2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案
- 格式:doc
- 大小:598.50 KB
- 文档页数:13
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示 )]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54co s =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (II )求点1A 到平面AED 的距离D E KBC 1A 1B 1AFCG19.(本小题满分12分) 已知0>c ,设P :函数x c y =在R 上单调递减 Q :不等式1|2|>-+c x x 的解集为R 如果P 和Q 有且仅有一个正确,求c 的取值范围20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南102arccos(=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?东O21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{t s + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cos r r z +=,则复数.2rz 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞ 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有 .)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DGk k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a 整理得1)(2222=-+aa y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分)(Ⅰ)解:用(t,s)表示22t s +,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3)— — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s数列}{n a 中小于02t 的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s ++=(r,t,s ),1073160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C依次为 (0,1,3) (0,2,3) (1,2,3) 23C(0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10)………(0,7,10)( 1,7,10)(2,7,10)(3,7,10)…… 27C +422222397()4145.k C C C C =+++++=资料由谢老师收集:了解初中,高中考试信息,做题技巧,解题思路可去谢老师博客/xiejunchao1。
2003年普通高等学校春季招生考试(文史类)(北京卷)数学(文史类)(北京卷)第Ⅰ卷参考公式:三角函数的积化和差公式:)]cos()[cos(21sin sin )]cos()[cos(21cos cos )]sin()[sin(21sin cos )]sin()[sin(21cos sin βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=正棱台、圆台的侧面积公式lc c S )(21+'=台侧其中分别c ˊ,c 表示上、下底面周长,l 表示斜高或母线长 球体的体积公式334R V π=球其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是(A )a +c >b +d (B )a -c >b -d (C )ac >bd(D )c b d a >(2)设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则M +m 等于(A )32(B )32-(C )34-(D )-2(3)若x x x f 1)(-=,则方程f (4x )=x 的根是(A )-2 (B )2(C )21-(D )21(4)若集合{}{}1,2-====x y y P y y M x ,则MP =(A ){}1>y y (B ){}1≥y y(C ){}0>y y(D ){}0≥y y(5)若A ,B ,C 是△ABC 的三个内角,且A <B <C )2(π≠C ,则下列结论中正确的是 (A )t a n A <t a n C (B )c t a n A <c t a n C(C )sin A <sin C(D )c os A <c os C(6)在等差数列{}n a 中,已知a 1+a 2+a 3+a 4+a 5=20,那么a 3等于(A )4(B )5(C )6(D )7(7)设复数iz i z 2321,121+=+-=,则=21arg z z(A )π125-(B )π125(C )π127(D )π1213(8)函数f (x )=∣x ∣和g (x )=x (2-x )的递增区间依次是 (A )(](]10,,,∞-∞- (B )(][)∞+∞-,,,10(C )[)(]10,,,∞-∞+ (D )[)[)∞+∞+,,,10 (9)在同一坐标系中,方程12222=+b y a x 与ax +by 2=0(a >b >0)的曲线大致是(10)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为(A )6(B )12(C )15(D )30(11)如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点,将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成的角的度数为(A )90° (B )60° (C )45° (D )0°(12)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为∣a ∣, ∣b ∣,∣c ∣的三角形 (A )是锐角三角形 (B )是直角三角形(C )是钝角三角形(D )不存在 第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. (13)函数y =sin2x +1的最小正周期为 .(14)如图,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则r R= .(15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表,观察表中数据的特点,用适当的数填入表中空白( )内.(16)如图,F1,F2分别为椭圆12222=+byax的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2的值是 .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)解不等式:log2(x2-x-2)>log2(2x-2)(18)(本小题满分12分)已知函数x xxxf2cos 1cos5cos6)(24+-,求f(x)的定义域,判断它的奇偶性,并求其值域. (19)(本小题满分12分)如图,ABC D-A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.(Ⅰ)求三棱锥D1-DBC的体积;(Ⅱ)证明BD1∥平面C1DE(Ⅲ)求面C1DE与面CDE所成二面角的正切值.(20)(本小题满分12分)设A(-c,0),B(c,0)(c>0)为两定点,动点P到A点的距离与到B点的距离的比为定值a(a>0),求P点的轨迹.(21)(本小题满分13分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费200元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少元?(22)(本小题满分13分)如图,在边长为l的等边△ABC中,圆O1为△ABC的内切圆,圆O2与圆O1外切,且与AB,BC相切,…,圆O n+1与O n圆外切,且与AB、BC相切,如此无限继续下去,记圆O n的面积为a n(n∈N)(Ⅰ)证明{}na是等比数列.(Ⅱ)求)(21lim nnaaa+++∞→的值.。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( )(A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示)(II )求点1A 到平面AED 的距离 19.