分式不等式及含参一元二次不等式的解法
- 格式:ppt
- 大小:594.00 KB
- 文档页数:19
微专题05一元二次不等式、分式不等式【知识点总结】一、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅二、分式不等式(1)()0()()0()f x f xg x g x >⇔⋅>(2)()0()()0()f x f xg x g x <⇔⋅<(3)()()0()0()0()f x g x f x g x g x ⋅≥⎧≥⇔⎨≠⎩(4)()()0()0()0()f x g x f x g x g x ⋅≤⎧≤⇔⎨≠⎩三、绝对值不等式(1)22()()[()][()]f xg x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【方法技巧与总结】(1)已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;(2)已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;(3)已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;(4)已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:一元二次不等式的解法题型二:分式不等式的解法题型三:绝对值不等式的解法题型四:高次不等式的解法题型五:一元二次不等式恒成立问题【典型例题】题型一:一元二次不等式的解法例1.(2022·全国·高一课时练习)不等式20x ax b --<的解集是{|23}x x <<,则210bx ax -->的解集是()A .{|23}x x <<B .11{|}32x x <<C .11{|}23x x -<<-D .{|32}x x -<<-【答案】C【解析】因为不等式20x ax b --<的解集是{|23}x x <<,所以方程20x ax b --=的两根为122,3x x ==,所以由韦达定理得23a +=,23b ⨯=-,即,=5=-6a b ,所以2216510bx ax x x --=--->,解不等式得解集为11{|}23x x -<<-故选:C例2.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是()A .0a >B .不等式20ax cxb ++>的解集为{|22x x <<+C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<<B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B例3.(2022·江苏南京·高一期末)已知,b c ∈R ,关于x 的不等式20x bx c ++<的解集为()2,1-,则关于x 的不等式210cx bx ++>的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,12∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】因为不等式20x bx c ++<的解集为()2,1-,所以2121-=-+⎧⎨=-⨯⎩b c 即12=⎧⎨=-⎩b c ,不等式210cx bx ++>等价于2210x x -++>,解得112x -<<.故选:A .例4.(2022·全国·高一课时练习)已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集是关于x 的不等式230x x a -+<解集的子集,则实数a 的取值范围是().A .0a <B .0a ≤C .2a ≤D .2a <【答案】B【解析】不等式组22430680x x x x ⎧-+<⎨-+<⎩解得1324x x <<⎧⎨<<⎩,所以不等式组的解集是{|23}x x <<,关于x 的不等式230x x a -+<解集包含{|23}x x <<,令2()3f x x x a =-+,∴940(2)20(3)0a f a f a ∆=->⎧⎪=-+⎨⎪=⎩,解得0a ,故选:B .例5.(多选题)(2022·江苏·苏州中学高一阶段练习)关于x 的不等式20ax bx c ++<的解集为(,2)(3,)-∞-⋃+∞,则下列正确的是()A .0a <B .关于x 的不等式0bx c +>的解集为(,6)-∞-C .0a b c ++>D .关于x 的不等式20cx bx a -+>的解集为121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】ACD【解析】A .由已知可得0a <且2,3-是方程20ax bx c ++=的两根,A 正确,B .由根与系数的关系可得:2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得,6b a c a =-=-,则不等式0bx c +>可化为:60ax a -->,即60x +>,所以6x >-,B 错误,C .因为660a b c a a a a ++=--=->,C 正确,D .不等式20cx bx a -+>可化为:260ax ax a -++>,即2610x x -->,解得12x >或13x <-,D 正确,故选:ACD .例6.(多选题)(2022·全国·高一)若不等式20ax bx c ++>的解集为()1,2-,则下列说法正确的是()A .0a <B .0a b c ++>C .关于x 的不等式230bx cx a ++>解集为()3,1-D .关于x 的不等式230bx cx a ++>解集为()(),31,-∞-⋃+∞【答案】ABD【解析】因为不等式20ax bx c ++>的解集为()1,2-,所以0,1,2b ca a a<-==-,故,2b a c a =-=-,此时20a b c a ++=->,所以A 正确,B 正确;22230230230bx cx a ax ax a x x ++>⇔--+>⇔+->,解得:3x <-或1x >.所以D 正确;C 错误.故选:ABD例7.(2022·全国·高一专题练习)关于x 的不等式22430(0)x ax a a -+-≥>的解集为[]12,x x ,则12123ax x x x ++的最小值是_____________.【答案】4【解析】关于x 的不等式22430(0)x ax a a -+-≥>可化为()()30(0)x a x a a --≤>所以不等式的解集为[],3a a ,所以12,3x a x a ==.所以122123314443a a x x a a x x a a ++=+=+≥=(当且仅当14a a=,即12a =时取“=”).故答案为:4.例8.(2022·江苏·盐城市大丰区新丰中学高一期中)已知关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,且a ,b ,R c ∈,0b c +≠,则2210a b b c +++的最小值为_______.【答案】【解析】由题意,关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,可得0b >,且440ab ∆=+=,所以1ab =-且0b >,所以1a b=-,又由不等式220bx x a -->的解集为{|}x x c ≠,所以212c b b--==,令12t b c b b=+=+≥,则22222211()22a b b b t b b +=+=+-=-,所以2221088a b t t b c t t +++==+≥+t =时取等号.所以2210a b b c+++的最小值为故答案为:题型二:分式不等式的解法例9.(2022·河南·高一期中)不等式351x x x +>-的解集是______.【答案】()(),11,5-∞-⋃【解析】不等式351x x x +>-化为以下两个不等式组:21035x x x x -<⎧⎨+<-⎩或21035x x x x ->⎧⎨+>-⎩,解21035x x x x -<⎧⎨+<-⎩,即21450x x x <⎧⎨-->⎩,解得1x <-,解21035x x x x ->⎧⎨+>-⎩,即21450x x x >⎧⎨--<⎩,解得15x <<,所以原不等式的解集是()(),11,5-∞-⋃.故答案为:()(),11,5-∞-⋃例10.(2022·全国·高一专题练习)不等式3113x x+>--的解集是_______.【答案】()23-,【解析】由3113x x +>--可得31103x x ++>-,即2403x x +<-,即()()3240x x -+<解得23x -<<所以不等式3113x x+>--的解集是()23-,故答案为:()23-,例11.(2022·湖南·新邵县第二中学高一开学考试)不等式2131x x +>-的解是___________.【答案】(1,4)【解析】由题设,2143011x xx x +--=>--,∴(1)(4)0x x --<,可得14x <<,原不等式的解集为(1,4).故答案为:(1,4).例12.(2022·上海市延安中学高一期中)已知关于x 的不等式221037kx kx x x -+≤-+的解集为空集,则实数k 的取值范围是___________.【答案】[)0,4【解析】2231937024x x x ⎛⎫-+=-+> ⎪⎝⎭恒成立,∴不等式等价于210kx kx -+≤的解集是φ,当0k =时,10≤不成立,解集是φ,当0k ≠时,240k k k >⎧⎨∆=-<⎩,解得:04k <<,综上:04k ≤<.故答案为:[)0,4例13.(2022·湖北·武汉市钢城第四中学高一阶段练习)不等式301x x -≥+的解集是____________.【答案】()[),13,-∞-+∞【解析】原不等式等价于()()31010x x x ⎧-+≥⎨+≠⎩,解得:3x ≥或1x <-,故答案为:()[),13,-∞-+∞.例14.(2022·上海市奉贤区曙光中学高一阶段练习)设关于x 的不等式0ax b +>的解集为(,1)-∞,则关于x 的不等式06ax bx -≥-的解集为______;【答案】[)1,6-【解析】由于关于x 的不等式0ax b +>的解集是(,1)-∞,则1为关于0ax b +=的根,且0a <,0a b ∴+=,得=-b a ,不等式06ax b x -≥-即为06ax a x +≥-,即106x x +≤-,解该不等式得[)1,6x ∈-故答案为:[)1,6-例15.(2022·黑龙江·牡丹江市第三高级中学高一开学考试)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式13x ax -≤-的解集为______.【答案】{}3x x >【解析】∵不等式2510ax x ++≤的解集为11{|}23x x -≤≤-∴12-,13-是方程2510ax x ++=的两根,∴6a =,∴13x a x -≤-可化为303x -≤-∴3x >∴不等式13x ax -≤-的解集为{|3}x x >,故答案为:{|3}x x >.例16.(2022·上海·高一专题练习)关于x 的不等式212x ax -≤--的解集是523x x ⎧⎫≤<⎨⎬⎩⎭,则a 的值为____.【答案】3【解析】由题知,22122x a x x x --≤-=---,整理得()3202x a x -+≤-,所以()()()3220x a x -+-≤,且2x ≠,因为不等式()()()3220x a x -+-≤,且2x ≠,的解集为523x x ⎧⎫≤<⎨⎬⎩⎭,所以()53203a ⋅-+=,3a =.故答案为:3.题型三:绝对值不等式的解法例17.(2022·上海交大附中高一阶段练习)不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为______________;【答案】(]1,3-;【解析】不等式12x -≤等价于212x -≤-≤,解之得:13x -≤≤,不等式511x ≥+等价于()5101x x -+≥+,解之得:14x -<≤,故不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为:(]1,3-.故答案为:(]1,3-.例18.(2022·上海交大附中高一期中)已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{|}1||2B x x =-≤,则A B =___.【答案】(23]-,【解析】解不等式102x x -≤+即(1)(2)020x x x -+≤⎧⎨+≠⎩,解得21x -<≤,故10(2,1]2x A xx ⎧⎫-=≤=-⎨⎬+⎩⎭,解|1|2x -≤,即212x -≤-≤,解得13x -≤≤,故121{|||]3}[B x x =-≤=-,,则(23]A B ⋃=-,,故答案为:(23]-,.例19.(2022·上海浦东新·高一期中)不等式221x x ->+的解集是_________.【答案】1|33x x ⎧⎫-<<⎨⎬⎩⎭【解析】当12x ≤-时,不等式221x x ->+转化为()()221x x -->-+,解得3x >-,此时132x -<≤-,当122x -<<时,不等式221x x ->+转化为()221x x -->+,解得13x <,此时1123x -<<,当2x ≥时,不等式221x x ->+转化为221x x ->+,解得3x <-,此时无解,综上:221x x ->+的解集是1|33x x ⎧⎫-<<⎨⎬⎩⎭.