矿井供电电网保护解析
- 格式:ppt
- 大小:869.00 KB
- 文档页数:30
矿井三大保护的讲解矿井三大保护的讲解一、矿井供电保护1.1 供电系统安全矿井的供电系统是保证矿井正常运转和安全的重要基础。
供电系统应具备独立的电源,并采用双回路设计,以确保在任何情况下都能提供可靠的电力。
此外,供电系统还需具备过载保护、短路保护、欠压保护等功能,以避免发生安全事故。
1.2 停电作业安全在进行停电作业时,必须严格遵守相关规定,确保停电作业的安全。
首先,应提前制定停电计划,并通知相关人员做好准备。
其次,停电时应按照规定的程序进行,先切断电源,然后悬挂警示牌,最后进行作业。
在恢复供电前,还需进行严格的检查和测试,确保供电安全。
1.3 供电设备维护供电设备的维护是保证供电系统正常运行的重要措施。
应定期对供电设备进行检查、维修和更换,确保其工作状态良好。
同时,对于重要设备应建立维护档案,以便及时发现和处理问题。
1.4 电缆线路管理电缆线路是矿井供电系统的重要组成部分。
应加强对电缆线路的管理和维护,避免发生电缆破损、老化等现象。
同时,应对电缆线路进行定期检查和维修,确保其安全可靠。
二、矿井供水保护2.1 水源管理矿井的水源管理是保证供水系统正常运行的重要环节。
应加强对水源的监测和维护,确保水源的安全可靠。
同时,应对水源进行定期清理和消毒,以避免水质问题对矿工的健康造成影响。
2.2 水泵维护水泵是供水系统的重要组成部分。
应定期对水泵进行检查、维修和更换,确保其工作状态良好。
同时,对于重要设备应建立维护档案,以便及时发现和处理问题。
2.3 供水设备安全供水设备的运行安全是保证矿井供水系统正常运行的重要因素。
应加强对供水设备的监测和维护,确保其工作状态良好。
同时,应对供水设备进行定期检修和保养,以避免发生安全事故。
2.4 水质检测与处理水质的好坏直接影响到矿工的健康和矿井的安全。
因此,应定期对水质进行检测和处理,确保水质符合相关标准。
对于不合格的水质,应采取相应的处理措施,如加入消毒剂、过滤等,以保障矿工的健康和矿井的安全。
煤矿供电设备中电气保护分析
煤矿供电设备中的电气保护是指在任何异常情况下保护电力设备和电气系统免受损坏,确保安全和可靠的供电。
电气保护系统主要包括过电流保护、间歇接地保护、差动保护等。
以下是对一些常见的电气保护的分析:
过电流保护是保护电气设备不被过电流损坏的一种保护方法。
过电流包括过载电流和
短路电流两种情况。
过载电流是指电流超过了设备或线路的额定电流容量,短路电流是指
电流在异常情况下突然增加。
当过电流发生时,过电流保护装置会迅速切断电路,以防止
电气设备损坏。
间歇接地保护是指在电气系统中发生接地故障时,保护设备和系统不受到电气冲击。
接地故障是指电流在异常情况下从电气系统的非接地部分流向接地,导致系统中出现接地
故障。
间歇接地保护会监测电气系统的接地电流,当接地电流超过设定值时,保护装置会
迅速切断电路,以保护设备和人员的安全。
差动保护是一种用来保护变压器、发电机和母线等设备的电气保护方法。
差动保护是
通过比较进出设备的电流差值,来检测设备是否发生故障。
当设备内部发生故障时,电流
差值会超过设定的阈值。
差动保护装置会根据差值超过阈值的情况切断故障设备,并发出
警报,以便进行维修。
还有电压保护、频率保护等不同类型的电气保护,用于保护电气设备在电压和频率异
常的情况下保持正常运行。