(本小题满分12分) 已知0>c ,设P :函数xc y =在R 上单调递减 Q :不等式1|2|>-+c x x 的解集为R 如果P 和Q 有且仅有一个正确,求c 的取值范围 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南102arccos(=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由 22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts + t s <≤0中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12 — — — —…………D E KBC 1A 1B 1AFCG 东O⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cosr r z +=,则复数.2r z 的实部为2,r z z r z z ==-由题设 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC , (Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又 19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ (以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法)20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DG k k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长 当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值2当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分) (Ⅰ)解:用(t,s)表示22ts+,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3) — — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s数列}{n a 中小于02t的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C依次为 (0,1,3) (0,2,3) (1,2,3) 23C (0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10).........(0,7,10)( 1,7,10)(2,7,10)(3,7,10) (2)7C +4。
绝密★启用前2003年普通高校招生数学(理)统一考试(北京卷)(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅ 周长,l 表示斜高或母线长.)]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232c o s -=α”是“Z k k ∈+=,125ππα”的 ( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( )A .若m ∥n ,m ⊥α,则n ⊥αB .若m ∥α,α∩β=n ,则m ∥nC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.极坐标方程1cos 22cos 2=-θρθρ表示的曲线是( )A .圆B .椭圆C .抛物线D .双曲线 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是 ( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( )A .24种B .18种C .12种D .6种9.若数列{}n a 的通项公式是 ,2,1,2)23()1(23=--++=----n a n n n n n n ,则 )(l i m21n n a a a +++∞→ 等于 ( )A .2411B .2417 C .2419 D .2425 10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令 ⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .k k a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.函数x tg x h x x x x x x g x x f 2)(.1,2.1||0.1,2)(),1lg()(2=⎪⎩⎪⎨⎧>+-≤-<+=+=中,是偶函数.12.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是 13.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么 圆柱被截后剩下部分的体积是 . 14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正 方形的周长应为 .三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)若]2,0[π∈x ,求)(x f 的最大值、最小值.已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(R x x a b n n n ∈=求数列{}n b 前n 项和的公式.如图,正三棱柱ABC —A 1B 1C 1的底面边长的3,侧棱AA 1=,233D 是CB 延长线上一点,且BD=BC.(Ⅰ)求证:直线BC 1//平面AB 1D ; (Ⅱ)求二面角B 1—AD —B 的大小; (Ⅲ)求三棱锥C 1—ABB 1的体积.如图,椭圆的长轴A 1A 2与x 轴平行,短轴B 1B 2在y 轴上,中心为M (0,r )().0>>r b (Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率;(Ⅱ)直线x k y 1=交椭圆于两点);0)(,(),,(22211>y y x D y x C 直线x k y 2=交椭圆于两点).0)(,(),,(44433>y y x H y x G 求证:4343221211x x x x k x x x x k +=+; (Ⅲ)对于(Ⅱ)中的C ,D ,G ,H ,设CH 交x 轴于点P ,GD 交x 轴于点Q. 求证:|OP|=|OQ|. (证明过程不考虑CH 或GD 垂直于x 轴的情形)有三个新兴城镇,分别位于A,B,C三点处,且AB=AC=a,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处,(建立坐标系如图)(Ⅰ)若希望点P到三镇距离的平方和为最小,点P应位于何处?(Ⅱ)若希望点P到三镇的最远距离为最小,点P应位于何处?设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)证明:对任意的;1|)()(|],1,1[,≤--∈v f u f v u 都有(Ⅲ)在区间[-1,1]上是否存在满足题设条件的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当若存在,请举一例:若不存在,请说明理由.绝密★启用前2003年普通高校招生数学(理)统一考试(北京卷)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.B 5.D 6.B 7.C 8.C 9.C 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.)();(x g x f 12. )4(362--=x y 13.)(212b a r +π 14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1. 所以)(x f 在]2,0[π上的最大值为1,最小值为-.2 16.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a所以.2n a n=(Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ① ,2)22(42132++-+++=n n n nx x n x x xS ② 当1≠x时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n nn n n nx xx x nx x x x S x所以.12)1()1(212x nx x x x S n n n----=+当1=x 时, )1(242+=+++=n n n S n 综上可得当1=x 时,)1(+=n n S n 当1≠x 时,.12)1()1(212x nx x x x Sn n n----=+17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证明:CD//C 1B 1,又BD=BC=B 1C 1, ∴ 四边形BDB 1C 1是平行四边形, ∴BC 1//DB 1.又DB 1⊂平面AB 1D ,BC 1⊄平面AB 1D ,∴直线BC 1//平面AB 1D. (Ⅱ)解:过B 作BE ⊥AD 于E ,连结EB 1,∵B 1B ⊥平面ABD ,∴B 1E ⊥AD , ∴∠B 1EB 是二面角B 1—AD —B 的平面角, ∵BD=BC=AB ,∴E 是AD 的中点, .2321==AC BE在Rt △B 1BE 中,.32332311===∠BEB B BE B tg ∴∠B 1EB=60°。
