高一数学 教师用
- 格式:doc
- 大小:251.26 KB
- 文档页数:4
1.1 任意角、弧度1.1.1 任意角1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.(重点)3.掌握判断象限角及表示终边相同的角的方法.(难点)[基础·初探]教材整理1任意角的概念阅读教材P5前五个自然段的有关内容,完成下列问题.1.角的概念:一个角可以看做平面内一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形.2.角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按逆时针方向旋转所形成的角负角按顺时针方向旋转所形成的角零角一条射线没有作任何旋转,称它形成了一个零角如图1-1-1,则α=________,β=________.图1-1-1【解析】α是按逆时针方向旋转的,为240°,β是按顺时针方向旋转的,为-120°.【★答案★】240°-120°教材整理2象限角与轴线角阅读教材P5最后一自然段的有关内容,完成下列问题.1.象限角:以角的顶点为坐标原点,角的始边为x轴正半轴建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角.2.轴线角:终边在坐标轴上的角.判断(正确的打“√”,错误的打“×”)(1)180°是第二象限角.()(2)-45°是第一象限角.()(3)第一象限内的角都小于第二象限内的角.()【解析】(1)×.180°是轴线角.(2)×.-45°是第四象限角.(3)×.如375°>120°,而375°和120°分别是第一、二象限内的角.【★答案★】(1)×(2)×(3)×教材整理3终边相同的角阅读教材P6“思考”及“例1”的有关内容,完成下列问题.与角α终边相同的角的集合为{β|β=k·360°+α,k∈Z}.1.与30°角终边相同的角的集合可表示为________.【解析】由终边相同角的表示可知,满足题意的角的集合为{β|β=k·360°+30°,k∈Z}.【★答案★】{β|β=k·360°+30°,k∈Z}2.将-885°化成k·360°+α(0°≤α<360°,k∈Z)的形式是________.【解析】设-885°=k·360°+α,易得-885°=(-3)×360°+195°.【★答案★】(-3)×360°+195°[小组合作型]角的概念辨析(1)下列结论:①第一象限角是锐角;②锐角是第一象限角;③第二象限角大于第一象限角;④钝角是第二象限角;⑤小于90°的角是锐角;⑥第一象限角一定不是负角.其中正确的结论是________(填序号).图1-1-2(2)如图1-1-2所示,射线OA绕端点O逆时针旋转45°到OB的位置,再顺时针旋转90°到OC的位置,则∠AOC=________.【精彩点拨】(1)根据任意角、象限角的概念进行判断,正确区分第一象限角、锐角和小于90°的角.(2)图形→正负角的概念→∠AOC的大小【自主解答】(1)①400°角是第一象限角,但不是锐角,故①不正确;②锐角是大于0°且小于90°的角,终边落在第一象限,故是第一象限角,②正确;③120°角是第二象限角,400°角是第一象限角,故第二象限角不一定大于第一象限角,③不正确;④钝角是大于90°且小于180°的角,终边落在第二象限,故是第二象限角,④正确;⑤0°角是小于90°的角,但不是锐角,故⑤不正确;⑥-300°角是第一象限角,但-300°角是负角,故⑥不正确.(2)由角的定义可知∠AOC=45°+(-90°)=-45°.【★答案★】(1)②④(2)-45°1.解决此类问题的关键在于正确理解象限角与锐角、直角、钝角、平角、周角等概念,严格辨析它们之间的联系与区别.2.判断结论正确与否时,若结论正确,需要严格的推理论证,若要说明结论错误,只需举出反例即可.[再练一题]1.时钟走了3小时20分,则时针所转过的角的度数为________,分针转过的角的度数为________.【解析】时针每小时转30°,分针每小时转360°,由于旋转方向均为顺时针方向,故转过的角度均为负值,又3小时20分等于313小时,故时针转过的角度为-313×30°=-100°;分针转过的角度为-313×360°=-1 200°.【★答案★】-100°-1 200°终边相同的角与象限角已知α=2 016°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.【精彩点拨】令2 016°=k·360°+β――――――→k∈Z0°≤β<360°求k,β―→θ=k·360°+β求k―→求θ【自主解答】(1)用2 016°除以360°商为5,余数为216°,∴k=5,∴α=5×360°+216°(β=216°),∴α为第三象限角.