故答案为:1|33x x ⎧⎫-<<⎨⎬⎩⎭例20.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___.【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4.又当a =2时,A ={x |1<x <3},a =4时,A ={x |3<x <5},均满足A 是B 的真子集,∴2≤a ≤4.故答案为:2≤a ≤4题型四:高次不等式的解法例21.(2022·全国·高一课时练习)不等式22132x x x +≥-+的解集为___________.【答案】[0,1)(2,4]⋃【解析】22132x x x +≥-+等价于221032+-≥-+x x x ,即224032x x x x -+≥-+,即(4)0(1)(2)x x x x -≤--,又等价于()()()()()1240120x x x x x x ⎧---≤⎪⎨--≠⎪⎩,利用数轴标根法解得01x ≤<或24x <≤,所以原不等式的解集为[0,1)(2,4]⋃,故答案为:[0,1)(2,4]⋃例22.(2022·天津·静海一中高一阶段练习)不等式()()222344032x x x x x +-+≤+-的解集为___________.【答案】3[,1){2}(3,)2--+∞【解析】由题得2320,3x x x +-≠∴≠且1x ≠-.由题得()()()()2222322320,023(3)(1)x x x x x x x x +-+-≥∴≥---+,所以()()223(1)2(3)0x x x x ++--≥,()()223(1)2(3)0x x x x ++--=零点为3,1,2,32--.当32x <-时,不等式不成立;当312x -≤<-时,不等式成立;当12x -≤<时,不等式不成立;当2x =时,不等式成立;当23x <≤时,不等式不成立;当3x >时,不等式成立.故不等式的解集为:3[,1){2}(3,)2--+∞故答案为:3[,1){2}(3,)2--+∞例23.(2022·上海·华师大二附中高一阶段练习)不等式201712xx x <≤-+的解集为________.【答案】(0,2][6,)⋃+∞【解析】20712xx x <⇒-+()()340x x x -->,根据数轴穿根法可解得03x <<或4x >,22228121100712712712x x x x x x x x x x -+≤⇒-≤⇒≥-+-+-+()()()()2234607120x x x x x x ⎧----≥⇒⎨-+≠⎩,解得2x ≤或34x <<或6x ≥,所以2034017122346x x xx x x x x ⎧<<≤⇒⎨-+≤<<≥⎩或或或,解得(0,2][6,)x ∈⋃+∞.故答案为:(0,2][6,)⋃+∞例24.(2022·上海·华师大二附中高一期末)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩,解得3x ≥或11x -≤<.故答案为:[1,1)[3,)-+∞.例25.(2022·上海·高一专题练习)不等式()()()()2321120x x x x ++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x -≤或1x =-或12x ≤≤时,()()()()2321120x x x x ++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.例26.(2022·浙江·诸暨中学高一期中)不等式()()2160x x x -+-<的解集为______.【答案】()(),31,2-∞-【解析】因为()()2160x x x -+-<,所以()()()1320x x x -+-<,解得3x <-或12x <<.所以不等式()()2160x x x -+-<的解集为:()(),31,2-∞-.故答案为:()(),31,2-∞-例27.(2022·上海·高一专题练习)不等式()()22221221x xx x x x ++>++的解集为_________.【答案】()()(),11,02,-∞--+∞.【解析】()()22221221xxx x x x ++>++等价于()()2120,x x x +->当1x =-时,不等式不成立,当1x ≠-时,不等式等价于()20x x ->,解得0x <或2x >且1x ≠-,故不等式的解集为()()(),11,02,-∞--+∞.故答案为:()()(),11,02,-∞--+∞.例28.(2022·上海市复兴高级中学高一期中)不等式()()()()2233021x x x x x --≥-+-的解集是______.【答案】23x x ⎧≤⎨⎩或}13x <≤【解析】不等式()()()()2233021x x x x x --≥-+-等价为()()()23310x x x ---≥且10x -≠,∴23x ≤或13x <≤,∴不等式()()()()2233021x x x x x --≥-+-的解集是23x x ⎧≤⎨⎩或}13x <≤故答案为:23x x ⎧≤⎨⎩或}13x <≤例29.(2022·贵州·遵义航天高级中学高一阶段练习)不等式()()232101xx x x -++≤-的解集为()A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-.故选:D .题型五:一元二次不等式恒成立问题例30.(2022·江苏·高一专题练习)若正实数,x y 满足244x y xy ++=,且不等式()2222340x y a a xy +++-≥恒成立,则实数a 的取值范围是()A .532⎡⎤-⎢⎥⎣⎦,B .(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭C .532⎛⎤- ⎥⎝⎦,D .(]5,3,2⎛⎫-∞-+∞ ⎪⎝⎭【答案】B【解析】正实数x ,y 满足244x y xy ++=,可得244x y xy +=-,∴不等式()2222340x y a a xy +++-≥恒成立,即()24422340xy a a xy -++-≥恒成立,变形可得()222214234xy a a a +≥-+恒成立,即2221721a a xy a -+≥+恒成立,0x >,0y >,2x y ∴+≥2x y =时等号成立,4244xy x y ∴=++≥+220≥,≥≤舍)可得2xy ≥,要使2221721a a xy a -+≥+恒成立,只需22217221a a a -+≥+恒成立,化简可得22150a a +-≥,即()()3250a a +-≥,解得3a ≤-或52a ≥,故实数a 的取值范围是(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭故选:B .例31.(2022·全国·高一单元测试)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为()A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A .例32.(2022·河南濮阳·高一期末(理))已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为()A .(][),04,-∞+∞UB .[]0,4C .[)4,+∞D .()0,4【答案】A【解析】若“R x ∀∈,214(2)04x a x +-+>”是真命题,即判别式()21Δ24404a =--⨯⨯<,解得:04a <<,所以命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为:(][),04,-∞+∞U .故选:A .例33.(2022·浙江·金华市曙光学校高一阶段练习)“不等式20x x m -+>在R 上恒成立”的充要条件是()A .14m >B .14m <C .1m <D .1m >【答案】A【解析】∵不等式20x x m -+>在R 上恒成立,∴24(10)m ∆--<=,解得14m >,又∵14m >,∴140m ∆=-<,则不等式20x x m -+>在R 上恒成立,∴“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A .例34.(2022·四川·广安二中高一阶段练习(理))已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围()A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2∞⎛⎫- ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110a x a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B例35.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是()A .{}1a a ≥B .{}1a a >C .{}1a a ≤D .{}1a a <【答案】D【解析】由12x ≤≤,20x ax ->恒成立,可得a x <在[]1,2上恒成立,即即1a <.故选:D .例36.(2022·陕西安康·高一期中)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】A【解析】因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞故选:A例37.(2022·广西·南宁市东盟中学高一期中)已知命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则实数a 的取值范围是()A .a -<<B .a <C .3a <D .9 2a <【答案】B【解析】由题知,命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则21,2,2102x x ax ⎡⎤∀∈-+>⎢⎥⎣⎦为真命题,即11,2,22x x a x ⎡⎤∀∈+>⎢⎥⎣⎦恒成立.又12x x +≥12x x =≥2x =等号成立,所以a <故选:B例38.(2022·全国·高一课时练习)已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是()A .4a <B .4a <-C .4a >D .4a >-【答案】A【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足,25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .【过关测试】一、单选题1.(2022·江西·丰城九中高一期末)已知集合{}2870A x x x =-+<,{}14B x x =<<,则“x A ∈”是“x B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意得{}17A x x =<<,所以AB .所以“x A ∈”是“x B ∈”的必要不充分条件.故选:B2.(2022·全国·高一)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为()A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<,当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C3.(2022·江苏·高一专题练习)若存在正实数y ,使得54y xx y xy-=+,则实数x 的最大值为()A .15B .54C .1D .4【答案】A 【解析】115454y x x y x y xy x y-=+⇔-=+,因为0y >,所以144y y +≥,所以154x x-≥,当0x >时,154x x-≥⇔25410x x +-≤,解得105x <≤,当0x <时,154x x-≥⇔25410x x +-≥,解得1x <-,故x 的最大值为15.故选:A4.(2022·江苏·高一)已知关于x 的不等式ax b >的解集是{|2}x x <,则关于x 的不等式()()10ax b x +->的解集是()A .()()12-∞⋃+∞,,B .()12,C .()()21-∞-⋃+∞,,D .()21-,【答案】D【解析】关于x 的不等式ax b >的解集为{|2}x x <,0a ∴<,20a b -=,()()10ax b x ∴+->可化为()()210a x x +->,21x ∴-<<,∴关于x 的不等式()()10ax b x +->的解集是()21-,.故选:D .5.(2022·全国·高一课时练习)关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是()A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭,C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭,【答案】C【解析】因为不等式22(11)m x mx m x +<+++对R x ∈恒成立,所以210mx mx m ++-<对R x ∈恒成立,所以,当0m =时,10-<对R x ∈恒成立.当0m ≠时,由题意,得20Δ410m m mm <⎧⎨=--<⎩,即20340m m m <⎧⎨->⎩,解得0m <,综上,m 的取值范围为(]0-∞,.