2003年普通高等学校招生全国统一考试(北京卷)数 学(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.(1)设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于(A)}1|{>x x (B )}0|{>x x (C)}1|{-<x x (D )}11|{>-<x x x 或(2)设5.1344.029.01)21(,8,4-===y y y ,则ﻩ ﻩ(A)y 3>y 1>y 2(B)y 2>y 1>y3 (C)y 1>y 2>y3 (D )y 1>y 3>y2 (3)“232cos -=α”是“Z k k ∈+=,125ππα”的 ﻩ(A )必要非充分条件 (B )充分非必要条件(C)充分必要条件ﻩﻩ(D)既非充分又非必要条件(4)已知α,β是平面,m,n是直线.下列命题中不.正确的是 ﻩ(A)若m ∥n,m ⊥α,则n⊥α (B)若m ∥α,α∩β=n ,则m∥n ﻩ(C )若m⊥α,m ⊥β,则α∥βﻩ(D )若m ⊥α,β⊂m ,则α⊥β(5)极坐标方程1cos 22cos 2=-θρθρ表示的曲线是ﻩ(A)圆ﻩ(B )椭圆 (C)抛物线 (D )双曲线 (6)若C z ∈且|22|,1|22|i z i z --=-+则的最小值是(A)2 (B)3ﻩ(C)4ﻩ(D )5(7)如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ﻩ(A)π2 (B)π23ﻩ(C )π332ﻩ(D)π21 (8)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有(A)24种ﻩ(B)18种ﻩ(C )12种ﻩ(D )6种(9)若数列{}n a 的通项公式是 ,2,1,2)23()1(23=--++=----n a n n n n n n ,则)(lim 21n n a a a +++∞→ 等于ﻩ(A)2411 (B )2417 (C )2419 (D )2425 (10)某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij , 其中i =1,2,…,k ,且j =1,2,…,k,则同时同意第1,2号同学当选的人数为ﻩ(A)k k a a a a a a 2222111211+++++++(B)2221212111k k a a a a a a +++++++ﻩ(C )2122211211k k a a a a a a +++ ﻩ(D)k k a a a a a a 2122122111+++第Ⅱ卷(非选择题共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.(11)函数x tg x h x x x x x x g x x f 2)(.1,2.1||0.1,2)(),1lg()(2=⎪⎩⎪⎨⎧>+-≤-<+=+=中,是偶函数.(12)以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是(13)如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b ,那么圆柱被截后剩下部分的体积是 .(14)将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为 .三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)。
2003年普通高等学校招生全国统一考试(北京卷)数 学(理工农医类)第Ⅰ卷(选择题共50分)参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. (1)设集合}01|{2>-=x x A ,}0log |{2>=x x B ,则B A 等于(A )}1|{>x x (B )}0|{>x x (C )}1|{-<x x (D )1|{-<x x 或}1>x (2)设9.014=y ,48.028=y ,5.13)21(-=y ,则(A )213y y y >> (B )312y y y >> (C )321y y y >> (D )231y y y >> (3)“232cos -=α”是“Z k k ∈+=,125ππα”的 (A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分又非必要条件 4.已知βα,是平面,n m ,是直线,下列命题中不正确的是(A )若m ∥α,n =βα ,则m ∥n (B )若m ∥n ,α⊥m ,则α⊥n (C )若α⊥m ,β⊥m ,则α∥β (D )若α⊥m ,β⊂m ,则βα⊥. 5.极坐标方程1cos 22cos 2=-θρθρ表示的曲线是(A )圆 (B )椭圆 (C )抛物线 (D )双曲线 6.若C z ∈,且1|22|=-+i z ,则|22|i z --的最小值是(A )2 (B )3 (C )4 (D )57.如果圆台的母线与底面成︒60角,那么这个圆台的侧面积与轴截面面积的比为 (A )π2 (B )23π (C )332π (D )π218.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有(A )24种 (B )18种 (C )12种 (D )6种9.若数列}{n a 的通项公式是2)23()1(23n n n n n n a ------++=, ,2,1=n ,则)(lim 21n n a a a +++∞→ 等于(A )2411 (B )2417 (C )2419 (D )242510.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为k ,,2,1 .规定:同意按“1”,不同意(含弃权)按“0”.令⎩⎨⎧=号同学当选号同学不同意第第 号同学当选号同学同意第第j i j i a ij 0 1 其中k i ,,2,1 =,且k j ,,2,1 =,则同时同意第1、2号同学当选的人数为(A )k k a a a a a a 2222111211+++++++ (B )2221212111k k a a a a a a +++++++ (C )2122211211k k a a a a a a +++ (D )k k a a a a a a 2122122111+++第Ⅱ卷(非选择题共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.)1lg()(2x x f +=,⎪⎩⎪⎨⎧>+-≤-<+=1 21||012)(x x x x x x g ,x tg x h 2)(=,其中 为偶函数.12.已知双曲线方程为191622=-y x ,则以双曲线左顶点为顶点,右焦点为焦点的抛物线方程为 .13.一底面半径为r 的圆柱,被一平面所截剩下部分母线最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积为 .14.一根长为1的铁丝,分成两段分别围成一个正方形和一个圆,当正方形和圆的面积之和最小时,正方形的周长为 .三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数x x x x x f 44sin cos sin 2cos )(--=(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在区间]2,0[π上的最大值和最小值.16.(本小题满分13分)已知数列}{n a 是等差数列,且21=a ,12321=++a a a (1)求数列}{n a 的通项公式;(2)设数列nn n x a b ⋅=(R x ∈),求数列}{n b 的前n 项和公式.ba2rxy xOB C AP(-b,0)(b,0)17.(本小题满分15分)如图,已知正三棱柱111C B A ABC -底面边长为3,2331=AA ,D 为CB 延长线上一点,且BC BD =. (1)求证:直线1BC ∥面D AB 1; (2)求二面角B AD B --1的大小; (3)求三棱锥11ABB C -的体积.18.(本小题满分15分)如图,已知椭圆的长轴21A A 与x 轴平行,短轴21B B 在y 轴上,中心),0(r M (0>>r b (Ⅰ)写出椭圆方程并求出焦点坐标和离心率;(Ⅱ)设直线x k y 1=与椭圆交于),(11y x C ,,(2y x D ),(44y x H (04>y ).求证:4343121211x x x x k x x x x k +=+;(Ⅲ)对于(Ⅱ)中的在H G D C ,,,,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OQ OP =(证明过程不考虑CH 或GD 垂直于x 轴的情形) 19.