电压保护通常用于监测供电电压的过高和过低情况,一旦电压
超过安全范围,保护装置会切断供电电路。
频率保护则用于监测供电频率的偏离情况,一
旦频率异常,保护装置也会切断供电电路。
煤矿井下供电三大保护(一)矿井低压电的电流保护一、常见过电流故障的类型低压电网运行中,常见的过电流故障有短路、过负荷(过载)和单相断线三种情况。
什么是短路电流?我们首先通过一个简单的实例来说明这一问题:在正常情况下流过导线、灯的电流为:I=V/R=220/(R1+R2+R3)=220/50.48=4.36A如果在灯头处两根导线相互碰头等于灯泡电阻没有接入,此时流过导线的电流则为:I=V/R=220/(R2+R3)=220/2.08=105.5A1、短路是指供电线路的相与相之间经导线直接逢接成回路。
短路时,流过供电线路的电流称为短路电流。
在井下中性点不接地的供电系统中,短路分为三相、两相两种,而单相接地不属于短路,但可发展为短路。
⑴短路故障发生的原因①线路与电气设备绝缘破坏。
例如,绝缘老化、绝缘受潮,接线(头)工艺不合格,设备内部的电气缺陷和电缆质量低及大气过电压等。
②受机械性破坏。
例如,受到运输机械的撞击,片帮、冒顶物的砸伤,炮崩,电缆敷设半径过小等。
③误接线、误码操作。
例如,相序不同线路的并联,带电进行封装接地线与带封装接地线送电,局部检修送电等。
④严重隐患点。
例如,“鸡爪子”、“羊尾巴”处。
⑤带电检修电气设备。
⑥带电移挪电气设备。
⑵短路故障的危害短路事故是煤矿常见的恶性事故之一,它产生的电流很大,在短路点电弧的中心温度一般在2500℃~4000℃,可在极短的时间内烧毁线路或电气设备,甚至引起火灾。
在遇瓦斯、煤尘时,可以引起燃烧或爆炸.短路可使电网电压急剧下降,影响电气设备的正常工作。
2、过负荷过负荷也称为过载,是指实际流过电气设备的电流超过其额电流,又超过了允许的过流时间。
从过流和时间两个量来说,都是相对量,必须具备过流和超时这两个条件,才称为过负荷。
过负荷常烧坏井下电气设备,造成过负荷的原因有:电源电压过低;重载起动;机械性堵转和单相断相。
其共同表现是:电气设备超允许时间的过电流,设备的温升超过其允许温升,有时会引起线路着火,甚至扩大为火灾或重大事故。
煤矿供电设备中电气保护分析煤炭是我国能源的主要组成部分,煤矿作为煤炭资源的主要开采地,其供电设备的安全运行对于煤矿的生产至关重要。
在煤矿供电设备中,电气保护是一项必不可少的技术手段。
本文将对煤矿供电设备中的电气保护进行分析,从电气保护的基本原理、常见保护装置的特点、保护参数的设置以及保护系统的优化等四个方面入手,对该技术手段的应用与发展进行探讨和总结。
1. 电气保护的基本原理电气保护是指利用电磁、电学、热学原理,来监测电力系统中出现的故障电流、电压等异常信号,并快速地断开异常信号所在的电路,以保护电力设备和人的安全。
基本原理方面,电气保护需要满足以下几点:(1)快速性:保护动作需要迅速、准确地判断故障类型,快速地实现断路操作;(2)可靠性:保护系统需要经过严格的测试、验证,确保保护系统的可靠性;(3)经济性:保护系统的成本应当足够低,确保系统在未发生故障时的资源利用率。
2. 常见保护装置的特点电气保护的主要装置包括熔断器、断路器、继电器等。
这些装置在实际应用中具有一些突出的特点:(1)熔断器:是一种电气保护装置,主要用于阻止过载电流和短路电流,其特点是断电时内部消耗热量,通过熔化导体将电路断开,从而保护电力设备。
