高三第一次月考数学试题目理科
- 格式:doc
- 大小:117.50 KB
- 文档页数:8
2024届江苏省镇江市实验高级中学高三下学期第一次月考(数学试题-理)试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;其中真命题的个数为( ) A .3B .2C .1D .02.已知方程1x x y y +=-表示的曲线为()y f x =的图象,对于函数()y f x =有如下结论:①()f x 在()+-∞∞,上单调递减;②函数()()F x f x x =+至少存在一个零点;③()y f x =的最大值为1;④若函数()g x 和()f x 图象关于原点对称,则()y g x =由方程1y y x x +=所确定;则正确命题序号为( ) A .①③B .②③C .①④D .②④3.若函数()ln f x x =满足()()f a f b =,且0a b <<,则224442a b a b+-+的最小值是( )A .0B .1C .32D .4.已知集合{}{}2340,13A x x x B x x =-->=-≤≤,则R ()A B =( )A .()1,3-B .[]1,3-C .[]1,4-D .()1,4-5.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC ∆的面为S ,且()22a b c =+-,则sin 4C π⎛⎫+= ⎪⎝⎭( )A .1B .2C D 6.已知双曲线C :22221(0,0)x y a b a b-=>>的焦点为1F ,2F ,且C 上点P 满足120PF PF ⋅=,13PF =,24PF =,则双曲线C 的离心率为A .102B .5C .52D .57.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .108.已知数列{}n a 的首项1(0)a a a =≠,且+1n n a ka t =+,其中k ,t R ∈,*n N ∈,下列叙述正确的是( ) A .若{}n a 是等差数列,则一定有1k =B .若{}n a 是等比数列,则一定有0t =C .若{}n a 不是等差数列,则一定有 1k ≠D .若{}n a 不是等比数列,则一定有0t ≠9.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对10.已知复数z 满足i •z =2+i ,则z 的共轭复数是() A .﹣1﹣2i B .﹣1+2i C .1﹣2iD .1+2i11.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位12.设函数()(1)x g x e e x a =+--(a R ∈,e 为自然对数的底数),定义在R 上的函数()f x 满足2()()f x f x x -+=,且当0x ≤时,'()f x x <.若存在01|()(1)2x x f x f x x ⎧⎫∈+≥-+⎨⎬⎩⎭,且0x 为函数()y g x x =-的一个零点,则实数a 的取值范围为( )A .,2e⎛⎫+∞⎪ ⎪⎝⎭B .(,)e +∞C .[,)e +∞D .,2e⎡⎫+∞⎪⎢⎪⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
2024-2025学年湖南省永州市高三上学期第一次月考(8月)数学检测试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的.1. 已知集合,,则( ){|41}M x x =-<≤{|13}N x x =-<<M N ⋃=A. B. {}43x x -<<{}11x x -<≤C .D.{}0,1,2{}14x x -<<2. 已知,则( ).i 1i z=-z =A. B. C. D. 11i -i-1i--3. 已知等比数列中,,则(){}n a 1241,9a a a ==7a =A. 3B. 3或-3C. 27D. 27或-274. 已知向量.若与平行,则实数λ的值为( )(1,2),(1,1),(4,5)a b c ==-= a b c λ+A .B. C. 1D. 114114-1-5. 某圆环的内外半径分别为2和4,将其绕对称轴旋转一周后得到的几何体体积为( )A. B. C. D.32π3124π3224π3256π36. 已知,,则( )π,π2α⎛⎫∈ ⎪⎝⎭3π1tan 43α⎛⎫-= ⎪⎝⎭sin α=D.7. 已知函数,在点处的切线方程为,则( )()1ln f x a xx =+()()1,1f 0x y -=a =A. B. D. 1ee 28. 已知分别是双曲线的左、右焦点,M 是E 的左支上一点,过作12,F F 22:1412x y E -=2F 角平分线的垂线,垂足为为坐标原点,则( )12F MF ∠,N O ||ON =A .4B. 2C. 3D. 1二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.