(本小题满分14分)有三个新兴城镇分别位于A 、、三点处,且,,今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处(建立坐标系如图). (Ⅰ)若希望点P 到三镇距离的平方和最小,则P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小,则P 应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件,①0)1()1(==-f f ②对任意的u 、]1,1[-∈v ,都有|||)()(|v u v f u f -≤- (Ⅰ)证明:对任意]1,1[-∈x ,都有x x f x -≤≤-1)(1 (Ⅱ)证明:对任意的]1,1[,-∈v u 都有1|)()(|≤-v f u f(Ⅲ)在区间]1,1[-上是否存在满足题设条件的奇函数)(x f y =且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-]1,21[ |||)()(|]21,0[ |||)()(|uv v u v f u f uv v u v f u f若存在请举一例,若不存在,请说明理由.D12003年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.B 5.D 6.B 7.C 8.B 9.C 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.)();(x g x f 12.)4(362--=x y 13.)(212b a r +π 14.44+π 三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分.(Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为20π≤≤x ,所以45424πππ≤+≤x 当442ππ=+x 时,)(x f 取最大值为22, 当ππ=+42x 时,)(x f 取最小值为-1 ∴)42cos(2)(π+=x x f 的最大值为1,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a所以.2n a n =(Ⅱ)解:由,2nn n n nx x a b ==得,2)22(4212n n n x n x n x x S ⋅+-+⋅+⋅=- ①.2)22(42132+⋅+⋅-++⋅+⋅=n n n x n x n x x xS ②当x ≠1时,将①式减去②式,得.21)1(22)(2)1(112++⋅---=⋅-++=-n nn n n x n xx x x n x x x S x∴x nx x x x S n n n ----=+12)1()1(212当x=1时,)1(242+=+++=n n n S n综上可知,当x=1时,)1(242+=+++=n n n S n当x ≠1时,x nx x x x S n n n ----=+12)1()1(21217.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证明:∵CD ∥C 1B 1 ,又BD=BC=B 1C 1,∴四边形BDB 1C 1是平行四边形∴BC 1∥DB 1又DB 1⊂平面AB 1D ,BC 1⊄平面AB 1D ∴直线BC 1∥平面AB 1D(Ⅱ)解:过B 作BE ⊥AD 于E ,连结EB 1,∵ BB 1⊥平面ABD ∴ B 1E ⊥AD∴ ∠B 1EB 是二面角B 1—AD —B 的平面角 ∵ BD=BC=AB ∴ E 是AD 的中点,∴ BE=21AC=23在Rt ∆B 1BE 中,tan ∠B 1EB=3233231==BEB B∴ ∠B 1EB=060即二面角B 1—AD —B 的大小为60(Ⅲ)解法一:过A 作AF ⊥BC 于F ,∵ BB 1⊥平面ABC , ∴ 平面ABC ⊥平面BB 1C 1C ,∴ AF ⊥平面BB 1C 1C 且AF=323323=⨯ ∴11ABB C V -=11C BB A V -=AF S C BB ⋅∆1131=31233)323321(⨯⨯⨯=827 即三棱锥C 1—ABB 18D1D1D118.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分.(Ⅰ)解:椭圆方程为1)(2222=-+b r y a x 焦点坐标为),(221r b a F --,),(222r b a F -离心率ab a e 22-=(Ⅱ)证明:证明:将直线CD 的方程x k y 1=代入椭圆方程1)(2222=-+br y a x ,得 2221222)(b a r x k a x b =-+整理得0)(2)(22222122122=-+-+b a r a rx a k x k a b根据韦达定理,得212221212k a b r a k x x +=+,2122222221k a b b a r a x x +-=,所以rk b r x x x x 12221212-=+ ①将直线GH 的方程x k y 2=代入椭圆方程1)(2222=-+br y a x ,同理可得rk b r x x x x 22243432-=+ ②由 ①、②得 rb r x x x x k 22221211-=+ =43432x x x x k +所以结论成立(Ⅲ)证明:设点P )0,(p ,点Q )0,(q由C 、P 、H 共线,得421141x k x k p x p x =--解得42114121)(x k x k x x k k p --=x由D 、Q 、G 共线,同理可得322132x k x k p x p x =--32213221)(x k x k x x k k q --=由21211x x x x k + = 43432x x x x k +变形得42114121)(x k x k x x k k ---=32213221)(x k x k x x k k --所以 q p = 即OQ OP =19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:由题设条件a>b>0,设P 的坐标为(0,y ),则P 至三镇距离的平方和为22222)()(2)(y b a y b y f --++= =2222223b a y b a y ++--所以,当322b a y -=时,函数)(y f 取得最小值. 答:点P 的坐标是)3,0(22b a - (Ⅱ)解:记22b a h -=P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|||,||,|,)(222222y h y b y h y h y b y b x g 当当由||22y h y b -≥+解得,222h b h y -≥记,222*hb h y -= 于是⎪⎩⎪⎨⎧<-≥+=.|,|,,)(**22y y y h y y y b x g 当当 当0222*≥-=hb h y ,即b h ≥时, 因为22y b +在[),*+∞y 上是增函数,而]y ,(-||*∞-在y h 上是减函数.y xOB C AP(-b,0)(b,0)所以*y y =时,函数)(y g 取得最小值. 点P 的坐标是)2,0(22hb h - 当0222*<-=hb h y ,即b h <时,因为22y b +在[),*+∞y 上当y=0函数)(y g 取得最小值b ,而]y ,(-||*∞-在y h 上是减函数,且 b ||>-y h ,所以0=y 时, 函数)(y g 取得最小值.答:当b h ≥时,点P 的坐标是)2,0(22hb h - 当b h <时,点P 的坐标是)0,0(,其中22b a h -=20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤- (Ⅱ)对任意的]1,1[,-∈v u ,当1|||)()(|,1|u |≤-≤-≤-v u v f u f v 有时当,1|u |时≤-v 0,u <⋅v 不妨设],1,0(),0,1[∈-∈v u 则1>-u v 从而有)1()()1()(|)()(|f v f f u f v f u f -+--≤-1)(2|1||1|<--=-++≤u v v u总上可知,对任意的]1,1[,-∈v u ,都有1|)()(|≤-v f u f(Ⅲ)答:这样满足所述条件的函数不存在.理由如下:假设存在函数)(x f 满足条件,则由.|||)()(|v u v f u f -=- ]1,21[,∈v u 得21|121||)1()21(|=-=-f f又0)1(=f ,所以21|)21(|=f ①又因为)(x f 为奇函数,所以0)0(=f , 由条件.|||)()(|v u v f u f -<- ]21,0[,∈v u 得21|021||)0()21(||)21(|=-<-=f f f所以 21|)21(|<f ②①与②矛盾,因此假设不成立,即这样的函数不存在.。