故选:C6.(2022·江苏·高一)已知不等式20ax bx c ++>的解集为{}|21x x -<<,则不等式20cx bx a -+<的解集为()A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()2,1-【答案】A【解析】关于x 的不等式20ax bx c ++>的解集为{}|21x x -<<0a ∴<,且2-和1是方程20ax bx c ++=的两个根,则4200a b c a b c -+=⎧⎨++=⎩b a ∴=,2c a =-,关于x 的不等式20cx bx a -+<,即220ax ax a --+<,2210x x ∴+-<,解得112x -<<,故不等式的解集为11,2⎛⎫- ⎪⎝⎭,故选:A7.(2022·北京师大附中高一期末)关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤;综上所述:实数a 的取值范围为(],3-∞.故选:B .8.(2022·广西·桂林中学高一期中)已知0ax b ->的解集为(,2)-∞,关于x 的不等式2056ax bx x +≥--的解集为()A .(,2](1,6)-∞--B .(,2](6,)-∞-+∞C .[2,1)(1,6)---D .[2,1)(6,)--+∞【答案】A【解析】因0ax b ->的解集为(,2)-∞,则0a <,且2ba=,即有2,0b a a =<,因此,不等式2056ax bx x +≥--化为:22056ax a x x +≥--,即22056x x x +≤--,于是有:220560x x x +≤⎧⎨-->⎩或220560x x x +≥⎧⎨--<⎩,解220560x x x +≤⎧⎨-->⎩得2x -≤,解220560x x x +≥⎧⎨--<⎩得16x -<<,所以所求不等式的解集为:(,2](1,6)-∞--.故选:A 二、多选题9.(2022·湖北黄石·高一阶段练习)下列结论错误的是()A .不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅B .不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤C .若函数()20y ax bx c a =++≠对应的方程没有实根,则不等式20ax bx c ++>的解集为RD .不等式11x>的解集为1x <【答案】CD【解析】对于选项A ,当0a ≥时,210ax x ++≥的解集不为∅,而当0a <时,要使不等式210ax x ++≥的解集为∅,只需140a ∆=-<,即14a >,因0a <,故不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅,因此A 正确;对于选项B ,当0a <且240b ac ∆=-≤时,20ax bx c ++≤在R 上恒成立,故不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤,因此B 正确;对于选项C ,因函数()20y ax bx c a =++≠对应的方程没有实根,但a 正负不确定,故20ax bx c ++>或20ax bx c ++<恒成立,因此不等式20ax bx c ++>的解集不一定为R ,故C错;对于选项D ,由11x>,得10x x ->,即()10x x ->,解得01x <<,故D 错.故选:CD .10.(2022·黑龙江·尚志市尚志中学高一阶段练习)设p :实数x 满足1021x x -≤-,则p 成立的一个必要不充分条件是()A .11 2x ≤≤B .112x <≤C .01x ≤≤D .01x <≤【答案】ACD【解析】由题设,若p 成立,(1)(21)0210x x x --≤⎧⎨-≠⎩,解得112x <≤,∴p 成立的一个必要不充分条件,只需1(,1]2在某个范围内,但不相等即可.故选:ACD .11.(2022·江苏南京·高一阶段练习)定义区间(),m n 的长度为n m -,若满足()()2012x ax x -<--的x 构成的区间的长度之和为3,则实数a 的可能取值是()A .14B .13C .3D .4【答案】CD【解析】若14a =,()()()1111220,1,21222x x x x x ⎛⎫⎛⎫-+ ⎪⎪⎛⎫⎝⎭⎝⎭<⇒∈- ⎪--⎝⎭故区间长度之和为1+1=2,不符合题意;若13a =,()()()01,212x x x x x ⎛+ ⎛⎝⎭⎝⎭<⇒∈ --⎝⎭故区间长度之和为符合题意;若3a =,(()()())0212x x x x x +<⇒∈--故区间长度之和为123=,符合题意;若()()()()()224,02,112x x a x x x -+=<⇒∈---故区间长度为3,符合题意.故选:CD .12.(2022·全国·高一专题练习)下列条件中,为“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有()A .04m ≤<B .02m <<C .14m <<D .16m -<<【答案】BC【解析】因为关于x 的不等式210mx mx -+>对R x ∀∈恒成立,当0m =时,原不等式即为10>恒成立;当0m >时,不等式210mx mx -+>对R x ∀∈恒成立,可得∆<0,即240m m -<,解得:04m <<.当0m <时,21y mx mx =-+的图象开口向下,原不等式不恒成立,综上:m 的取值范围为:[)0,4.所以“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有02m <<或14m <<.故选:BC .三、填空题13.(2022·广东·梅州市梅江区梅州中学高一阶段练习)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则不等式(ax +b )(cx -b )<0的解集是________.【答案】3,32⎛⎫- ⎪⎝⎭【解析】由图像知:1和2是关于x 的方程ax 2+bx +c =0(a ≠0)的两个根,所以0a >,12,12b c a a+=-⋅=,所以3,2b a c a =-=.不等式(ax +b )(cx -b )<0可化为()()3230ax a ax a -+<,即()()23230x x a-+<,解得:332x -<<.所以不等式(ax +b )(cx -b )<0的解集是3,32⎛⎫- ⎪⎝⎭.故答案为:3,32⎛⎫- ⎪⎝⎭14.(2022·江苏·南京市金陵中学河西分校高一阶段练习)若对任意R x ∈,2222224x ax bx c x x +≤++≤-+恒成立,则ab 的最大值为_________.【答案】12【解析】令1x =,则44a b c ≤++≤,故4a b c ++=,对任意R x ∈,222x ax bx c +≤++,则2(2)20ax b x c +-+-≥恒成立,∴222(2)4(2)(2)4(2)(2)0b ac a c a c a c ∆=---=+---=-+≤∴2c a =+,此时22b a =-,∴2111(22)2(1)2(222ab a a a a a =-=-=--+≤,当15,1,22a b c ===时取等号,此时()()2222333224310222x x ax bx c x x x -+-++=-+=-≥成立,∴ab 的最大值为12.故答案为:12.15.(2022·江苏·扬州大学附属中学高一期中)不等式20ax bx c ++≤的解集为R ,则2222b a c +的最大值为____________.【解析】当0a =时,即不等式0bx c +≤的解集为R ,则0b =,0c ≤,要使得2222b a c +有意义,此时0c <,则22202b a c =+;当0a ≠时,若不等式20ax bx c ++≤的解集为R ,则20Δ40a b ac <⎧⎨=-≤⎩,即204a b ac <⎧⎨≤⎩,所以,22222422b ac a c a c ≤++,因为24b ac ≤,则0ac ≥,当0c =时,则0b =,此时22202b a c =+;当0c <时,则0ac >,令0c t a =>,则22244412122ac t a c t t t ==≤+++当且仅当242b ac c a a c ⎧=⎪⎨=⎪⎩时,等号成立.综上所述,2222b a c +16.(2022·上海·格致中学高一期末)已知关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,则12123a x x x x ++的最小值是___________.【答案】【解析】因为关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,所以12,x x 是方程()226300x ax a a -+-=>的实数根,所以112226,3x x x x a a ==+,因为0a >,所以1212316a x x a x x a ++=+≥16a a =,即a =时等号成立,所以12123a x x x x ++的最小值是故答案为:。
不等式(3)----含参不等式的解法当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。
我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。
解参数不等式一直是高考所考查的重点内容。
(一)几类常见的含参数不等式一、含参数的一元二次不等式的解法:例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。
⑵当-1<m<3时,⊿=4(3-m )>0, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。
⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。
⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为∅。
解:11,|;4m x x ⎧⎫=-≥⎨⎬⎩⎭当时原不等式的解集为 ⎭⎬⎫⎩⎨⎧+-+≤≤+--<<-⎭⎬⎫⎩⎨⎧+-+≤+--≥-<∆=+-+-≠132132|,31132132|1);34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当 当m=3时,原不等式的解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当m>3时, 原不等式的解集为∅。
第5讲 一元二次不等式与分式不等式的解法【知识要点】1、一元二次不等式的概念:我们把只含有一个未知数,并且未知数最高次数是2的不等式,称为一元二次不式.2、一元二次不等式的解法步骤:一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002>=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆0=∆0<∆一元二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅口诀:大于取两边,小于取中间3、 解一元二次不等式的基本步骤:(1) 整理系数,使最高次项的系数为正数; (2) 尝试用“十字相乘法”分解因式; (3) 计算ac b 42-=∆(4) 结合二次函数的图象特征写出解集。
4、对于分式不等式:0)()(>x g x f ,它等价于0)()(>⋅x g x f0)()(=x g x f ,它等价于0)(0)(≠=x g x f 且0)()(<x g x f ,它等价于0)()(<⋅x g x f 【典型例题】例1、 求下列不等式的解集(1)01442>+-x x (2)0322>-+-x x例2、已知032>++a x x 的解集是}12{->-<x x x 或,求不等式012102<+-x ax 的解集.例3、解不等式(1)032<+-x x (2)254≤-+x x例4、自变量x 在什么取值范围时,下列函数的值等于0?大于0?小于0? (1)2632+-=x x y (2)225x y -=例5、函数3222)(a b x a ax x f -++=,当0)(),,6()2,(,0)(),6,2(<+∞--∞∈>-∈x f x x f x Y 当,求)(x f 的解析式;例6、集合}1222{<-+=x x x A }054{2>-+=x x x B ,},11{R m m x m x C ∈+<<-= (1)求B A I (2)若B A I C ⊆,求m 的取值范围.例7、求不等式)12(2+-x x 0)532(2<--x x 的解集例8、解关于x 的一元二次不等式2(3)30x a x a -++>【经典练习】1、如果62--x x 有意义,那么x 的取值范围是 .2、若012<-+bx ax 的解集为{}21<<-x x ,则a =________,b =________. 3、解下列一元二次不等式(1) )3)(1(x x --<x 25- (2) )11(+x x ≥2)1(3+x (3)031≥+-x x (4)3115<++x x4、已知关于x 的不等式220ax x c ++>的解集为11(,)32-,求220cx x a -+->的解集5、不等式22214x a x ax ->++对一切∈x R 恒成立,则实数a 的取值范围【课后作业】1、若10<<a ,那么不等式)1)((ax a x --0<的解是 ( ) A .a x a 1<< B .a x a <<1 C .a x a x 1<>或 D .a x ax <>或12、若关于x 的方程0)1(2=-+-m x m x 有两个不相等的实数根,那么m 的取值范围是.3、不等式0)1)(2(22<+--x x x 的解集为___________________________ 4、自变量x 在什么取值范围时,下列函数的值等于0?大于0?小于0? (1)1062++=x x y (2)121232-+-=x x y5、已知集合}016{2<-=x x A ,集合}034{2>+-=x x x B ,求B A Y6、已知=A }0145{2<--x x x ,求=B },2{A y y x x ∈-=,求B A I ,B A Y .。