(2)断路器:是一种常见的开关,主要用于开关电路以及保护电力设备,其特点是在电流超过额定值时,可以迅速打开电路。
(3)继电器:是一种主要用于控制电流或电压的电气保护装置,其特点是信号处理能力强,可以对各种电路问题进行判断和响应。
3. 保护参数的设置为保证电气保护的正常运行,需要对保护参数进行合理的设置。
保护参数一般包括过载保护、短路保护等,接下来针对这两种保护进行分析:(1)过载保护:在保护系统中,过载保护一般是通过电流的测量来实现的。
当电流超过额定值时,保护系统将自动切断电路,以避免电力设备因过载而受损。
一般来说,过载保护的额定电流应当是电路中电线的额定电流。
(2)短路保护:短路保护在保护系统中发挥着重要的作用,一般是在保护系统中通过电压或电流测量实现的。
第一章井下电器三大保护煤矿井下供电系统的过流保护、漏电保护、接地保护统称为煤矿井下电器的三大保护。
井下电器系统的三大保护是保证井下供电、用电安全的可靠措施。
第一节漏电保护当电气设备或导线的绝缘损坏或人体触及一相带电体时,电源和大地形成回路,有电流流过的现象,称为漏电。
井下常见的漏电故障可分为集中性漏电和分散性漏电两类。
集中性漏电是指漏电发生在电网的某一处或某一点,其余部分的对地绝缘水平仍保持正常。
分散性漏电是指某条电缆或整个网络对地绝缘水平均匀下降或低于允许绝缘水平。
一、漏电的危害及原因1.漏电的危害漏电会给人身、设备以致矿井造成很大威胁,其危害主要有四个方面:(1)人接触到漏电设备或电缆时会造成触电伤亡事故。
(2)漏电回路中碰地碰壳的地方可能产生电火花,有可能引起瓦斯煤尘爆炸。
(3)漏电回路上各点存在电位差,若电雷管引线两端接触不同电位的两点,可能使雷管爆炸。
(4)电气设备漏电时不及时切断电源会扩大为短路故障,烧毁设备,造成火灾。
2.漏电的原因(1)电缆和电气设备长期过负荷运行,使绝缘老化而造成漏电。
(2)运行中的电气设备受潮或进水,造成对地绝缘电阻下降而漏电。
(3)电缆与设备连接时,接头不牢,运行或移动时接头松脱,某相碰壳而造成漏电。
(4)电气设备内部随意增加电气元件,使外壳与带电部分之间电气间隙小于规定值,造成某一相对外壳放电而发生接地漏电。
(5)橡套电缆受车辆或其它器械的挤压、碰砸等,造成相线和地线破皮或护套破坏,芯线裸露而发生漏电。
(6)铠装电缆受到机械损伤或过度弯曲而产生裂口或缝隙,长期受潮或遭水淋使绝缘损坏而发生漏电。
(7)电气设备内部遗留导电物体,造成某一相碰壳而发生漏电。
(8)设备接线错误,误将一相火线接地或接头毛刺太长而碰壳,造成漏电。
(9)移动频繁的电气设备的电缆反复弯曲使芯线部分折断,刺破电缆绝缘与接地芯线接触而造成漏电。
(10)操作电气设备时,产生弧光放电造成一相接地而漏电。
井下低压供电系统常见故障分析及其保护原理摘要:本文对煤矿井下低压电网中常见的的短路、漏电、过载、过电压、欠电压、断相等故障进行了深入的分析,讨论了相应的故障处理原理,针对各种保护确定一套可行的方案。
关键词:故障短路漏电保护一、井下低压供电系统特点我国矿井通常采用变电站加放射式供电的形式,以动力变压器为中心,引出主电缆,各个用电设备分别挂接在母线上,各个供电回路彼此独立,互不干扰。
供电系统结构主要分为五个部分:高压配电装置、降压变压器、总馈电开关、分支馈电开关和磁力启动器。
磁力启动器的末端接负载。
如图1所示。