2003年普通高等学校招生全国统一考试(北京卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1. (2003▪北京▪理)设集合2{|10}A x x =->,2{|log 0}B x x =>,则A B =A.{|1}x x >B.{|0}x x >C.{|1}x x <-D.{|1x x >或1}x <-2. (2003▪北京▪理)设0.914y =,0.4828y =, 1.531()2y -=,则A.312y y y >>B.213y y y >>C.123y y y >>D.132y y y >>3. (2003▪北京▪理)“cos 2α=”是“512k παπ=+,k Z ∈”的 A.必要非充分条件 B.充分非必要条件C.充分必要条件D.既非充分又非必要条件4. (2003▪北京▪理)已知α,β是平面,m ,n 是直线,下列命题中不正确的是A.若m ∥n ,m α⊥,则n α⊥B.若m ∥α,n αβ=,则m ∥nC.若m α⊥,m β⊥,则α∥βD.若m α⊥,m β⊂,则αβ⊥5. (2003▪北京▪理)极坐标方程2cos 22cos 1ρθρθ-=表示的曲线是 A.圆 B.椭圆 C.抛物线 D.双曲线6. (2003▪北京▪理)若z C ∈且|22|1z i +-=,则|22|z i --的最小值是A.2B.3C.4D.57. (2003▪北京▪理)如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为A.2πB.32πC.3D.12π 8. (2003▪北京▪理)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有A.24种B.18种C.12种D.6种9. (2003▪北京▪理)若数列{}n a 的通项公式是32(1)(32)2n n n n n n a ----++--=,n =1,2,…,则12lim(n a a →∞++…)n a += A.1124 B.1724 C.1924 D.252410. (2003▪北京▪理)某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令10ij i j a i j ⎧=⎨⎩第号同学同意第号同学当选第号同学不同意第号同学当选,其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为A.1112a a ++…12122k a a a ++++…2k a +B.1121a a ++…11222k a a a ++++…2k a +C.11122122a a a a ++…12k k a a +D.11211222a a a a ++…12k k a a +二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11. (2003▪北京▪理)函数2()lg(1)f x x =+,21()0||121x x g x x x x +<-⎧⎪=≤⎨⎪-+>⎩,()tan 2h x x =中,______是偶函数.12. (2003▪北京▪理)已知双曲线方程为221169x y -=,则以双曲线右顶点为顶点,左焦点为焦点的抛物线方程为_________.13. (2003▪北京▪理)如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是__________.14. (2003▪北京▪理)将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为_________.三、解答题:本大题共6小题,共13+13+15+15+14+14=84分.解答应写出文字说明,证明过程或演算步骤.15. (2003▪北京▪理)已知函数44()cos 2sin cos sin f x x x x x =--.⑴求()f x 的最小正周期;⑵求()f x 在区间[0,]2π上的最大值和最小值.16. (2003▪北京▪理)已知数列{}n a 是等差数列,且12a =,12312a a a ++=.⑴求数列{}n a 的通项公式;⑵令()n n n b a x x R =∈,求数列{}n b 前n 项和的公式.17. (2003▪北京▪理)如图,正三棱柱111ABC A B C -的底面边长为3,侧棱12AA =,D 是CB 延长线上一点,且BD BC =.⑴求证:直线1BC ∥平面1AB D ;⑵求二面角1B AD B --的大小;⑶求三棱锥11C ABB -的体积.18. (2003▪北京▪理)如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0M ,)(0)r b r >>.⑴写出椭圆方程并求出焦点坐标和离心率;⑵设直线1y k x =与椭圆交于亮点1(C x ,1)y ,2(D x ,22)(0)y y >,直线2y k x=与椭圆交于两点3(G x ,3)y ,4(H x ,44)(0)y y >.求证:2341121234k x x k x x x x x x =++; ⑶对于⑵中的C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =.(证明过程不考虑CH 或GD 垂直于x 轴的情形)19. (2003▪北京▪理)有三个新兴城镇分别位于A 、B 、C 三点处,且AB AC a ==,2BC b =,今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处(建立坐标系如图).⑴若希望点P 到三镇距离的平方和最小,则P 应位于何处?⑵若希望点P 到三镇的最远距离为最小,则P 应位于何处?20. (2003▪北京▪理)设()y f x =是定义在区间[1-,1]上的函数,且满足条件:①(1)(1)0f f -==;②对任意的u 、[1v ∈-,1],都有|()()|||f u f v u v -≤-. ⑴证明:对任意的[1x ∈-,1],都有1()1x f x x -≤≤-;⑵证明:对任意的u 、[1v ∈-,1],都有|()()|1f u f v -≤;⑶在区间[1-,1]上是否存在满足题设条件的奇函数()y f x =,且使得当u ,[0v ∈,1]2时,|()()|||f u f v u v -<-,当u ,1[2v ∈,1]时,|()()|||f u f v u v -=-.若存在请举一例,若不存在,请说明理由.2003年北京市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2003•北京)设集合A={x|x2﹣1>0},B={x|log2x>0|},则A∩B等于()A.{x|x>1} B.{x|x>0} C.{x|x<﹣1} D.{x|x>1或x<﹣1}【分析】先化简集合,即解一元二次不等式x2>1,和对数不等式log2x>0,再求交集.【解答】解:根据题意:集合A={x|x<﹣1或x>1},集合B={x|x>1}∴A∩B={x|x>1}.故选A【点评】本题考查集合间的交集的运算,应注意不等式的正确求解,属于基础题.2.(5分)(2003•北京)设,,,则()A.y3>y1>y2 B.y2>y1>y3 C.y1>y2>y3 D.y1>y3>y2【分析】分别将三个幂值进行化简,转化为以2为底的指数幂的形式,然后利用指数函数的单调性进行判断.【解答】解:,,.因为函数y=2x在定义域上为单调递增函数,所以y1>y3>y2.故选D.【点评】本题主要考查了指数幂的大小比较,将不同底的指数幂转化为同底的指数幂.然后利用指数函数的单调性进行判断大小是解决本题的关键.3.(5分)(2003•北京)“”是“”的()A.必要非充分条件B.充分非必要条件C.充分必要条件 D.既非充分又非必要条件【分析】利用充分条件和必要条件的定义去判断.【解答】解:由,得,即,所以,是“”的必要不充分条件.故“”是“”的必要不充分条件.故选A.【点评】本题主要考查充分条件和必要条件的判断,要求熟练掌握判断充要条件的①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.4.(5分)(2003•北京)已知α,β是平面,m,n是直线,下列命题中不正确的是()A.若m∥α,α∩β=n,则m∥n B.若m∥n,m⊥α,则n⊥αC.若m⊥α,m⊥β,则α∥βD.若m⊥α,m⊂β,则α⊥β【分析】根据线面平行性质定理,得A项不正确,根据线面垂直的性质与判定,可得B项正确;根据面面平行的性质与线面垂直的性质,可得C项正确;根据线面垂直的定义,可得D项正确.由此可得本题答案.【解答】解:对于A,若m∥α,m⊂β,α∩β=n,则m∥n但条件中缺少“m⊂β”,故不一定有m∥n成立,故A不正确;对于B,根据两条平行线与同一个平面所成角相等,可得若m∥n,m⊥α,则n⊥α,故B正确;对于C,根据垂直于同一条直线的两个平面互相平行,可得若m⊥α,m⊥β,则α∥β,故C正确;对于D,若直线与平面垂直,则直线与平面内所有直线都垂直故若m⊥α,m⊂β,则α⊥β,故D正确因此,不正确的命题只有A故选:A【点评】本题给出空间位置关系的几个命题,要找出其中的假命题.着重考查了空间直线与平面平行与垂直、平面与平面平行与垂直等位置关系的认识与理解,属于中档题.5.(5分)(2003•北京)极坐标方程ρ2cos2θ﹣2ρcosθ=1表示的曲线是()A.圆B.椭圆 C.抛物线D.双曲线【分析】将极坐标方程化为直角坐标方程,就可以得出结论【解答】解:极坐标方程ρ2cos2θ﹣2ρcosθ=1可化为:ρ2(cos2θ﹣sin2θ)﹣2ρcosθ=1,∴x2﹣y2﹣2x=1,即(x﹣1)2﹣y2=2,它表示中心在(1,0)的双曲线.∴极坐标方程ρ2cos2θ﹣2ρcosθ=1表示的曲线是双曲线.故选D.【点评】研究极坐标问题,我们的解法是将极坐标方程化为直角坐标方程,再进行研究.6.