含参的一元二次不等式的解法一元二次不等式是指形如ax^2 + bx + c > 0(或< 0)的二次函数的不等式,其中a, b, c是实数,且a ≠ 0。
解一元二次不等式的方法与解一元二次方程类似,但是需要注意的是,不等式的解是满足不等式条件的解集。
下面将介绍一元二次不等式的解法,包括图像法、开方法、配方法、代数法等。
一、图像法:对于一元二次不等式ax^2 + bx + c > 0(或< 0),我们可以首先绘制二次函数y = ax^2 + bx + c的图像,并找出函数图像在x轴上方(或下方)的区间。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以绘制出y = x^2 - 4x + 3的图像。
首先,找到抛物线的顶点,顶点就是不等式解的中心点。
顶点的横坐标为x = -b/(2a),纵坐标为y = f(-b/(2a))。
在这个例子中,a = 1,b = -4,c = 3,所以顶点的横坐标为x = -(-4)/(2*1) = 2,纵坐标为y = f(-4/(2*1)) = f(2) = 2^2 - 4*2 + 3= -1。
然后,可以找到函数图像在x轴上方的区间,即函数图像在x < 1和x > 3时,都在x轴上方。
根据图像可知,在x < 1和x > 3时,x^2 - 4x + 3 > 0。
所以,不等式x^2 - 4x + 3 > 0的解为x < 1或x > 3。
二、开方法:对于一元二次不等式ax^2 + bx + c > 0(或< 0),我们可以考虑将不等式转化为以x为未知数的一元二次方程,并求解方程的根,在不等式的根之间的区间满足不等式。
例如,对于不等式x^2 - 4x + 3 > 0,我们可以通过因式分解或配方法得到方程(x - 1)(x - 3) > 0。
根据求解一元二次方程的方法,可以得到方程的两个根为x = 1和x = 3。
【考点预测】1高中数学53个题型归纳与方法技巧总结篇专题05一元二次不等式与其他常见不等式解法、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅2、分式不等式(1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f xg x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【方法技巧与总结】1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为11(m n ,,即关于x 的不等式02>++a bx cx 的解集为11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,.3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[1(∞+---∞,,nm 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推.4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法题型二:含参数一元二次不等式的解法题型三:一元二次不等式与韦达定理及判别式题型四:其他不等式解法题型五:二次函数根的分布问题【典例例题】题型一:不含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为()A .{2}x x <-∣B .{1}x x >∣C .{21}x x -<<∣D .{2∣<-xx 或1}x >【答案】D 【解析】【分析】结合一元二次不等式的解法求得正确答案即可.【详解】由(2)(1)0x x +->解得2x <-,或1x >,所以不等式(2)(1)0x x +->的解集为{2∣<-x x 或1}x >,故选:D.例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为()A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-【答案】D 【解析】【分析】根据指数型函数的定点求解,m n ,代入后再求解一元二次不等式.【详解】当2x =时,()220255154f a a -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-.故选:D例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是()A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C 【解析】【分析】根据()f x 解析式,可得()f x 的单调性,根据条件,可得x +2<x 2+2x ,根据一元二次不等式的解法,即可得答案.【详解】函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,可得x ≥0,()f x 递增;当x <0时,()f x 递增;且x =0时函数连续,所以()f x 在R 上递增,不等式()2f x +<()22f x x +,可化为x +2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2,则原不等式的解集为(﹣∞,﹣2)∪(1,+∞).故选:C例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是()A .m <B .m >C .0m >D .m >或m <【答案】B 【解析】【分析】根据该不等式是否为二次不等式,分情况讨论.【详解】当0m =时,该不等式为210x -+>,解集为12x <,不成立;当0m ≠时,由不等式的解集为R ,得()()2Δ2410m m m m >⎧⎪⎨=+-+<⎪⎩,解得m >故选:B.例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为()A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【答案】D 【解析】【分析】根据奇偶性定义可知()f x 为偶函数,并根据指数函数和二次函数单调性确定()f x 的单调性,从而将所求不等式转化为124x x +≥-,解不等式可求得结果.()f x 定义域为R ,()()()2233x x f x x x f x --=+-=+=,()f x ∴为定义在R 上的偶函数,图象关于y 轴对称;当0x ≥时,()23x f x x =+,又3x y =,2y x 在[)0,∞+上均为增函数,()f x ∴在[)0,∞+上为增函数,则()f x 在(],0-∞上为减函数;由()()124f x f x +≥-可得:124x x +≥-,即()()22124x x +≥-,解得:15x ≤≤,即不等式()()124f x f x +≥-的解集为[]1,5.故选:D.【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为()A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭【答案】A 【解析】【分析】根据一元二次不等式的解法即可求解.【详解】解:原不等式可以转化为:()()120x ax --≥,当0a <时,可知2()(1)0x x a--≤,对应的方程的两根为1,2a,根据一元二次不等式的解集的特点,可知不等式的解集为:2[,1]a.故选:A.例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为()A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x a ⎫<⎭D .1|x x a ⎧⎫<⎨⎬⎩⎭【解析】【分析】当1a <-时,根据开口方向及根的大小关系确定不等式的解集.【详解】因为1a <-,所以1()0a x a x a ⎛⎫--< ⎪⎝⎭等价于1()0x a x a ⎛⎫--> ⎪⎝⎭,又因为当1a <-时,1a a >,所以不等式1()0x a x a ⎛⎫--> ⎪⎝⎭的解集为:{|x x a <或1x a ⎫>⎬⎭.故选:A .【点睛】本题考查含参一元二次不等式的解法,较简单,解答时,注意根的大小关系比较.例8.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()()f x y f x f y -=-,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m <<)的解集为()A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m >C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<【答案】A 【解析】【分析】先判断函数()f x 单调递减,再利用已知条件和函数的单调性得()()20mx x m --<,解不等式即得解.【详解】任取12x x <,由已知得()120f x x ->,即()()120f x f x ->,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m ->-,即()22f mx x f ->()22m x m -,所以2222mx x m x m -<-,即()22220mx m x m -++<,即()()20mx x m --<,又因为0m <<所以2m m>,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 【点睛】方法点睛:解抽象函数不等式一般先要判断函数的单调性,再利用单调性化抽象函数不等式为具体的函数不等式解答.例9.(2022·全国·高三专题练习)在关于x 的不等式2(1)0x a x a -++<的解集中至多包含2个整数,则a 的取值范围是A .(3,5)-B .(2,4)-C .[3,5]-D .[2,4]-【答案】D 【解析】【详解】因为关于x 的不等式2(1)0x a x a -++<可化为(1)()0x x a --<,当1a >时,不等式的解集为1x a <<,当1a <时,不等式的解集为1<<a x ,要使得解集中至多包含2个整数,则4a ≤且2a ≥-,所以实数a 的取值范围是[2,4]a ∈-,故选D.点睛:本题主要考查了不等式解集中整数解的存在性问题,其中解答中涉及到一元二次不等式的求解,元素与集合的关系等知识点的综合应用,试题比较基础,属于基础题,同时着重考查了分类讨论思想的应用,解答中正确求解不等式的解集是解答的关键.例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围.【答案】()(),22,∞∞--⋃+【解析】【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案.【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x a a ==+120,0x x <>,当0a >时,解集{}{}12||A x x x x x x =<> ,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x <,即12a <,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a>,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R.(1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由.【答案】(1)答案见解析(2)能;2k =-,B ={-3,-2,-1,0,1,2,3}【解析】【分析】(1)对k 进行分类讨论,结合一元二次不等式的解法求得不等式的解集A .(2)结合(1)的结论进行分类讨论,结合基本不等式求得和正确答案.(1)当k =0时,A ={x |x <4};当k >0且k ≠2时,A ={x |x <4或4x k k>+};当k =2时,A ={x |x ≠4};当k <0时,A ={x |4k k+<x <4}.(2)由(1)知:当k ≥0时,集合B 中的元素的个数有无限个;当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集.因为4k k+=-[(-k )+()4k -]≤-4,当且仅当k =-2时取等号,所以当k =-2时,集合B 中的元素个数最少,此时A ={x |-4<x <4},故集合B ={-3,-2,-1,0,1,2,3}.