两个选项的,部分选对的每一个得3分.三个选项的,部分选对的每一个得2分,有选错的得0分.)9. 下列说法中, 正确的是()A. 数据的第百分位数为40,27,32,30,38,54,31,505032B. 已知随机变量服从正态分布,;则ξ2(2,)N δ()40.84P ξ<=()240.34P ξ<<=C. 已知两个变量具有线性相关关系,其回归直线方程,若,则ˆˆˆy a bx =+1ˆ2,,3b x y ===ˆ1a=D. 若样本数据的方差为,则数据的方差为41210,,,x x x ⋯2121021,21,,21x x x --- 10. 若为正实数,且,则下列不等式成立的是(),a b a b >A. B. 11a b>ln ln a b >C. D. ln ln a a b b>e e-<-aba b 11. 平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的.已知在平面直角坐标系中,xOy ,,动点P 满足,其轨迹为一条连续的封闭曲线C.则下列()2,0M -()2,0N 5PM PN ⋅=结论正确的是( )A. 曲线C 与y 轴的交点为, B. 曲线C 关于x 轴对称()0,1-()0,1C. 面积的最大值为2D.的取值范围是PMN OP[]1,3三、填空题:本大题共3个小题,每小题5分,共15分.12. 二项式的展开式中,的系数为______.521x x ⎛⎫+ ⎪⎝⎭x13. 函数是定义在上的偶函数,且,若,()f x R ()()11f x f x +=-[]0,1x ∈,则_______.()2xf x =()2023f =14. 现有10张卡片,每张卡片上写有1,2,3,4,5中两个不同的数,且任意两张卡片上的数不完全相同.将这10张卡片放入标号为1,2,3,4,5的五个盒子中,规定写有i ,j 的卡片只能放在i 号或j 号盒子中.一种放法称为“好的”,如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法共有________种.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在中,角的对边分别是,且.ABC V ,,A B C ,,a b c 4cos cos cos a B b C c B -=(1)求的值;cos B (2)若,求的周长.ABCV b =ABC V 16. 已知直线过椭圆的右焦点,且交于l 2222:1(0,0)x y C a b a b +=>>(1,0)F C 两点.41,,33A B⎛⎫⎪⎝⎭(1)求的离心率;C (2)设点,求的面积.(3,1)P ABP 17. 如图所示,圆台的轴截面为等腰梯形,为底面12O O 11A ACC 111224,AC AA AC B ===圆周上异于的点,且是线段的中点.,A C ,AB BC P =BC (1)求证:平面.1C P //1A AB(2)求平面与平面夹角的余弦值.1A AB 1C CB 18. 已知函数.()e 1,x f x ax a =--∈R(1)讨论的单调性;f (x )(2)已知函数, 若恒成立,求的取值范围.()()()1ln 1g x x x a=---()()f xg x ≥a 19.设n 次多项式,若其满足()121210()0n n n n n n P t a t a t a t a t a a --=+++++≠ ,则称这些多项式为切比雪夫多项式.例如:由可得切(cos )cos n P x nx =()n P t cos cos θθ=比雪夫多项式,由可得切比雪夫多项式.1()P x x =2cos 22cos 1θθ=-22()21P x x =-(1)若切比雪夫多项式,求实数a ,b ,c ,d 的值;323()P x ax bx cx d =+++(2)对于正整数时,是否有成立?3n …()()()122n n n P x x P x P x --=⋅-(3)已知函数在区间上有3个不同的零点,分别记为,3()861f x x x =--()1,1-123,,x x x 证明.1230x x x ++=。
2022-2023学年度第一学期高三年级第一次月考数学(理科)宏志班试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一个选项是符合题目要求的)1.已知集合{2,1,0,1,2}A =--,(){|ln 1}B x y x ==+,则A B =( ) A .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}2.定义在R 上的函数()f x 满足对任意的12x x ,(12x x ≠)恒有11122122()()()()0x f x x f x x f x x f x --+>,若(0)a f =,(1)b f =,(2)c f =,则( ) A .c b a << B .a b c << C .c a b <<D .a c b <<3.