(5分)(2003•北京)若z∈C,且|z+2﹣2i|=1,则|z﹣2﹣2i|的最小值是()A.2 B.3 C.4 D.5【分析】根据式子|Z+2﹣2i|=1的几何意义,表示以(﹣2,2)为圆心,以1为半径的圆,|Z﹣2﹣2i|的最小值,就是圆上的点到(2,2)距离的最小值,转化为圆心到(2,2)距离与半径的差.【解答】解:由题意知,|Z+2﹣2i|=1表示:复平面上的点到(﹣2,2)的距离为1即以(﹣2,2)为圆心,以1为半径的圆,|Z﹣2﹣2i|表示:圆上的点到(2,2)的距离的最小值,即圆心(﹣2,2)到(2,2)的距离减去半径1,则|2﹣(﹣2)|﹣1=3故选B.【点评】本题考查复数代数形式有关式子的几何意义,关键是把式子转化为几何意义,考查了转化思想.7.(5分)(2003•北京)如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为()A.2πB.C.D.【分析】设圆台上、下底面圆半径为r、R,则母线l=2(R﹣r),高h=(R﹣r),由此结合圆台侧面积公式和梯形面积公式,即可算出该圆台的侧面积与轴截面面积的比.【解答】解:∵圆台的母线与底面成60°角,∴设上底圆半径为r,下底面圆半径为R,母线为l,可得l=2(R﹣r)因此,圆台的侧面积为S侧=π(r+R)l=2π(R2﹣r2)又∵圆台的高h=(R﹣r)∴圆台的轴截面面积为S轴=(2r+2R)h=(R2﹣r2)由此可得圆台的侧面积与轴截面面积的比为2π(R2﹣r2):(R2﹣r2)=故选:C【点评】本题给出母线与底面成60°角的圆台,求它的侧面积与轴截面面积的比值.着重考查了圆台侧面积公式、梯形面积公式和解三角形等知识,属于基础题.8.(5分)(2003•北京)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有()A.24种B.18种C.12种D.6种【分析】根据题意,由于黄瓜必选,故需要再选2种蔬菜,其方法数是C32种,进而由排列的意义,进行全排列,计算可得答案.【解答】解:∵黄瓜必选,故再选2种蔬菜的方法数是C32种,在不同土质的三块土地上种植的方法是A33,∴种法共有C32•A33=18种,【点评】本题考查排列、组合的综合运用,要注意排列、组合的不同意义,进而分析求解.9.(5分)(2003•北京)若数列{an}的通项公式是an=,n=1,2,…,则(a1+a2+…+an)等于()A.B.C.D.【分析】由题意知an=由此可知(a1+a2++an)=+,计算可得答案.【解答】解:an=即an=∴a1+a2+…+an=(2﹣1+2﹣3+2﹣5+)+(3﹣2+3﹣4+3﹣6+).∴(a1+a2+…+an)=+=,故选C.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细求解.10.(5分)(2003•北京)某班试用电子投票系统选举班干部候选人.全班k名同学都有选举权和被选举权,他们的编号分别为1,2,…,k,规定:同意按“1”,不同意(含弃权)按“0”,令其中i=1,2,…,k,且j=1,2,…,k,则同时同意第1,2号同学当选的人数为()A.a11+a12+…+a1k+a21+a22+…+a2kB.a11+a21+…+ak1+a12+a22+…+ak2C.a11a12+a21a22+…+ak1ak2D.a11a21+a12a22+…+a1ka2k【分析】先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数为它们对应相乘再相加.【解答】解:第1,2,…,k名学生是否同意第1号同学当选依次由a11,a21,a31,…,ak1来确定(aij=1表示同意,aij=0表示不同意或弃权),是否同意第2号同学当选依次由a12,a22,…,ak2确定,而是否同时同意1,2号同学当选依次由a11a12,a21a22,…,ak1ak2确定,故同时同意1,2号同学当选的人数为a11a12+a21a22+…+ak1ak2,故选C.【点评】本题主要考查了矩阵的应用,考查学生阅读理解、分析问题解决问题的能力.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.(4分)(2003•北京)函数f(x)=lg(1+x2),g(x)=,h(x)=tan2x中,f(x)、g(x)是偶函数.【分析】用函数奇偶性定义判断.f(x),h(x)判断时,先看定义域,再研究关系;g(x)判断时,要注意从三种情况判断,即从1°当﹣1≤x≤1时2°当x<﹣1时3°当x>1时判断.【解答】解:∵f(﹣x)=lg[1+(﹣x)2]=lg(1+x2)=f(x),∴f(x)为偶函数.又∵1°当﹣1≤x≤1时,﹣1≤﹣x≤1,∴g(﹣x)=0.又g(x)=0,∴g(﹣x)=g(x).2°当x<﹣1时,﹣x>1,∴g(﹣x)=﹣(﹣x)+2=x+2.又∵g(x)=x+2,∴g(﹣x)=g(x).3°当x>1时,﹣x<﹣1,∴g(﹣x)=(﹣x)+2=﹣x+2.又∵g(x)=﹣x+2,∴g(﹣x)=g(x).综上,对任意x∈R都有g(﹣x)=g(x).∴g(x)为偶函数.h(﹣x)=tan(﹣2x)=﹣tan2x=﹣h(x),∴h(x)为奇函数.【点评】本题主要考查函数奇偶性的判断,要注意分段函数的判断,分几段就从几个方面判断.12.(4分)(2003•北京)已知双曲线方程为,则以双曲线左顶点为顶点,右焦点为焦点的抛物线方程为y2=36(x+4).【分析】先根据双曲线方程求得双曲线的左顶点和右焦点,进而根据抛物线的性质可求得抛物线的p,可得方程.【解答】解:根据双曲线方程可知a=4,b=3∴c==5,∴左顶点坐标为(﹣4,0),右焦点坐标为(5,0),∵抛物线顶点为双曲线的左顶点,焦点为右焦点,∴p=18,焦点在顶点的右侧,在x轴上∴抛物线方程y2=36(x+4).故答案为:y2=36(x+4).【点评】本题主要考查了双曲线和抛物线的简单性质.考查了学生对圆锥曲线基本知识的理解和掌握.13.(4分)(2003•北京)如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是πr2(a+b).【分析】用补形法:两个相同的几何体,倒立一个,对应合缝,恰好形成一个圆柱体.求出总体积的一半即可.【解答】解:取两个相同的几何体,倒立一个,对应合缝,恰好形成一个圆柱体.所求几何体的体积:=故答案为:【点评】本题考查几何体的体积,考查转化思想,是基础题.14.(4分)(2003•北京)将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为.【分析】正确理解题意,充分应用正方形的知识和圆的知识,表示出两种图形的面积.构造目标函数后结合目标函数的特点﹣﹣一元二次函数,利用二次函数的性质求最值.【解答】解析:设正方形周长为x,则圆的周长为1﹣x,半径r=.∴S正=()2=,S圆=π•.∴S正+S圆=(0<x<1).∴当x=时有最小值.答案:【点评】本题充分考查了正方形和圆的知识,目标函数的思想还有一元二次函数求最值的知识.在解答过程当中要时刻注意定义域优先的原则.三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.(13分)(2003•北京)已知函数f(x)=cos4x﹣2sinxcosx﹣sin4x(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.【分析】(I)根据平方关系、二倍角、两角和的余弦公式化简解析式,再求出函数的周期;(Ⅱ)由x的范围求出“”的范围,再根据余弦函数的最值,求出此函数的最值以及x的值.【解答】解:(Ⅰ)由题意知,f(x)=cos4x﹣2sinxcosx﹣sin4x∴f(x)的最小正周期.(Ⅱ)∵,∴当时,f(x)取最大值为,当时,f(x)取最小值为﹣1∴的最大值为1,最小值为﹣【点评】本小题主要考查三角函数的倍角、和角公式,以及余弦函数的性质等基本知识,考查运算能力.16.(13分)(2003•北京)已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn=anxn(x∈R),求数列{bn}前n项和的公式.【分析】(1)本题是一个数列的基本量的运算,根据题目所给的首项和前连续三项的值,写出关于公差的方程,解方程可得结果.(2)构造一个新数列,观察这个数列是有一个等差数列和一个等比数列的积构成的,这种结构要用错位相减法求的结果,解题时注意等比数列的公比与1的关系,进行讨论.【解答】解:(1)设数列{an}的公差为d,则a1+a2+a3=3a1+3d=12.又a1=2,得d=2.∴an=2n.(2)当x=0时,bn=0,Sn=0,当x≠0时,令Sn=b1+b2+…+bn,则由bn=anxn=2nxn,得Sn=2x+4x2++(2n﹣2)xn﹣1+2nxn,①xSn=2x2+4x3++(2n﹣2)xn+2nxn+1.②当x≠1时,①式减去②式,得(1﹣x)Sn=2(x+x2++xn)﹣2nxn+1=﹣2nxn+1.∴Sn=﹣.当x=1时,Sn=2+4++2n=n(n+1).综上可得,当x=1时,Sn=n(n+1);当x≠1时,Sn=﹣.【点评】数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备.17.(15分)(2003•北京)如图,三棱柱ABC﹣A1B1C1的底面是边长为3的正三角形,侧棱AA1垂直于底面ABC,AA1=,D是CB延长线上一点,且BD=BC.