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围【答案】12ln2(,]43-【解析】【分析】将不等式转化为22ln 2(1)x xm x ->+,构造函数22ln ()=2(1)x x f x x -+,利用导数判断单调性,结合题意即可求解.【详解】关于x 的不等式21ln 02x mx x m ---<化为:22ln 2(1)x xm x ->+,令22ln ()=2(1)x xf x x -+,0x >,则3222222ln ()2(1)x x x x xf x x x +--+'=+.令32()2222ln u x x x x x x =+--+,2()342ln u x x x x '=++在(0,)+∞上单调递增,因此存在0(0,1)x ∈,使得20000()342ln 0u x x x x '=++=,20002ln 34x x x =--,3232232200000000000000000()2222ln 222(34)22222(1)(1)0u x x x x x x x x x x x x x x x x x =+--+=+--+--=----=-++<,u (1)10=-<,u (2)104ln20=+>.因此存在1(1,2)x ∈,使得1()0u x =,因此函数()f x 在1(0,)x 内单调递减,在1(x ,) +单调递增.f (1)14=,f (2)2ln23-=. 关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,该不等式在(,)a b 中有且只有一个整数解,∴实数m 的取值范围是12ln2(,]43-.【方法技巧与总结】1.数形结合处理.2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为()A .2-B .1C .2D .8【答案】C 【解析】【分析】由一元二次不等式的解与方程根的关系求出系数1a =,确定2b ≥,然后结合基本不等式得最小值.【详解】2240ax bx ++<的解集为4,m m ⎛⎫ ⎪⎝⎭,则2240ax bx ++=的两根为m ,4m ,∴44m m a ⋅=,∴1a =,42m b m +=-,则424b m m=-+≥-,即2b ≥,44244b b a b b+=+≥,当且仅当4b =时取“=”,故选:C.例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是()AB.CD.【答案】D 【解析】【分析】一元二次不等式解集转化为一元二次方程的解,根据韦达定理求出124x x a +=,2123x x a =,再用基本不等式求出最值【详解】22430(0)x ax a a -+<<的解集为()12x x ,,则12x x ,是方程22430-+=x ax a 的两个根,故124x x a +=,2123x x a =,故1212143a x x a x x a++=+因为0a <,所以有基本不等式得:114433a a a a ⎡⎤⎛⎫+=--+-≤-= ⎪⎢⎥⎝⎭⎣⎦当且仅当143a a -=-即a =时,等号成立,所以1212a x x x x ++的最大值为故选:D(多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则()A .0a >B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,(,)32-∞-⋃+∞【答案】ABD 【解析】【分析】根据不等式20ax bx c ++>的解集判断出0a >,结合根与系数关系、一元二次不等式的解法判断BCD 选项的正确性.【详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确;且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误;不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确.故选:ABD .例16.(2022·全国·高三专题练习)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式303x ax -<-的解集为___________.【答案】{}23x x <<【解析】【分析】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭可得参数a 的值,则不等式303x ax -<-也具体化了,按分式不等式解之即可.【详解】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,可知方程251=0ax x ++有两根121123x x =-=-,故6a =,则不等式303x a x -<-即3603x x -<-等价于3(2)(3)0x x --<,不等式3(2)(3)0x x --<的解集为{}23x x <<,则不等式303x ax -<-的解集为{}23x x <<,故答案为:{}23x x <<.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --<的解集是________.【答案】{|23}x x <<【解析】【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答.【详解】依题意,12-,13-是方程210ax bx --=的两个根,且0a <,于是得11()()23111()(23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<,所以不等式20x bx a --<的解集是{|23}x x <<.故答案为:{|23}x x <<【方法技巧与总结】1.一定要牢记二次函数的基本性质.2.含参的注意利用根与系数的关系找关系进行代换.题型四:其他不等式解法例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______.【答案】10,2⎛⎫⎪⎝⎭【解析】【分析】由12x >可得120x->,结合分式不等式的解法即可求解.【详解】由12x >可得120x ->,整理可得:120x x ->,则()210x x -<,解可得:102x <<.所以不等式是12x >的解集为:10,2⎛⎫⎪⎝⎭.故答案为:10,2⎛⎫⎪⎝⎭.例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________.【答案】()1,0-【解析】【分析】根据分式不等式的解法进行求解.【详解】1111000101111x x x x x x x ->⇒->⇒>⇒<⇒-<<++++,故答案为:()1,0-.例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________.【答案】02xx <-【解析】【分析】由题意根据分式不等式的解法,得出结论.【详解】一个解集为()0,2的分式不等式可以是02xx <-,故答案为:02xx <-.(答案不唯一)例21.(2022·上海·高三专题练习)关于x230≥的解集为_________.【答案】[4,5)【解析】【分析】通过2330x x -+>0≥恒成立,将不等式最终转化为405010x x x -≥⎧⎪->⎨⎪+≠⎩,解出即可.【详解】解:对于233x x -+,有23340∆=-⨯<,则2330x x -+>恒成立,0≥恒成立,2323(34)00150x x x x ⎧--≥⎪≥⇔+⎨⎪->⎩又2333(34)(4)(1)11x x x x x x ---+=++,23(34)0150x x x x ⎧--≥⎪∴+⎨⎪->⎩,2333(34)(4)(1)x x x x --=-+405010x x x -≥⎧⎪∴->⎨⎪+≠⎩解得不等式的解集为[4,5).故答案为:[4,5).【点睛】本题考查分式不等式的求解,发现部分因式恒大于零,以及分母不为零是解题的关键,是中档题.例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法:解析:由20ax bx c ++>的解集()1,2-,得()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-.参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____.【答案】()()3,11,2 --.【解析】【分析】关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x 代入可得不等式1011kx bx ax cx ++<++的解集.【详解】若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭则关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x代入可得,则1111,,132x ⎛⎫⎛⎫∈--⋃ ⎪ ⎪⎝⎭⎝⎭,则()()3,11,2x ∈--⋃.故解集为:()()3,11,2 --.【点睛】本题考查不等式的解法,考查方法的类比,正确理解题意是关键.【方法技巧与总结】1.分式不等式化为二次或高次不等式处理.2.根式不等式绝对值不等式平方处理.题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围是()A .()0,1B .()0, +C .()1,+∞D .(),0-∞【答案】C 【解析】【分析】由0a ≠,判别式0∆>及根与系数关系列出不等式组,即可求出实数a 的取值范围.【详解】因为关于x 的方程2210ax ax -+=有两个不同的正根,所以2044010a a a a ⎧⎪≠⎪∆=->⎨⎪⎪>⎩,解得1a >,故实数a 的取值范围是()1,+∞.故选:C例24.(2022·全国·高三专题练习)已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为()A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫-- ⎪⎝⎭【答案】B 【解析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得5534a -≤≤-,所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】A 【解析】化简函数f (x ),根据f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,f ′(x )≤0恒成立,由此解不等式求出a 的取值范围.【详解】由函数()()()1cos 23sin cos 212f x x a x x a x =+++-,且f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A .【点睛】本题考查三角函数的公式及导数的应用,解题的关键是利用换元将不等式恒成立问题转化为一元二次不等式恒成立问题,属于较难题.例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值()A .196B .3C .103D .92【答案】AC 【解析】【分析】本题先求导函数并根据题意建立关于m 的方程,再根据根的分布求a 的取值范围,最后判断得到答案即可.【详解】解:∵322()13f x x x ax =-+-,∴2()22f x x x a '=-+,可令切点的横坐标为m ,且0m >,可得切线斜率2223k m m a =-+=即22230m m a -+-=,由题意,可得关于m 的方程22230m m a -+-=有两个不等的正根,且可知1210m m +=>,则1200m m ∆>⎧⎨⋅>⎩,即2242(3)0302a a ⎧-⨯⨯->⎪⎨->⎪⎩,解得:732a <<,所以a 的取值可能为196,103.故选:AC.【点睛】本题考查求导函数,导数的几何意义,根的分布,是中档题.例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+.【解析】根据一元二次方程根的分布建立不等式组,解之可得答案.【详解】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证:(Ⅰ)0a >且21ba-<<-;(Ⅱ)方程()0f x =在(0,1)内有两个实根.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】【分析】(Ⅰ)先由条件求得,a c 的符号,结合条件可得;(Ⅱ)根据(0),(1)()3bf f f a-的符号可得.【详解】(Ⅰ)因为(0)0,(1)0f f >>,所以0,320c a b c >++>.由条件0a b c ++=,消去b ,得0a c >>;由条件0a b c ++=,消去c ,得0a b +<,20a b +>.故21ba-<<-.(Ⅱ)函数2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a --,在21b a -<<-的两边乘以13-,得12333b a <-<.又因为(0)0,(1)0,f f >>而22(0,33b a c acf a a+--=-<又因为2()32f x ax bx c =++在(0,)3b a -上单调递减,在(,1)3ba-上单调递增,所以方程()0f x =在区间(0,)3b a -与(,1)3ba-内分别各有一实根.