下列判断错误..的是( ) A .“22am bm <”是“a b <”的充分不必要条件B .命题“x R ∀∈,3210x x --≤”的否定是“x R ∃∈,3210x x -->”C .若,p q 均为假命题,则p q ∧为假命题D .命题“若21x =,则1x =或1x =-”的逆否命题为“若1x ≠或1x ≠-,则21x ≠” 4.已知22111()x x f x x x++=+,则f (x )等于()A .x 2-x +1,x ≠0 B .2211x x x++,x ≠0C .x 2-x +1,x ≠1D .1+211x x+,x ≠1 5.sin1a =,lgsin1b =,sin110c =,则( ) A .a b c << B .b a c <<C .b c a <<D .c b a <<6.函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关总 分 值: 150分 试题范围:一轮复习第一章一第二章考试时间:120分钟7.函数e e ()x xf x x-+=的图象大致为( )A .B .C .D .8.已知(1)f x -是定义为R 上的奇函数,f (1)=0,且f (x )在[1,0)-上单调递增,在[0,)+∞上单调递减,则不等式()230xf -<的解集为( )A .(1,2)B .(,1)-∞C .(2,)+∞D .(,1)(2,)-∞⋃+∞9.解析数论的创始人狄利克雷在数学领域成就显著,对函数论、位势论和三角级数论都有重要贡献.以他名字命名的狄利克雷函数()1,,0,,x D x x ⎧=⎨⎩为有理数为无理数 以下结论错误的是( ) A .)()21D D <B .函数()y D x =不是周期函数C .()()1D D x =D .函数()y D x =在(),-∞+∞上不是单调函数10.设函数()f x 定义域为R ,(1)f x -为奇函数,(1)f x +为偶函数,当(1,1)x ∈-时,2()1f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上是减函数D .方程()lg 0f x x +=仅有6个实数解11.定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .612.定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有2()81f x ≤,则m 的取值范围是( ) A .10,3⎡⎫+∞⎪⎢⎣⎭B .11,3⎡⎫+∞⎪⎢⎣⎭C .13,3⎡⎫+∞⎪⎢⎣⎭D .143⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
高三上册数学第一次月考理科试题(带答案)2021届高三上册数学第一次月考文科试题〔带答案〕本试卷分第一卷(选择题)和第二卷(非选择题)两局部。
答题时120分钟,总分值150分。
第一卷(选择题共10小题,每题5分,共50分)一、选择题(每题给出的四个选项中,只要一个选项契合标题要求.)1.假定集合 , ,那么 ( )A. B. C. D.答案:A解析:集合A={ },A={ },所以,2.在复平面内,双数对应的点的坐标为()A. B. C. D.答案:A解析:原式= = ,所以,对应的坐标为(0,-1),选A3. 为等差数列,假定,那么的值为( )A. B. C. D.答案:D解析:由于为等差数列,假定,所以,,4. 函数有且仅有两个不同的零点,,那么()A.当时,,B.当时,,C.当时,,D.当时,,答案:B解析:函数求导,得:,得两个极值点:由于函数f(x)过定点(0,-2),有且仅有两个不同的零点,所以,可画出函数图象如以下图:因此,可知,,只要B契合。
5. 设集合是的子集,假设点满足:,称为集合的聚点.那么以下集合中以为聚点的有:① ; ② ; ③ ; ④ () A.①④B.②③C.①②D.①②④答案:A【解析】①中,集合中的元素是极限为1的数列,在的时分,存在满足0|x-1|1是集合的聚点②集合中的元素是极限为0的数列,最大值为2,即|x-1|1 关于某个a1,不存在0|x-1| ,1不是集合的聚点③关于某个a1,比如a=0.5,此时对恣意的xZ,都有|x﹣1|=0或许|x﹣1|1,也就是说不能够0|x﹣1|0.5,从而1不是整数集Z的聚点④ 0,存在0|x-1|0.5的数x,从而1是整数集Z的聚点应选A6. 在以下命题中, ① 是的充要条件;② 的展开式中的常数项为;③设随机变量 ~ ,假定 ,那么 .其中一切正确命题的序号是()A.②B.②③C.③D.①③答案:B解析:①是充沛不用要条件,故错误;② ,令12-4k=0,得,k=3,所以,常数项为2,正确;③正态散布曲线的对称轴是x=0,,所以,正确;7.偶函数 ,当时, ,当时, ( ).关于偶函数的图象G和直线 : ( )的3个命题如下:①当a=4时,存在直线与图象G恰有5个公共点;②假定关于 ,直线与图象G的公共点不超越4个,那么a③ ,使得直线与图象G交于4个点,且相邻点之间的距离相等.其中正确命题的序号是()A.①②B.①③C.②③D.①②③答案:D解析:由于函数和的图象的对称轴完全相反,所以两函数的周期相反,所以,所以,当时,,所以,因此选A。