(1)求证:直线BC1∥平面AB1D;(2)求二面角B1﹣AD﹣B的大小;(3)求三棱锥C1﹣ABB1的体积.【分析】(1)根据三棱柱的性质,可以证出BC1∥DB1,结合线面平行的判定定理可以证出直线BC1∥平面AB1D;(2)过B作BE⊥AD于E,连接EB1,根据三垂线定理得∠B1EB是二面角B1﹣AD﹣B 的平面角.在Rt△BB1E中,利用三角函数的定义可算出∠B1EB=60°,即二面角B1﹣AD﹣B的大小为60°.(3)过A作AF⊥BC于F,利用面面垂直的性质定理,可得AF⊥平面BB1C1C,即AF等于点A到平面B1C1B的距离.利用等边三角形计算出AF的长为,结合三角形B1C1B的面积等于,用锥体体积公式可以算出三棱锥C1﹣ABB1的体积.【解答】解:(1)∵CB∥C1B1,且BD=BC=B1C1,∴四边形BDB1C1是平行四边形,可得BC1∥DB1.又B1D⊂平面AB1D,BC1⊄平面AB1D,∴直线BC1∥平面AB1D(2)过B作BE⊥AD于E,连接EB1∵BB1⊥平面ABD,∴BE是B1E在平面ABD内的射影结合BE⊥AD,可得B1E⊥AD,∴∠B1EB是二面角B1﹣AD﹣B的平面角.∵BD=BC=AB,∴E是AD的中点,得BE是三角形ACD的中位线,所以BE=AC=.在Rt△BB1E中,tan∠B1EB===∴∠B1EB=60°,即二面角B1﹣AD﹣B的大小为60°(3)过A作AF⊥BC于F,∵BB1⊥平面ABC,BB1⊂平面BB1C1C∴平面BB1C1C⊥平面ABC∵AF⊥BC,平面BB1C1C∩平面ABC=BC∴AF⊥平面BB1C1C,即AF为点A到平面BB1C1C的距离.∵正三角形ABC中,AF=×3=,∴三棱锥C1﹣ABB1的体积VC1﹣ABB1=VA﹣C1BB1=××=.【点评】本题以一个特殊正三棱柱为载体,适当加以变化,求三棱锥的体积并求二面角的大小,着重考查了空间线面平行的判定、面面垂直的判定与性质等知识点,属于中档题.18.(15分)(2003•北京)如图,已知椭圆的长轴A1A2与x轴平行,短轴B1B2在y 轴上,中心M(0,r)(b>r>0(Ⅰ)写出椭圆方程并求出焦点坐标和离心率;(Ⅱ)设直线y=k1x与椭圆交于C(x1,y1),D(x2,y2)(y2>0),直线y=k2x与椭圆次于G(x3,y3),H(x4,y4)(y4>0).求证:;(Ⅲ)对于(Ⅱ)中的在C,D,G,H,设CH交x轴于P点,GD交x轴于Q点,求证:|OP|=|OQ|(证明过程不考虑CH或GD垂直于x轴的情形)【分析】(Ⅰ)根据椭圆的长轴A1A2与x轴平行,短轴B1B2在y轴上,中心M(0,r),即可得椭圆方程,从而可得焦点坐标与离心率;(Ⅱ)将直线CD的方程y=k1x代入椭圆方程,利用韦达定理,可得;将直线GH的方程y=k2x代入椭圆方程,同理可得,由此可得结论;(Ⅲ)设点P(p,0),点Q(q,0),由C、P、H共线,得;由D、Q、G共线,可得,由此可得结论.【解答】(Ⅰ)解:∵椭圆的长轴A1A2与x轴平行,短轴B1B2在y轴上,中心M(0,r),∴椭圆方程为焦点坐标为,离心率(Ⅱ)证明:将直线CD的方程y=k1x代入椭圆方程,得整理得根据韦达定理,得,,所以①将直线GH的方程y=k2x代入椭圆方程,同理可得②由①、②得=所以结论成立(Ⅲ)证明:设点P(p,0),点Q(q,0)由C、P、H共线,得解得由D、Q、G共线,同理可得∴由=变形得=所以|p|=|q|即|OP|=|OQ|【点评】本题考查椭圆的方程,考查直线与椭圆的位置关系,考查不等式的证明,认真审题,细心计算是关键.19.(14分)(2003•北京)有三个新兴城镇分别位于A、B、C三点处,且AB=AC=a,BC=2b,今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处(建立坐标系如图).(Ⅰ)若希望点P到三镇距离的平方和最小,则P应位于何处?(Ⅱ)若希望点P到三镇的最远距离为最小,则P应位于何处?【分析】(I)设出P的坐标,表示出P至三镇距离的平方和,利用配方法,可得结论;(II)记,表示出P至三镇的最远距离,分类讨论,确定函数的单调性,从而可得结论.【解答】解:(Ⅰ)由题设条件a>b>0,设P的坐标为(0,y),则P至三镇距离的平方和为=所以,当时,函数f(y)取得最小值.答:点P的坐标是(Ⅱ)记P至三镇的最远距离为由解得,记,于是当,即h≥b时,因为在[y*,+∞)上是增函数,而|h﹣y|在(﹣∞,y*]上是减函数.所以y=y*时,函数g(y)取得最小值.点P的坐标是当,即h<b时,因为在[y*,+∞)上当y=0函数g(y)取得最小值b,而|h﹣y|在(﹣∞,y*]上是减函数,且|h﹣y|>b,所以y=0时,函数g(y)取得最小值.答:当h≥b时,点P的坐标是;当h<b时,点P的坐标是(0,0),其中【点评】本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.20.(14分)(2003•北京)设y=f(x)是定义在区间[﹣1,1]上的函数,且满足条件,①f(﹣1)=f(1)=0,②对任意的u、v∈[﹣1,1],都有|f(u)﹣f(v)|≤|u﹣v|(Ⅰ)证明:对任意x∈[﹣1,1],都有x﹣1≤f(x)≤1﹣x(Ⅱ)证明:对任意的u,v∈[﹣1,1]都有|f(u)﹣f(v)|≤1(Ⅲ)在区间[﹣1,1]上是否存在满足题设条件的奇函数y=f(x)且使得;若存在请举一例,若不存在,请说明理由.【分析】(I)利用条件②,可得当x∈[﹣1,1]时,有|f(x)|=|f(x)﹣f(1)|≤|x﹣1|=1﹣x,从而可得结论;(II)分类讨论,利用条件②,即可得到结论;(III)利用反证法,利用条件引出矛盾,即可得解.【解答】(Ⅰ)证明:由题设条件可知,当x∈[﹣1,1]时,有|f(x)|=|f(x)﹣f(1)|≤|x﹣1|=1﹣x,即x﹣1≤f(x)≤1﹣x.(Ⅱ)证明:对任意的u,v∈[﹣1,1],当|u﹣v|≤1时,有|f(u)﹣f(v)|≤|u﹣v|≤1当|u﹣v|>1时,u•v<0,不妨设u∈[﹣1,0),v∈(0,1],则v﹣u>1从而有|f(u)﹣f(v)|≤|f(u)﹣f(﹣1)|+|f(v)﹣f(1)|≤|u+1|+|v﹣1|=2﹣(v﹣u)<1综上可知,对任意的u,v∈[﹣1,1],都有|f(u)﹣f(v)|≤1(Ⅲ)解:这样满足所述条件的函数不存在.理由如下:假设存在函数f(x)满足条件,则由|f(u)﹣f(v)|=|u﹣v|.得又f(1)=0,所以①又因为f(x)为奇函数,所以f(0)=0,由条件|f(u)﹣f(v)|<|u﹣v|.得所以②①与②矛盾,因此假设不成立,即这样的函数不存在.【点评】本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.参与本试卷答题和审题的老师有:733008;maths;ywg2058;minqi5;gongjy;danbo7801;zlzhan;zwx097;wodeqing;qiss;ying_0011;涨停;刘长柏(排名不分先后)菁优网2017年5月28日。
2003年普通高等学校招生全国统一考试(北京卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到11页。
共150分。
考试时间120分钟。
第Ⅰ卷(选择题共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--++-=正棱台、圆台的侧面积公式l c c S )'(21+=台侧其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 球体的体积公式334R V π=球其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合}01|{2>-=x x A ,}0log |{2>=x x B ,则A ∩B 等于(A ){x|x>1} (B ){x|x>0} (C ){x|x<-1} (D ){x|x<-1或x>1}(2)设9.014=y ,48.028=y ,5.13)21(-=y ,则(A )213y y y >> (B )312y y y >> (C )321y y y >> (D )231y y y >>(3)“232c o s -=α”是“65ππα+=k ,k ∈Z ”的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分又非必要条件(4)已知α,β是平面,m ,n 是直线。