图1 井下低压供电系统结构井下低压供电系统的特点:(1)我国矿井低压电网采用的电压等级目前,我国矿井供电结构主要采用6kV或10kV,通过双回路下井,在井下变电站通过井下降压变压器,将高压降为3.3kV、1140V、660V和380V等不同电压等级,目前我国井下普遍采用的是660V和1140V的低压电网,再通过不同型号的矿用电缆送到移动变电站、负荷控制中心,馈电开关或者磁力启动器等电气设备,形成了煤矿井下的配电网络,向采煤机、皮带运输机、破碎机、井下通风机等电器设备供电。
(2)井下电网的中性点接地方式井下低压电网的中性点接地方式可以分为大电流接地系统和小电流接地系统(NUGS)。
大电流接地系统包括中性点直接接地系统和中性点经低阻接地系统。
小电流接地系统包括中性点不接地系统(NUS)、中性点经消弧线圈接地系统(NES)和中性点经高阻接地系统(NRS)。
各种中性点接地方式的特点如下表2-1所示。
由于受历史条件和环境的影响,目前不同的国家采用的中性点处理方式也不同,像英国、加拿大国家大都采用的是中性点经小电阻接地和直接接地方式,日本、俄罗斯、德国等国家大多采用中性点不接地或经消弧线圈接地方式。
在我国井下电网中,普遍采用中性点不接地的方式,当井下电网发生单相接地故障时,由于大地与中性点之间绝缘,故障时的接地电流比较小,而三相电网线电压之间保持平衡,从而使生产设备在短时间内可以继续工作。
煤矿井下电网的三大保护煤矿井下巷道狭窄,空气潮湿,工作条件恶劣,容易发生各种电气事故,因此需要采取必要的安全措施,设置可靠的保护装置,才能保证矿井生产的安全供电。
井下作业恶劣,很容易发生电气设备及电缆相间短路、漏电而引起电火灾、瓦斯和煤尘爆炸、触电等事故,为了保证煤矿井下供电的安全性,煤矿井下设置三大保护即过流保护,漏电保护和保护接地。
标签:过流;漏电;接地1 过流保护过电流是指实际通过电气设备或电缆的工作电流超过了额定电流值。
引起过流的主要原因有短路、过载和电动机单相运转等,因此过流保护通常包括短路保护、过负荷保护、断相保护等。
目前,煤矿井下低压电网使用的过流保护装置主要有熔断器、过流继电器、热继电器及综合保护装置等。
过流保护装置在保护中应满足四个要求:(1)选择性,只切除故障部分,而其余非故障部分则继续运行。
(2)可靠性,不拒动,不误动。
(3)动作迅速,在故障情况下保护装置迅速动作并切断其供电电源,以免事故进一步扩大。
(4)动作灵敏,保护装置应满足灵敏度的要求。
短路保护、过载保护和断相保护都属于过流保护,但是有本质的区别。
短路保护的动作时间要短,其动作值设定较大,过载保护和断相保护按反时限延时动作,动作时间与过载电流的大小有关,其动作值设定小于短路保护的动作值。
煤矿目前使用的过流保护装置中熔断器只能做电机短路保护,各种继电器必须与接触器或脱扣器配合实现过流保护,其中热继电器只适用于做过载保护和断相保护,而电子继电器具有功能完善、保护齐全、灵敏可靠等优点,特别是计算机技术的发展,用单片机集成电路取代分立电子元件电路使其优点更为突出,在矿井供电控制中得到广泛运用。
2 漏电保护煤矿井下巷道中空气潮湿,在此条件下运行的电气设备,虽然对其绝缘有一些特殊的要求,但漏电故障仍时有发生,特别是采区的低压电缆,还时常被脱落的岩石或煤块砸坏,更会发生漏电事故。
漏电事故不仅会使电气设备进一步损坏,形成短路,而且还可以导致人身触电和瓦斯煤尘爆炸危险,因此,井下设备必须装设作用于开关跳闸的漏电保护装置。