忻州一中高三第一次月考数学(理)试题注意事项:1.满分150分,考试时间120分钟。
2.交卷时只交试卷和机读卡,不交试题,答案写在试题上的无效。
一.选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑机读卡上对应题目的答案标号)1.已知全集U R =,集合2{|20}A x x x =->,{|lg(1)}B x y x ==-,则()U C A B 等于(A).{|20}x x x ><或 (B).{|12}x x <<(C).{|12}x x <≤ (D).{|12}≤≤x x2.下列函数f (x )中,满足“对任意x 1,x 2∈(-∞,0),当x 1<x 2时,都有f (x 1)<f (x 2)”的函数是(A).f (x )=-x +1 (B) f (x )=2x (C). f (x )=x 2-1 (D).f (x )=ln(-x )3.下列命题中为真命题的是(A).命题“若x >y ,则x >|y |”的逆命题(B).命题“x >1,则x 2>1”的否命题(C).命题 “若x =1,则x 2+x -2=0”的否命题(D).命题“若x 2>x ,则x >1”的逆否命题4.命题“所有能被2整除的整数是偶数”的否定是(A).所有不能被2整除的整数都是偶数(B).所有能被2整除的整数都不是偶数(C).存在一个不能被2整除的整数都是偶数(D).存在一个能被2整除的整数不是偶数5.若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是①1ab ≤; 2a b ③222a b +≥; ④333a b +≥; ⑤112a b +≥ 所有正确命题是(A). ①②③ (B). ①②④ (C). ①③⑤ (D). ③④⑤6.若函数y =f (x )的定义域是[0,2],则函数g (x )=f 2x ln x的定义域是 (A).(0,1) (B).[0,1) (C).[0,1)∪(1,4] (D).[0,1]7.函数1(0,1)x y a a a a=->≠的图象可能是8.对于函数f(x)=a sinx+bx+c(其中a,b R,c Z),选取a,b,c 的一组值计算f(1)和f(-1)所得出的正确结果一定不可..能.是 (A).4和6 (B).1和2 (C).2和4 (D). 3和19.命题p :,R x ∈∀使得x x >3;命题q :若函数)1(-=x f y 为奇函数,则函数)(x f y =的图像关于点)0,1(成中心对称.(A). q p ∨真 (B). q p ∧真 (C). p ⌝真 (D). q ⌝假10.设f(x)是定义在R 上的偶函数,对x ∈R ,都有f(x-2)=f(x+2),且当x ∈[−2,0]时,f(x)=(12)x -1,若在区间(-2,6]内关于x 的方程f(x)-log a (x+2)=0(a>1)恰有3个不同的实根,则a 的取值范围是(A).(1, 2) (B).( √43, 2) (C).(1,√43) (D).(2,+∞)11.函数f(x)是定义在()+∞,0上的非负可导函数,且满足()()0/≤+x f x xf ,对任意正数a 、b ,若a< b,则必有(A). ()()a bf b af ≤ (B). ()()b af a bf ≤ (C). ()()b f a af ≤ (D). ()()a fb bf ≤12.已知R 上可导函数)(x f 的图象如图所示,则不等式0)()32(2>'--x f x x 的解集为 (A).),1()2,(+∞⋃--∞(B).)2,1()2,(⋃--∞ (C) ),2()0,1()1,(+∞⋃-⋃--∞ (D).),3()1,1()1,(+∞⋃-⋃--∞二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.若正实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________.14.与直线2x -y -4=0平行且与曲线x y 5=相切的直线方程是 .15.已知函数⎩⎨⎧≤>+=--,2,2,2,1)2(2x x x x f x 则)1(f = . 16.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1]则b -a 的最小值为________.三.解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.(本题满分12分)1{24}32x A x -=≤≤,{}012322<--+-=m m mx x x B . (1)当x ∈N 时,求A 的非空真子集的个数;(2)若B A ⊇,求实数m 的取值范围.18.