绝密★启用前2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅ 周长,l 表示斜高或母线长.)]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232c o s -=α”是“Z k k ∈+=,1252ππα”的 ( ) A .必要非充分条件 B .充分非必要条件 C .充分必要条件 D .既非充分又非必要条件4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( )A .若m ∥α,α∩β=n ,则m//nB .若m ∥n ,α∩β=n ,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为 ( )A .51B .52C .55 D .552 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.若数列{}n a 的通项公式是 ,2,1,23)1(3=-+=--n a nn n n ,则)(lim 21n n a a a +++∞→ 等于( )A .241 B .81 C .61 D .21 9.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( ) A .24种 B .18种 C .12种 D .6种10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令 ⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为 12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是 14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b n n n ∈=求数列{}n b 前n 项和的公式. 17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AB=a .(Ⅰ)求证:直线A1D⊥B1C1;(Ⅱ)求点D到平面ACC1的距离;(Ⅲ)判断A1B与平面ADC的位置关系,并证明你的结论.CBC B118.(本小题满分15分)如图,A1,A为椭圆的两个顶点,F1,F2为椭圆的两个焦点.(Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA 上异于O ,A 的任一点K 作OA 的垂线,交椭圆于P ,P 1两点,直线 A 1P 与AP 1交于点M.求证:点M 在双曲线192522=-y x 上.19.(本小题满分14分)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=13km ,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图)(Ⅰ)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小, 点P 应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)判断函数⎩⎨⎧∈--∈+=]1,0[,1)0,1[,1)(x x x x x g 是否满足题设条件;(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数)(x f y =,且使得对任意的 .|)()(|],1,1[,v u v f u f v u -=--∈都有若存在,请举一例:若不存在,请说明理由.绝密★启用前2003年普通高等学校招生全国统一考试 数学试题(文史类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.3 12.)();(x g x f 13.)4(362--=x y 14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为),42cos(2)(π+=x x f 所以)(x f 的最大值为2,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a所以.2n a n=(Ⅱ)解:由,323n n n nn a b ==得,323)22(343212n n n n n S ⋅+-+⋅+⋅=- ①.323)22(34323132+⋅+⋅-++⋅+⋅=n n n n n S ②将①式减去②式,得 .32)13(332)333(22112++⋅--=⋅-++-=-n n n n n n n S所以.32)31(31+⋅+-=n nnn S17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分.(Ⅰ)证法一:∵点D 是正△ABC 中BC 边的中点,∴AD ⊥BC ,又A 1A ⊥底面ABC ,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.证法二:连结A 1C 1,则A 1C=A 1B. ∵点D 是正△A 1CB 的底边中BC 的中点, ∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.(Ⅱ)解法一:作DE ⊥AC 于E , ∵平面ACC 1⊥平面ABC ,∴DE ⊥平面ACC 1于E ,即DE 的长为点D 到平面ACC 1的距离. 在Rt △ADC 中,AC=2CD=.23,a AD a =∴所求的距离.43a AC AD CD DE =⋅=CBC B 1解法二:设点D 到平面ACC 1的距离为x , ∵体积111ACC D ACDC V V --= .21318331112x CC a CC a ⋅⋅⋅=⋅⋅∴,43a x =∴即点D 到平面ACC 1的距离为a43.(Ⅲ)答:直线A 1B//平面ADC 1,证明如下:证法一:如图1,连结A 1C 交AC 1于F ,则F 为A 1C 的中点,∵D 是BC 的中点,∴DF ∥A 1B , 又DF ⊂ 平面ADC 1,A 1B ⊄平面ADC 1,∴A 1B ∥平面ADC 1. 证法二:如图2,取C 1B 1的中点D 1,则AD ∥A 1D 1,C 1D ∥D 1B ,∴AD ∥平面A 1D 1B ,且C 1D ∥平面A 1D 1B ,∴平面ADC 1∥平面A 1D 1B ,∵A 1B ⊂平面A 1D 1B ,∴A 1B ∥平面ADC 1.图(2)图(1)C 11C18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分. (Ⅰ)解:由图可知,.3a b ,4,522=-===c c a 所以该椭圆的方程为,192522=+y x准线方程为.425±=x(Ⅱ)证明:设K 点坐标)0,(0x ,点P 、P 1的坐标分别记为),(),,(0000y x y x -, 其中,500<<x 则,1925202=+y x ……① 直线A 1P ,P 1A 的方程分别为: ),5()5(00+=+x y y x ……② ).5()5(00-=-x y y x ……③②式除以③式得,555500-+=-+x x x x 化简上式得,250x x=代入②式得,500x y y = 于是,直线A 1P 与AP 1的交点M 的坐标为).5,25(00x y x 因为.1)251(2525)5(91)25(25120202020020=--=-x x x x y x所以,直线A 1P 与AP 1的交点M 在双曲线上192522=+y x .19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:设P 的坐标为(0,y ),则P 至三镇距离的平方和为.146)4(3)12()25(2)(222+-=-++=y y y y f所以,当4=y 时,函数)(y f 取得最小值. 答:点P 的坐标是).4,0((Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 因为225y +在[),*+∞y 上是增函数,而]y ,(-|12|*∞-在y 上是减函数. 所以*y y =时,函数)(y g 取得最小值. 答:点P 的坐标是);24119,0( 解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 函数)(y g x =的图象如图)(a ,因此,当*y y =时,函数)(y g 取得最小值.答:点P 的坐标是);24119,0(解法三:因为在△ABC 中,AB=AC=13,且,(b).,4,51222如图π=∠=>=-ACB OC OC AC所以△ABC 的外心M 在线段AO 上,其坐标为)24119,0(, 且AM=BM=CM. 当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2, 这时P 到A 、B 、C 三点的最远距离为P 1C 和P 2A ,且P 1C ≥MC ,P 2A ≥MA ,所以点P 与外心M 重合时,P 到三镇的最远距离最小. 答:点P 的坐标是);24119,0( 20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-=即.1)(1x x f x -≤≤-(Ⅱ)答:函数)(x g 满足题设条件.验证如下:).1(0)1(g g ==-对任意的]1,1[,-∈v u ,当|;||)1()1(||)()(|,0,1][,u v u v u v g u g v -=---=-∈有时当|;||)()(|,,0]1-[,u v u v g u g v -=-∈同理有时当0,u <⋅v 不妨设],1,0(),0,1[∈-∈v u有.|||||)1()1(||)()(|u v v u v u v g u g -≤+=--+=-所以,函数)(x g 满足题设条件.(Ⅲ)答:这样满足的函数不存在.理由如下: 假设存在函数)(x f 满足条件,则由,0)1()1(==-f f 得,0|)1()1(|=--f f ①由于对任意的]1,1[,-∈v u ,都有.|||)()(|v u v f u f -=-所以,.2|)1(1||)1()1(|=--=--f f ② ①与②矛盾,因此假设不成立,即这样的函数不存在.。