【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B x x ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=()A .{}22x x -≤≤B .{}42,3x x x -≤≤≠-C .{}34x x ≤≤D .{}34x x -<≤【答案】D 【解析】【分析】由一元二次不等式的解法和简单分式不等式的解法求出集合,A B ,然后根据并集的定义即可求解.【详解】解:因为集合{}{}228024A x x x x x =--≤=-≤≤,()(){}2302032330x x x B x x x x x x ⎧⎫⎧-+≤⎧⎫-⎪⎪=≤==-<≤⎨⎬⎨⎨⎬++≠⎩⎭⎩⎪⎪⎩⎭,所以{}34A B x x ⋃=-<≤,故选:D.2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】【分析】2,20x x x a ∃∈-+<R ,列出不等式,求出1a <,从而判断出答案.【详解】2,20x x x a ∃∈-+<R ,则要满足440a ∆=->,解得:1a <,因为11a <⇒1a <,但111a a <⇒<故“11a <”是“2,20x x x a ∃∈-+<R ”的必要不充分条件.故选:B3.(2022·陕西·模拟预测(理))已知集合 234|0A x x x ,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D 【解析】【分析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】解:由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D4.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(【答案】C 【解析】【分析】根据函数解析式判断函数关于点(1,0)成中心对称,再由基本初等函数判断函数单调性,转化原不等式后求解即可.【详解】()()ππln ln 2cos ln 2ln cos(π)0)2()(22f x f x x x x x x x ----+----=+= ,()f x ∴图象关于点(1,0)成中心对称,又()()ln ln 2cos2f x x x x π=---的定义域为(0,2),由πln ,ln(2),cos2y x y x y x ==--=-在(0,2)上单调递增知,()()ln ln 2cos2f x x x x π=---在(0,2)上递增,()()20f t f t +< ,()20(2)f f t t ∴+-<-,即()2(2)f t f t <-,22t t ∴<-,解得21t -<<,又20202t t <<⎧⎨<<⎩,解得0t <,所以01t <<.故选:C5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】【分析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的取值范围为()A .[1,3]-B .75,22⎡⎤-⎢⎥⎣⎦C.[1,-D.[1,【答案】A【分析】令1sin ,[,1]2t x t =∈,则||2t t k -≤.对k 进行讨论,即可求出答案.【详解】令1sin ,[,1]2t x t =∈,则||2t t k -≤.(1)当12k <时,则2()220t t k t kt -≤⇒--≤,令2()2g t t kt =--,max ()(1)101g t g k k ==--≤⇒≥-.故112k -≤<.(2)当1k >时,则2()220t k t t kt -≤⇒-+≥,令2()2g t t kt =-+①当12k<时,212k k <⇒<<,则22min ()()201242k k k g t g k ==-+≥⇒<≤②当12k≥时,2k ≥,则min ()(1)120323g x g k k k ==-+≥⇒≤⇒≤≤故13k <<(3)当112k ≤≤时,则||2t t k -≤在1[,1]2t ∈上恒成立,故112k ≤≤.综上所述:[1,3]k ∈-故选:A.7.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b +=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是()A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞【答案】A【分析】首先判断0,0a b >>,再化简()214224a b a b a b a b b a ⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求解.【详解】解:设方程2320x x ab --=的两个异号的实根分别为1x ,2x ,则1203abx x =-<,0ab ∴>.又211a b+=,0a ∴>,0b >,则()21422448a b a b a b a b b a ⎛⎫+=++=++≥+= ⎪⎝⎭(当且仅当4a =,2b =时取“=”),由不等式222a b m m +>+恒成立,得228m m +<,解得42m -<<.∴实数m 的取值范围是()4,2-.故选:A .8.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)【答案】C 【解析】【分析】把不等式看作是关于a 的一元一次不等式,然后构造函数()2(2)44f a x a x x =-+-+,由不等式在[1-,1]上恒成立,得到(1)0(1)0f f ->⎧⎨>⎩,求解关于a 的不等式组得x 得取值范围.【详解】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩,整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x 的取值范围为()(),13,-∞⋃+∞.故选:C .9.(2022·全国·高三专题练习)若不等式2sin sin 20x a x -+≥对任意的0,2x π⎛⎤∈ ⎥⎝⎦恒成立,则实数a 可能是A .1B .2C .3D .4【答案】ABC 【解析】【分析】利用换元法令sin t x =,不等式可整理为220t at -+≥在(]0,1t ∈上恒成立,即2a t t ≤+,即min2a t t ⎛⎫≤+ ⎪⎝⎭,求函数的最小值即可得解.【详解】设sin t x =,0,2x π⎛⎤∈ ⎥⎝⎦,(]0,1t ∴∈则不等式2sin sin 20x a x -+≥对任意0,2x π⎛⎤∈ ⎥⎝⎦恒成立,即转化为不等式220t at -+≥在(]0,1t ∈上恒成立,即转化为222t a t t t +≤=+在(]0,1t ∈上恒成立,由对勾函数知2y t t =+在(]0,1t ∈上单减,min 2131y =+=,3a ∴≤故选:ABC 【点睛】关键点点睛:本题主要考查不等式恒成立问题,利用换元法结合对勾函数的单调性求出函数的最值是解题的关键,考查学生的转化与化归能力,属于一般题.10.(2022·江苏·高三专题练习)已知不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >,则以下选项正确的有()A .0a <B .0c >C .20cx bx a ++>的解集为11x x n m ⎧⎫<<⎨⎬⎩⎭D .20cx bx a ++>的解集为{1x x n <或}1x m>【答案】AC 【解析】由一元二次不等式的解法,再结合根与系数的关系逐个分析判断可得答案【详解】解:因为不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >,所以0a <,,m n 是方程20ax bx c ++=的两个根,所以A 正确;所以b m n a c mn a ⎧+=-⎪⎪⎨⎪=⎪⎩,解得()b m n a c mna =-+⎧⎨=⎩,因为0m >,m n <,所以0n >,又由于0a <,所以0c mna =<,所以B 错误;所以20cx bx a ++>可化为2()0mnax m n ax a -++>,即2()10mnx m n x -++<,即(1)(1)0mx nx --<,因为0n m >>,所以11n m<,所以不等式20cx bx a ++>的解集为11x x n m ⎧⎫<<⎨⎬⎩⎭,所以C 正确,D 错误,故选:AC 【点睛】关键点点睛:此题考查一元二次不等式的解法的应用,解题的关键由一元二次不等式的解法可知0a <,且,m n 是方程20ax bx c ++=的两个根,再利用根与系数的关系得b m n a c mn a ⎧+=-⎪⎪⎨⎪=⎪⎩,再求得()b m n a c mna =-+⎧⎨=⎩,从而可求解不等式20cx bx a ++>,考查转化思想,属于中档题11.(2022·全国·高三专题练习)已知函数()222f x x mx m =--,则下列命题正确的有()A .当0m ≠时,()0f x <的解集为2mx x m ⎧⎫-<<⎨⎬⎩⎭B .当1m =时,[)12,1,x x ∀∈+∞时,()()()12120x x f x f x -->⎡⎤⎣⎦C .121,,4x x m ⎛⎤∀∈-∞ ⎥⎝⎦且12x x ≠时,()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭D .当0m <时,若120x x <<,则()()2112>x f x x f x 【答案】BC 【解析】对于A ,分0m >和0m <时求解不等式;对于B ,根据函数的单调性可判断;对于C ,根据函数的单调性,任取两点,根据数形结合的方式可判断;对于D ,构造函数()()(0)f x g x x x=>,看作()y f x =在y 轴右侧图象上的点与原点所在直线的斜率,数形结合可判断单调性,即可得出结果.对于A ,由2220x mx m --<得()(2)0x m x m -+<,当0m >时,原不等式的解集为|2m x x m ⎧⎫-<<⎨⎬⎩⎭;当0m <时,原不等式的解集为|2m x m x ⎧⎫<<-⎨⎩⎭,故A 错误;对于B ,1m =时,2219()212(48f x x x x =--=--在[)1+∞,上是增函数,则1212()()0f x f x x x ->-,即()[]1212()()0x x f x f x -->,故B 正确;对于C.()f x 在1,4⎛⎤-∞ ⎥⎝⎦m 上单调递减,当121,4x x m ⎛⎤∈-∞ ⎥⎝⎦,时,设11(,())A x f x 、()22,()B x f x ,则AB 的中点C 1212()(),22x x f x f x ++⎛⎫⎪⎝⎭,又设1212,22x x x D f x ⎛⎫⎛++⎫ ⎪ ⎪⎝⎭⎝⎭,数形结合可知,点D 位于点C 的下方,即1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,故C正确;对于D ,设()()(0)f x g x x x=>,则()g x 表示()y f x =在y 轴右侧图象上的点与原点所在直线的斜率,数形结合可知,()g x 是增函数,当120x x <<时,12()()<g x g x ,则1212()()f x f x x x <,即2112()()x f x x f x <,故D 错误.故选:BC.关键点睛:本题考查二次函数性质的综合应用,对于CD 选项的判断,关键是根据函数的单调性,利用数形结合的方法进行判断.12.(2022·重庆巴蜀中学高三阶段练习)已知两个变量x ,y 的关系式(,)(1)f x y x y =-,则以下说法正确的是()A .(1,3)(3,1)0f f ==B .对任意实数a ,都有1(,)4f a a ≤成立C .若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立,则实数a 的取值范围是[5,3]-D .若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立,则实数x 的取值范围是(,0)-∞【答案】BC 【解析】【分析】(1,3)f 和(3,1)f 的值直接代入即可求得,1(,)4f a a ≤转化为求二次函数最大值的问题,若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立转化为关于x 的二次函数与x 轴至多有一个交点的问题,若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立转化为关于a 的一次函数在0a >内恒大于等于零恒成立的问题.【详解】对于选项A ,()(1,3)1132f =⨯-=-,()(3,1)3110f =⨯-=,即(1,3)(3,1)f f ≠,则A 选项错误;对于选项B ,()22211111(,)144244f a a a a a a a a a ⎛⎫⎛⎫=-=-=--++=--+≤ ⎪ ⎪⎝⎭⎝⎭,则B 选项正确;对于选项C ,()()()2(,)114f x a x x a x x a x a a -=--=-++-≤-+恒成立,即()2140x a x -++≥恒成立,则()21160a ∆=+-≤,解得53a -≤≤,即实数a 的取值范围是[5,3]-,则C选项正确;对于选项D ,()2140x a x -++≥恒成立,令()24 0y ax x x a =-+-+>,当0x >时,该函数看成关于a 的一次函数,函数单调递减,不可能恒大于0,当0x =时,40y =≥成立,当0x <时,该函数看成关于a 的一次函数,函数单调递增,当0a =时,24y x x =-+211544x x =-++2115024x ⎛⎫=-+> ⎪⎝⎭,则实数x 的取值范围是(],0-∞,则D 选项错误;故选:BC .