(本题满分12分)已知函数122()log 1ax f x x -=-(a 为常数). (1)若常数2a <且0a ≠,求()f x 的定义域;(2)若()f x 在区间(2,4)上是减函数,求a 的取值范围19.(本题满分12分)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图像恒.在y =2x +m 的图像上方,试确定实数m 的范围.20.(本题满分12分)已知函数f (x )=(13)x ,x ∈[−1,1]; 函数g(x)= [f(x)]2−2af (x )+3的最小值为h(a). (1)求h(a);(2)是否存在实数m 、n 同时满足下列条件:①m>n>3;②当h(a)的定义域为[m,n]时,值域为[n 2,m 2]?若存在,求出m 、n 的值;若不存在,说明理由。
2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。
高三理科第一次月考数学试卷高三理科第一次月考数学试卷一.选择题(每题5分,共50分)1.已知,则集合中元素的个数是┄┄()A.B.C.D.不确定2.条件,条件,则是的┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄()A.充分但不必要条件B.必要但不充分条件C.充分且必要条件D.既不充分也不必要条件3.已知函数,那么的值为┄┄┄┄┄┄┄┄┄┄┄┄┄┄()A.9B.C.D.4.若定义在区间内的函数满足,则实数的取值范围为( )A.B.C.D.5.在中,,则等于┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄()A.B.C.D.6.在各项均为正数的等比数列中,若,则等于( )A.B.C.D.7.将函数的图象按向量平移后所得图象的解析式是┄┄┄┄( )A.B.C. D.8.已知,若,则值的符号为┄┄┄┄┄┄┄┄()A.正号B.零C.负号D.不能确定9.已知函数,若是锐角三角形两个内角,则┄┄┄┄┄┄┄┄┄┄┄( ) A.B.C.D.10.已知是上的奇函数,当时,的图象如图所示,那么不等式的解集是┄┄┄┄┄┄┄┄┄┄┄┄┄()A. B.C.D.二.填空题(每格4分,共16分)11.函数的定义域为.12.在△ABC中,若,,则.13.数列的前n项和,则.14.已知f (_)是定义在实数集R上的函数,且满足,, ,则f (_)=___________.三.解答题(每小题14分,共84分)15.设关于的不等式的解集为,不等式的解集为.⑴ 求集合A,B;⑵ 若,求实数的取值范围.16.已知函数⑴ 求的最小正周期;⑵ 当时,若,求的值.17.已知数列前项和,且,数列中,, 点在直线上.⑴ 求数列.的通项公式;⑵ 若为数列前项和,求证:当时,.18.已知二次函数,满足.⑴ 求b的值;⑵ 当时,求函数的反函数;⑶ 对于⑵中的,若在上恒成立,求实数m的取值范围.19.已知定义在实数集上的奇函数有最小正周期,且当时,.⑴ 求函数在上的解析式;⑵ 判断在上的单调性;⑶ 当取何值时,方程在上有实数解?20.已知函数 (R, a,b为实数)有极值,且在处的切线与直线平行.⑴ 求实数a的取值范围;⑵ 是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值; 若不存在,请说明理由;高三理科第一次月考数学答卷一.选择题(每题5分,共50分)题号12345678910答案二.填空题(每格4分,共16分)11.12.13.14.三.解答题(每小题14分,共84分)15.16.17.18.19.20.高三理科第一次月考数学卷参考答案一.选择题(每题5分,共50分)题号12345678910答案AABADBDADB二.填空题(每格4分,共16分)11.12.13.14.三.解答题(每小题14分,共84分) 15.解:⑴由于, 3分由得,, 6分7分⑵10分12分14分16.解:⑴ 由于3分3分7分⑵ 9分由得: , 12分14分17.解:⑴ 当时,, 1分当时,,, 2分是以为首项,以为公比的等比数列. 4分由于, 5分是以为首项,以为公差的等差数列. 7分⑵ 由⑴知:, 9分现在只要证明:当时,,用数学归纳法证明: (I)当时,有左边=,右边=,不等式成立10分(II)假设当时,不等式成立,即,那么当时,有当时,恒有成立,即当时,不等式也成立13分由(I).(II)知,当时, 有. 14分18.解:⑴解得.(或利用对称性求解)3分⑵ 由⑴,.7分⑶9分解得13分的取值范围是:.14分19.解:⑴ 当时,有,是偶函数2分由得,又得, 5分6分⑵ 当时,有,任取且8分, 即在上是减函数. 10分⑶ 由于在上是减函数,在上是减函数当时,有,当时,有,当时,有, 13分当时,方程在上有实数解. 14分20.解:⑴ ∵∴由题意……①3分∵有极值,∴方程有两个不等实根.……②由①.②可得,.故实数a的取值范围是6分⑵存在,7分由⑴可知,令,__1_2+-+单调增极大值单调减极小值单调增时,取极小值, 9分则, 或,若,即,则(舍) 11分若,又,,, ,,∴存在实数a =,使得函数的极小值为1. 14分。
