原理来感知人体的生理和生化变化。
按照检测信号的不同,可以将传感器分为电化学、光学、机械、声波、热敏和生物传感器等类型。
电化学传感器是利用电化学反应与生物分子发生特殊的化学反应来转化生物学信息,将物理或生物化学传递到电信号上面来进行检测,常见的如血糖检测仪、尿酸检测仪等。
光学传感器是利用光学的物理性质,如光的折射、散射、吸收等特性,将特定生物分子的结构、含量和功能信息转化为光信号。
目前典型的光学传感器主要包括荧光传感器、光学波导传感器、表面等离子体共振传感器等。
生物传感器是一种能感知细胞生理和分子间相互作用的传感器,它以分子生物学的技术来实现,主要应用在生物分析及生物制药领域,如细胞生长分析、细胞膜分析等。
机械传感器,如声波传感器、压电传感器等,利用机械振动或变形来检测体内的生理变化信息。
这类传感器广泛应用于医学图像领域,如超声波医学成像、磁共振成像等。
二、应用生物医学传感器和检测技术的应用范围广泛,包括但不限于以下几个方面:1. 输液泵:输液泵是一种可编程的电子捆绑装置,它可以通过生物医学传感器检测患者的生理指标,从而实现对液体药物剂量的更准确的控制,降低药物过量和滞留的风险。
同时,人工输液在输液过程中需要经常检测输液速度以及患者的输液情况,自动输液泵通过传感器了解患者的输液情况,可以更好的适应患者的情况。
2. 血糖检测:血糖检测是糖尿病患者日常生活中必要的检测。
传统的血糖测试需要抽血、化验等流程,传感器技术可以通过皮下组织的微量血液样品分析,减少患者痛苦和担忧。