三、填空题13.(2022·全国·高三专题练习)不等式210ax x c a++>的解集为{|21}x x -<<,则函数y【答案】[0,1]【解析】根据不等式的解集可知一元二次不等式所对应的一元二次方程的根,利用韦达定理可求出a ,c 的值,再根据复合函数求单调区间的方法,得出单调递增区间.【详解】由题知-2和1是210ax x c a++=的两根,由根与系数的关系知-2+1=21a -,−2×1=c a,由不等式的解集为{|21}x x -<<,可知0a <,12a c ∴=-=,,则y ==因为函数y =[]0,2x ∈,令()22g x x x =-+则该函数的增区间为(],1-∞所以y =[]0,1故答案为:[]0,1.14.(2022·浙江·高三专题练习)若不等式2(3)16x b -<的解集中的整数有且仅有1,2,3,则实数b 的取值范围是___________.【答案】()5,7【解析】【分析】首先解一元二次不等式,求出不等式的解集,再根据解集中整数的情况,得到不等式组,解得即可;【详解】解:因为2(3)16x b -<,所以()()34340x b x b -+--<,解得4433b b x -+<<,所以原不等式的解集为44|33b b x x -+⎧⎫<<⎨⎬⎩⎭,又解集中的整数有且仅有1,2,3,所以40134343b b -⎧<⎪⎪⎨+⎪<⎪⎩ 解得:57b <<,即()5,7b ∈,故答案为:()5,7.15.(2022·全国·高三专题练习)若关于x 的不等式()2220x a x a -++->恰有1个正整数解,则a 的取值范【答案】()(],13,4-∞ 【解析】【分析】先解带有参数的一元二次不等式,再对a 进行分类讨论,使得恰有1个正整数解,最后求出a 的取值范围【详解】不等式()2220x a x a -++->等价于()2220x a x a -++<.令()2220x a x a -++=,解得2x =或x a =.当2a >时,不等式()2220x a x a -++<的解集为()2,a ,要想恰有1个正整数解,则34a < ;当2a =时,不等式()2220x a x a -++<无解,所以2a =不符合题意;当2a <时,不等式()2220x a x a -++<的解集为(),2a ,则1a <.综上,a 的取值范围是()(],13,4-∞ .故答案为:()(],13,4-∞ 16.(2022·全国·高三专题练习)设a ,b ,c R ∈,对任意满足1x 的实数x ,都有21ax bx c ++ ,则a b c ++的最大可能值为__.【答案】3【解析】【分析】可先通过赋值0x =,判断1c ≤,再令1,0c b =-=,结合二次函数最值,可得所求最大值.【详解】任意满足1x 的实数x ,都有21ax bx c ++ ,若0x =,则1c ,可取1c =-,0b =,可得211ax - ,即22ax ≤恒成立,由于201x ,可得a 最大取2,可得3a b c ++ ,即有a b c ++的最大可能值为3.故答案为:3.四、解答题17.(2022·北京·高三学业考试)已知函数2()1f x x mx =++(m 是常数)的图象过点(1,2).(1)求()f x 的解析式;(2)求不等式()21f x x <+的解集.【答案】(1)2()1f x x =+;。
第05讲一元二次不等式与其他常见不等式解法目录1、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 2、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解 【解题方法总结】1、已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为)11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2、已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,. 3、已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx . 由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[]1(∞+---∞,,nm 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推. 4、已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5、已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6、已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7、已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【典例例题】题型一:不含参数一元二次不等式的解法 【解题总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集 例1.(2023·上海金山·统考二模)若实数x 满足不等式2320x x -+<,则x 的取值范围是__________.例2.(2023·高三课时练习)不等式21293xx +≤的解集为______.例3.(2023·高三课时练习)函数()23()log 32f x x x =+-的定义域为______.例4.(2023·高三课时练习)不等式212302x x -+-≥的解集为______.题型二:含参数一元二次不等式的解法 【解题总结】 1、数形结合处理. 2、含参时注意分类讨论.例5.(2023·全国·高三专题练习)已知集合3112x A xx -⎧⎫=≤⎨⎬-⎩⎭,集合(){}2220B x x a x a =-++<,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围( ) A .1,2⎛⎫-∞- ⎪⎝⎭B .1,2⎛⎤-∞- ⎥⎝⎦C .1,22⎡⎫-⎪⎢⎣⎭D .1,22⎛⎫- ⎪⎝⎭例6.(2023·全国·高三专题练习)若关于x 的不等式()2220x m x m -++<的解集中恰有4个整数,则实数m 的取值范围为( ) A .(]6,7 B .[)3,2--C .[)(]3,26,7--D .[]3,7-例7.(2023·全国·高三专题练习)解下列关于x 的不等式()()22100ax a x a +++>≠.例8.(2023·全国·高三专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭题型三:一元二次不等式与韦达定理及判别式【解题总结】1、一定要牢记二次函数的基本性质.2、含参的注意利用根与系数的关系找关系进行代换.例9.(2023·全国·高三专题练习)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是( )A .0a >B .不等式20ax cx b ++>的解集为{|22x x <+C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >例10.(2023·全国·高三专题练习)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是( ) A .12a x x b <<< B .12x a b x <<< C .12a x b x <<< D .12x a x b <<<例11.(2023·全国·高三专题练习)关于x 的不等式20ax bx c ++<的解集为()3,1-,则不等式20bx ax c ++<的解集为( ) A .()1,2? B .1,2C .1,12⎛⎫- ⎪⎝⎭D .3,12⎛⎫- ⎪⎝⎭例12.(2023·北京海淀·101中学校考模拟预测)已知关于x 的不等式20(0)x ax b a ++>>的解集是{}|,x x d ≠,则下列四个结论中错误的是( ) A .24a b = B .214a b+≥ C .若关于x 的不等式20x ax b +-<的解集为12x x (,),则120x x >D .若关于x 的不等式2x ax b c 的解集为12x x (,),且124x x -=,则4c =例13.(2023·全国·高三专题练习)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b+的最小值为( ) A .-2 B .1C .2D .8题型四:其他不等式解法 【解题总结】1、分式不等式化为二次或高次不等式处理.2、根式不等式绝对值不等式平方处理. 例14.(2023·北京海淀·统考一模)不等式102x x ->+的解集为_________.例15.(2023·全国·高三专题练习)不等式的 2902x x ->-的解集是______例16.(2023·上海·高三专题练习)若不等式21x -<,则x 的取值范围是____________.例17.(2023·上海浦东新·统考三模)不等式224x x ++-≤的解集是__________.例18.(2023·上海杨浦·高三复旦附中校考阶段练习)已知集合{}{}2680,32,Z A xx x B x x x =-+≤=-<∈∣,则A B =___________.题型五:二次函数根的分布问题 【解题总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.例19.(2023·全国·高三专题练习)方程()2110mx m x --+=在区间()0,1内有两个不同的根,m 则的取值范围为__.例20.(2023·全国·高三专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.例21.(2023·全国·高三专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______.例22.(2023·全国·高三专题练习)已知,,R a b c ∈,2221,1a b c a b c ++=++=,则c 的取值范围为________.题型六:一元二次不等式恒成立问题 【解题总结】恒成立问题求参数的范围的解题策略(1)弄清楚自变量、参数.一般情况下,求谁的范围,谁就是参数.(2)一元二次不等式在R 上恒成立,可用判别式∆,一元二次不等式在给定区间上恒成立,不能用判别式∆,一般分离参数求最值或分类讨论.例23.(2023·全国·高三专题练习)若不等式2221x x m x mx <+--对x ∈R 恒成立,则实数m 的取值范围是________.例24.(2023·全国·高三专题练习)若不等式221ax x x >--对(),0x ∈-∞恒成立,则a 的取值范围是____________.例25.(2023·全国·高三专题练习)若关于x 的不等式220ax x a -+≤在区间[]0,4上有解,则实数a 的取值范围是______.例26.(2023·全国·高三专题练习)若[]1,2x ∃∈使关于x 的不等式210x ax -+≥成立,则实数a 的取值范围是______.例27.(2023·全国·高三专题练习)若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,实数x 的取值范围是_____.1.(2020·山东·统考高考真题)已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是( )A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞2.(2020·全国·统考高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}3.(2018·全国·高考真题)已知集合{}220A x x x =-->,则RA =A .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥。