2024-2025学年河北省省级联测高三(上)月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={−1,2,3,4},B ={x ∈Z|y =ln (9−x 2)},则A ∩B =( )A. {1,2,3}B. {−1,2}C. {2,3}D. {0,1,2,3,4}2.已知复数z 1=a 2−3a +3i ,z 2=2+(a 2−4a)i ,a ∈R ,若z 1+z 2为纯虚数,则a =( )A. 1或2B. 1C. 2D. 33.已知向量a ,b 满足|a |=2,b =(2,0),且|a +b |=2,则a 在b 上的投影向量的坐标为( )A. (−1,0)B. (1,0)C. (−2,0)D. (2,0)4.已知cos (α+π2)=2cos(α+3π),则sin 2α+12sin2αcos 2α=( )A. −14 B. 34 C. 2D. 65.某中学开展劳动实习,学习制作模具,有一个模具的毛坏直观图如图所示,它是由一个圆柱体与一个半球对接而成的组合体,已知该几何体的下半部分圆柱的轴截面(过圆柱上、下底面圆的圆心连线的平面)ABCD 是面积为16的正方形,则该几何体的体积为( )A. 16π3B. 16πC. 64π3D. 72π6.设S n 为正项等比数列{a n }的前n 项和,3S 2=a 1+2a 3,a 3=8,则数列{a n +2n−1}的前5项和为( )A. 55B. 57C. 87D. 897.已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,将函数f(x)的图象先向右平移π4个单位长度,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数g(x)的图象,若关于x 的方程g(x)−m =0在x ∈[−π12,π6]上有两个不等实根,则实数m 的取值范围为( )A. (−2,2]B. (−2,− 3]C. [ 3,2]D. (− 3, 3]8.已知定义域为R的函数f(x)不是常函数,且满足f(x+y)+f(x−y)=f(x)f(y),f(1)=0,则∑2026i=1f (i)=( )A. −2B. 2C. −2026D. 2026二、多选题:本题共3小题,共18分。
第一学期第一次月考高三数学试卷(理)一、 选择题:(每题4分)1、设全集{1,2,3,4,5}U =,集合{2,3,4}A =,{2,5}B =,则()U B A =ð( ) A {5} B {1,2,5} C {1,2,3,4,5} D ∅2、函数22log (4)()|2|2x f x x -=--为 ( )A 奇函数B 偶函数C 非奇非偶函数D 无法判断 3、已知命题2:,0p x R x ∀∈≥和命题2:,3q x Q x ∃∈=,则下列命题为真的( )A p q ∧B ()p q ⌝∨C ()p q ∨⌝D ()()p q ⌝∧⌝ 4、设x R ∈,则“12x >”是“2210x x +->”的( ) A 充分而不必要条件 B 必要而不充分条件C 充分必要条件D 既不充分也不必要条件5、已知:44p x a -<-<,:(2)(3)0q x x --<,且q 是p 的充分条件,则实数a 的范围是( )A 16a -<<B 16a -≤≤C 1a <-或6a >D 1a ≤-或6a ≥ 6、函数)y x =-的定义域为( )A (0,1)B [0,1)C (0,1]D [0,1] 7、函数(32)f x -的定义域为[1,2]-,则()f x 的定义域为( )A 1[,2]2B [1,5]-C 1[,5]2D 1[1,]2-8、设函数22 (0)() (0)x f x x bx c x >⎧=⎨++≤⎩若(2)(0)f f -=,(1)3f -=-则关于x 的方程()f x x =的解的个数为( ) A 2 B 1 C 3 D 49、如果函数2()34f x ax x =-+在区间(,6)-∞上单调递减,则实数a 的取值范围是( )A 1(0,]4B 1(0,)4C 1[0,)4D 1[0,]410、函数||31x y =-的定义域为[1,2]-,则函数的值域为( ) A (0,8] B [0,8] C [2,8] D [0,2]11、已知()f x 是定义在R 上的奇函数,当0x ≥时2()2f x x x =+若2(2)()f a f a ->则实数a 的取值范围是( )A (,1)(2,)-∞-+∞B (1,2)-C (2,1)-D (,2)(1,-∞-+∞12、定义在R 上的偶函数()f x 满足(8)()(4)f x f x f +=+且[0,4]x ∈时,()4f x x =-,则(2013)f =( )A 1B 7C 1-D 2009- 二、 填空题:(每题4分)13、若集合2{|10}A x R ax ax =∈++=中只有一个元素,则a =14、已知200:,40p x R x ∃∈-=,则p ⌝为15、已知函数(21)lg f x x -=则()f x =16、已知 (1)()(4) 2 (1)2x a x f x ax x ⎧>⎪=⎨-+≤⎪⎩是R 上的单调递增函数,则实数a 的范围是 17、4位同学每人从甲、乙、丙3门课程中选1门,恰有2人选甲的不同选法共有种18、251(2)x x -的二项展开式中,x 的系数是19、若2 210x R ax ax ∀∈--<是真命题则a 的取值范围是 20、函数20.2log (2)y x x =-的单调减区间为第一学期第一次月考高三数学答题卡(理)二、填空题:(每题4分,共32分)13、 14、15、 16、17、 18、19、 20、三、解答题:(每题10分,共40分) 21、已知()f x 是在R 上的奇函数,当0x ≤时,2()2f x x x =-,求当0x >时()f x 的解析式22、设二次函数2()21f x ax ax =++在[3,2]-上有最大值4求a 的值23、设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取1个,并且取出不再放回,若以X 表示取出次品的个数,求X 的分布列、期望值及方差1)写出,,,x y m n 的值2)能否在犯错误的概率不超过0.005的前提下认为“喜欢体育还是喜欢文娱与性别有关系”?22()()()()()n ad bc K a b c d a c b d -=++++。
广东省揭阳市2025届高三上学期第一次月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={x|x>1},B={x|(x+1)(x−3)<0},则(∁R A)∩B=( )A. (3,+∞)B. (−1,+∞)C. (−1,3)D. (−1,1]2.若复数(1−3i)z=3−i(i为虚数单位),则|z|−z在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.双曲线x2−y23=1的两条渐近线的夹角的大小等于( )A. π6B. π3C. 2π3D. 5π64.在△ABC中,D是BC上一点,满足BD=3DC,M是AD的中点,若BM=λBA+μBC,则λ+μ=( )A. 54B. 1 C. 78D. 585.若两个等比数列{a n},{b n}的公比相等,且b1=4,a2=2a3,则{b n}的前6项和为( )A. 578B. 638C. 124D. 2526.若函数f(x)=sinωx+3cosωx(ω>0)在区间[a,b]上是减函数,且f(a)=1,f(b)=−1,b−a=π,则ω=( )A. 13B. 23C. 1D. 27.已知点A(−1,0),B(0,3),点P是圆(x−3)2+y2=1上任意一点,则▵PAB面积的最小值为( )A. 6B. 112C. 92D. 6−1028.已知函数y=f(x)的定义域为R,且f(−x)=f(x),若函数y=f(x)的图象与函数y=log2(2x+2−x)的图象有交点,且交点个数为奇数,则f(0)=( )A. −1B. 0C. 1D. 2二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.设A,B为随机事件,且P(A),P(B)是A,B发生的概率.P(A),P(B)∈(0,1),则下列说法正确的是( )A. 若A,B互斥,则P(A∪B)=P(A)+P(B)B. 若P(AB)=P(A)P(B),则A,B相互独立C. 若A,B互斥,则A,B相互独立D. 若A,B独立,则P(B|A)=P(B)10.在△ABC中,内角A,B,C所对的边分别为a,b,c.若b=c cos A,内角A的平分线交BC于点D,AD=1,cos A=18,以下结论正确的是( )A. AC=34B. AB=8C. CDBD =18D. ▵ABD的面积为37411.设函数f(x)=(x−1)2(x−4),则( )A. x=1是f(x)的极小值点B. f(2+x)+f(2−x)=−4C. 不等式−4<f(2x−1)<0的解集为{x|1<x<2}D. 当0<x<π2时,f(sin x)>f(sin2x)三、填空题:本题共3小题,每小题5分,共15分。
高三第一次月考数学试题目理科
湖北省浠水县团陂高中2012届高三八月月考数学
试题
一. 选择题:
1.已知集合A ={x |x <a },B ={x |1≤x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )
A .a ≤1
B .a <1
C .a ≥2
D .a >2
2.“a >0”是“a >0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
3. “14
m <”是“一元二次方程2
x x m ++=”有实数
解的( )
A .充分非必要条件 B.充分必要条件
C .必要非充分条件 D.非充分必要条件 4.函数164x
y - )
A.