一元二次不等式及其解法【学习目标】1. 了解一元二次不等式与相应函数、方程的联系,能借助函数图象解一元二次不等式及一些简单的高次不等式;2. 对给定的一元二次不等式,能设计求解的程序框图;3. 应用一元二次不等式解简单的分式不等式. 【要点梳理】要点一:一元二次不等式的概念一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式. 一元二次不等式的解:使某个一元二次不等式成立的x 的值.一元二次不等式的解集:一元二次不等式的所有解组成的集合.一般写为集合或区间形式. 一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 要点诠释:一元二次不等式的解集一般借助相应的方程及图象(抛物线)来研究. 要点二:一元二次不等式与相应函数、方程之间的联系设()2f x ax bx c =++(0)a >,判别式24b ac ∆=-,按照0∆>,0∆=,0∆<该函数图象(抛物线)与x 轴的位置关系也分为三种情况,相应方程的解与不等式的解集形式也不尽相同. 如下表所示:要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.要点三:解一元二次不等式1. 解一元二次不等式()2ax +bx+c a ≠>00的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法); ②0∆=时,求根122bx x a==-; ③0∆<时,方程无解 (3)根据不等式,写出解集.2. 一元二次不等式2ax +bx+c >0的求解框图要点诠释:1.解一元二次不等式首先要看二次项系数a 是否为正;若为负,则将其变为正数; 2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数. 要点四:高次不等式1. 一元高次不等式概念解不等式是初等数学重要内容之一,高中数学常出现高次不等式,其类型通常为一元高次不等式. 常用的解法有化为不等式组法、列表法和穿针引线(根轴法)来求解.2. 一元高次不等式的解法 列表法① 等价转化:将不等式化为()()()()1200n x x x x x x --⋯-><形式(各项x 的符号为正); ② 找分界点:令()()()120=n a x x x x x x --⋯-,求出根()1212,,,n n x x x x x x <<<,不妨称之为分界点. 一个分界点把(实数)数轴分成两部分,n 个分界点把数轴分成1n +部分;② 列出表格:按各根把实数分成的1n +部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③ 计算各区间内各因式的符号,下面是乘积的符号; ④看下面积的符号写出不等式的解集.在下列空白处填上因式的符号,完成下表:要点诠释:一般地,表格中最后一行各因式积为正的,即为()()()120n x x x x x x --⋯->的解集,反之亦然.穿针引线法① 等价转化:将不等式化为()()()()1200n x x x x x x --⋯-><的形式(各因式x 的系数化“+ ”); ② 求根,比方设12n x x x <<<,并在数轴上将i x 表示出来;③ 由数轴最右端n x 的右上方出发,画出曲线依次经过表示各根的点;④ 若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.要点诠释:(1)如果出现某个因式的高次形式(次数≥2),注意一个原则:奇穿偶不穿;(2)不等式()()00f x ≥≤中,注意等于号 “=”.不等式组法利用符号法则,转化为一元一次不等式与一元二次不等式的形式求解. 此种方法的本质是分类讨论,强化了“或”与“且”,进一步渗透了“交”与“并”的思想方法.要点五:分式不等式1. 分式不等式的概念 形如0()()f x x ϕ>或0()()f x x ϕ<(其中(),()f x x ϕ为整式,且()0x ϕ≠),分子分母还未知数的不等式叫分式不等式,2. 分式不等式的解法对这种分式不等式,先把不等式的右边化为0,再通过符号法则,把它转化成整式不等式来解,从而化繁为简.(1)整理:移项保证不等式右边为零,整理成一般形式;(2)等价转化:转化为整式不等式;(3)穿针引线法:借助数轴,把对应整式的根从右上方起标出;(4)看不等号:大于零看数轴上方的部分,小于零看数轴下方部分的区域; (5)注意关键点. 一般形式:要点诠释:分式不等式一定要注意转化的等价性. 【典型例题】类型一:一元二次不等式的解法 例1. 解下列一元二次不等式(1)250x x -<; (2)2440x x -+>; (3)2450x x -+-> 【思路点拨】转化为相应的函数,数形结合解决,或利用符号法则解答.【解析】 (1)方法一:因为2(5)410250∆=--⨯⨯=>所以方程250x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为:因而不等式250x x -<的解集是{|05}x x <<. 方法二:250(5)0x x x x -<⇔-<050x x >⎧⇔⎨-<⎩ 或050x x <⎧⎨->⎩解得05x x >⎧⎨<⎩ 或5x x <⎧⎨>⎩,即05x <<或x ∈∅. 因而不等式250x x -<的解集是{|05}x x <<. (2)方法一: 因为0∆=,方程2440x x -+=的解为122x x ==. 函数244y x x =-+的简图为:所以,原不等式的解集是{|2}x x ≠方法二:2244(2)0x x x -+=-≥(当2x =时,2(2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一:原不等式整理得2450x x -+<.因为0∆<,方程2450x x -+=无实数解, 函数245y x x =-+的简图为:所以不等式2450x x -+<的解集是∅. 所以原不等式的解集是∅.方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是∅. 【总结升华】1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;2. 当0∆≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0∆>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题).3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三:【高清课堂:一元二次不等式及其解法387159题型一 一元二次不等式的解法】【变式1】已知函数222,0,()2,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩ 解不等式f (x )>3.【答案】由题意知20,23x x x ≥⎧⎨+>⎩或20,23,x x x <⎧⎨-+>⎩ 解得:x >1.故原不等式的解集为{x |x >1}. 【变式2】解不等式2230x x -+-> 【答案】整理,得2230x x -+<.因为0∆<,方程2230x x -+=无实数解, 所以不等式2230x x -+<的解集是∅. 从而,原不等式的解集是∅.类型二:含字母系数的一元二次不等式的解法 例2.解下列关于x 的不等式 (1)x 2-2ax≤-a 2+1; (2)x 2-ax+1>0; (3)x 2-(a+1)x+a<0; 【思路点拨】解不等式时首先应判断两根的大小,若不能判断两根的大小应分类讨论; 【解析】(1) 22210[()1][()1]011x ax a x a x a a x a -+-≤⇒---+≤⇒-≤≤+∴原不等式的解集为{|11}x a x a -≤≤+. (2) Δ=a 2-4当Δ>0,即a>2或a<-2时,原不等式的解集为}2424|{22--<-+>a a x a a x x 或当Δ=0,即a=2或-2时,原不等式的解集为{|}2a x x ≠. 当Δ<0,即-2<a<2时,原不等式的解集为R. (3)(x-1)(x-a)<0当a>1时,原不等式的解集为{x|1<x<a} 当a<1时,原不等式的解集为{x|a<x<1} 当a=1时,原不等式的解集为Φ.【总结升华】对含字母的二元一次不等式,一般有这样几步:①定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;②求根:求相应方程的根.当无法判断判别式与0的关系时,要引入讨论,分类求解; ③定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论. 举一反三:【变式1】解关于x 的不等式:)0(01)1(2≠<++-a x aa x 【答案】原不等式化为0)1)((<--ax a x ①a=1或a=-1时,解集为∅;②当0<a<1 或a<-1时,a a 1<,解集为:1{|}x a x a <<; ③当a>1或 -1<a<0时,a a 1>,解集为:1{|}x x a a<<.【变式2】解关于x 的不等式:223()0x a a x a -++>(a R ∈) 【答案】2232()0()()0x a a x a x a x a -++>⇒--> 当a <0或a >1时,解集为2{|}x x a x a <>或; 当a=0时,解集为{|0}x x ≠;当0<a <1时,解集为2{|}x x a x a <>或; 当a=1时,解集为{|1}x x ≠;例3.解关于x 的不等式:ax 2-(a+1)x+1<0. 【解析】若a=0,原不等式⇔-x+1<0⇔x >1;若a <0,原不等式⇔211(1)0x x a a -++>11()(1)0x x x a a ⇔-->⇔<或x >1;若a >0,原不等式⇔2111(1)0()(1)0x x x x a a a-++<⇔--<,其解的情况应由1a与1的大小关系决定,故(1)当a=1时,原不等式⇔x ∈∅;(2)当a >1时,原不等式⇔11x a<<;(3)当0<a <1时,原不等式⇔11x a<<综上所述:当a <0,解集为1{|1}x x x a<>或; 当a=0时,解集为{x|x >1};当0<a <1时,解集为1{|1}x x a<<; 当a=1时,解集为∅; 当a >1时,解集为1{|1}x x a<<. 【总结升华】熟练掌握一元二次不等式的解法是解不等式的基础,对最高项含有字母系数的不等式,要注意按字母的取值情况进行分类讨论,分类时要“不重不漏”.举一反三:【变式1】解关于x 的不等式:(ax-1)(x-2)≥0; 【答案】当a=0时,x ∈(-∞,2]. 当a≠0时,方程(ax-1)(x-2)=0两根为2,121==x ax ①当a>0时,若210>>a a ,, 即210<<a 时,),1[]2,(+∞-∞∈a x ;若210=,a a >, 即21=a 时,x ∈R ;若210<>a a ,, 即21>a 时,),2[]1,(+∞-∞∈ ax .②当a<0时,则有:21<a , ∴ ]21[,ax ∈. 【变式2】解关于x 的不等式:ax 2+2x-1<0; 【答案】当a=0时,)21,(-∞∈x . 当a≠0时,Δ=4+4a=4(a+1),①a>0时,则Δ>0,)11,11(aaa a x ++-+--∈.②a<0时,若a<0,△<0, 即a<-1时,x ∈R ; 若a<0,△=0, 即a=-1时,x ∈R 且x≠1; 若a<0,△>0, 即 -1<a<0时, ),11()11,(+∞+--++--∞∈aaa a x . 【高清课堂:一元二次不等式及其解法 387159 题型二 含参数的一元二次不等式的解法】 【变式3】求不等式12x 2-ax >a 2(a ∈R )的解集. 【答案】当a >0时,不等式的解集为{|-}43aa x x x <>或; 当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为{|-}34a a x x x <>或. 类型三:一元二次不等式的应用例4. 不等式20x mx n +-<的解集为(4,5)x ∈,求关于x 的不等式210nx mx +->的解集. 【思路点拨】由二次不等式的解集为(4,5)可知:4、5是方程20x mx n +-=的二根,故由韦达定理可求出m 、n 的值,从而解得.【解析】由题意可知方程20x mx n +-=的两根为4x =和5x = 由韦达定理有45m +=-,45n ⨯=- ∴9m =-,20n =-∴210nx mx +->化为220910x x --->,即220910x x ++<(41)(51)0x x ++<,解得1145x -<<-,故不等式210nx mx +->的解集为11(,)45--.【总结升华】二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键.举一反三:【变式1】不等式ax 2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________. 【答案】由不等式的解集为{x|-3<x<2}知a<0,且方程ax 2+bx+12=0的两根为-3,2.由根与系数关系得⎪⎪⎩⎪⎪⎨⎧-=⋅-=-=+-=-62)3(a12123ab解得a=-2, b=-2.【变式2】已知220ax x c ++>的解为1132x -<<,试求a 、c ,并解不等式220cx x a -+->. 【答案】由韦达定理有:11232a -+=-,1132ca-⋅=,∴12a =-,2c =.∴代入不等式220cx x a -+->得222120x x -++>,即260x x --<,(3)(2)0x x -+<,解得23x -<<,故不等式220cx x a -+->的解集为:(2,3)-.【变式3】已知关于x 的不等式20x ax b ++<的解集为(1,2),求关于x 的不等式210bx ax ++>的解集.【答案】由韦达定理有:1212a b -=+⎧⎨=⨯⎩,解得32a b =-⎧⎨=⎩, 代入不等式210bx ax ++>得22310x x -+>,即(21)(1)0x x -->,解得12x <或1x >. ∴210bx ax ++>的解集为:1(,)(1,)2-∞+∞.【高清课堂:一元二次不等式及其解法387159题型三 不等式恒成立的问题】 例5.已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立, 求实数a 的取值范围. 【思路点拨】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数。