[0,)
+∞ B.
[0,4]
C.[0,4)
D.(0,4) 5.函数()41
2
x x
f x +=的图象( ) A.关于原点对称
B.关于直线y=x 对称
C.关
于
x
轴
对
称
D.关于y 轴对称
6.设
()
f x 为定义在R 上的奇函数,当0x ≥时,()22x f x x b
=++(b 为常数),则(1)f -=( )
A.-3
B.-1
C.1
D.3
7.函数()()2
log 31x f x =+的值域为( )
A.()0,+∞
B.)0,+∞⎡⎣
C.()1,+∞
D.)1,+∞⎡⎣ 8.已知函数
3log ,0
()2,0
x
x x f x x >⎧=⎨≤⎩,则1(())9
f f =( ) A.4 B.14 C.-4 D.-14
9.已知定义在R 上的奇函数()x f 和偶函数()x g 满足
()()2
+-=+-x x a a x g x f
()1,0≠>a a 且,若()a g =2,则()=2f (
)
A. 2
B. 4
15
C.
4
17 D. 2
a
10.函数x x y ln =的最大值为( ) A .1
-e B .e
C .
2
e
D .3
10
二.填空题:
11. 若全集
U R
=,集合
{|1}{|0}
A x x x x =≥≤,则
U C A =。
12. 已知0
t >,则函数
241
t t y t
-+=
的最小值为
___________ . 13. 直线1y =与曲线2
y x
x a
=-+有四个交点,则a 的取
值范围是 .
14.函数3
2
2
(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为________。
15 已知函数f (x )=2
32,1,,1,
x x x ax x +<⎧⎨+≥⎩若f (f (0))=
4a ,则实数a = .
三.解答题:
16. (12分)已知集合P={x|x2-5x+4≤0},Q={x|x2-2bx+b+2≤0}满足P⊇Q,求实数b 的取值范围。
17.(12分)已知0a〉,设命题P:函数x
=在R
y a
上单调递增;命题q:不等式210
-+〉对x R
ax ax
∀∈恒成立。
若p且q为假,p或q为真,求a的取值范围
18.(12分)若函数f(x)=2x2-ln x在其定义域
内的一个子区间(k -1,k +1)内不是..单调函数,求实数k 的取值范围
19.(12分)设f(x)是定义在R 上的偶函数,其图像关于直线x=1对称,对任意x 1,x 2∈[0,21],都有f(x 1+x 2)=f(x 1)·f(x 2),且f(1)=a>0。
(1)求f(21)及f(4
1
); (2)证明f(x)是周期函数;
20.(本小题满分13分)
已知函数f(x)=x2+|x-a|+1,a∈R.
(1)试判断f(x)的奇偶性;
(2)若-1
2≤a≤1
2,求f(x)的最小值
21.(本小题满分12分)已知函数f(x)=e x-k-x,(x∈R)
(1)当k=0时,若函数g(x)=1
f(x)+m
的定义域是R,求实数m的取值范围;
(2)试判断当k>1时,函数f(x)在(k,2k)内是否存在零点.。