(2)∵θ=k·360°+216°,k∈Z,又-360°≤θ<720°,∴k=-1,0,1,∴θ=-144°,216°,576°.1.把任意角化为k·360°+α(k∈Z且0°≤α<360°)的形式,关键是确定k,可以用观察法(α的绝对值较小),也可用除法.2.要求适合某种条件且与已知角终边相同的角时,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.3.终边相同的角常用的三个结论:(1)终边相同的角之间相差360°的整数倍.(2)终边在同一直线上的角之间相差180°的整数倍.(3)终边在相互垂直的两直线上的角之间相差90°的整数倍.[再练一题]2.在0°~360°之间,求出与下列各角终边相同的角,并判断是第几象限角.(1)-736°;(2)904°18′. 【导学号:48582001】【解】(1)-736°=-3×360°+344°,344°是第四象限角,∴344°与-736°是终边相同的角,且-736°为第四象限角.(2)904°18′=2×360°+184°18′,184°18′是第三象限角,∴184°18′与904°18′是终边相同的角,且904°18′为第三象限角.[探究共研型]区域角的表示【提示】不能,第一象限内的角未必是(0°,90°)的角,其可能是负角,也可能是大于360°的角,其表示为{α|k·360°<α<90°+k·360°,k∈Z}.探究2终边落在x轴上的角如何表示?【提示】{α|α=k·180°,k∈Z}.探究3若角α,β满足β=α+k·180°,k∈Z,则角α,β的终边存在怎样的关系?【提示】角α,β的终边落在同一条直线上.写出终边落在阴影部分的角的集合.图1-1-3【精彩点拨】法一:先写出30°及105°终边相同角的集合,再写出其对称区域内角的集合,最后合并便可.法二:分别写出与30°及105°的终边在同一直线上的角的集合,合并求解便可.【自主解答】法一:设终边落在阴影部分的角为α,角α的集合由两部分组成:①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z},∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.法二:与30°角终边在同一条直线上的角的集合为{α|α=k·180°+30°,k∈Z}.与180°-75°=105°角终边在同一条直线上的角的集合为{α|α=k·180°+105°,k∈Z},结合图形可知,阴影部分的角的集合为{α|k·180°+30°≤α<k·180°+105°,k∈Z}.1.本题的求解注意实线边界与虚线边界的差异.2.解答此类问题应先在0°~360°上写出角的集合,再利用终边相同的角(或终边在同一条直线上的角)写出符合条件的所有角的集合,最后借助图形表示出区域角的范围.[再练一题]3.如图1-1-4所示:图1-1-4(1)分别写出终边落在OA ,OB 位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.【解】 (1)终边在OA 的最小正角为150°,故终边在OA 的角的集合为{α|α=k ·360°+150°,k ∈Z }.同理,终边在OB 上的最大负角为-45°,故终边在OB 的角的集合为{β|β=k ·360°-45°,k ∈Z }.(2)由题图知,阴影部分区域表示为{x |k ·360°-45°≤x ≤k ·360°+150°,k ∈Z }.1.-210°为第________象限角.【解析】 -210°=(-1)×360°+150°,150°是第二象限角.【★答案★】 二2.钟表经过4小时,时针转过的度数为________,分针转过的度数为________.【解析】 分针和时针均按顺时针方向旋转,其中分针连续转过4周,时针转过13周.【★答案★】 -120° -1 440°3.下列四个角中与30°角终边相同的角是________.①-30°;②210°;③390°;④-360°.【解析】 ∵390°=360°+30°,∴390°角与30°角的终边相同.【★答案★】 ③4.在0°≤α<360°中与-120°角终边相同的角为________.【解析】 ∵-120°=-360°+240°,∴在0°~360°内与-120°终边相同的角为240°.【★答案★】 240°5.已知角β的终边在直线3x -y =0上.(1)写出角β的集合S ;(2)写出S 中适合不等式-360°≤β<720°的元素.【导学号:48582002】【解】 (1)如图,直线3x -y =0过原点,倾斜角为60°,在0°~360°范围内,终边落在射线OA 上的角是60°,终边落在射线OB 上的角是240°,所以以射线OA ,OB 为终边的角的集合为:S 1={β|β=k ·360°+60°,k ∈Z },S 2={β|β=k ·360°+240°,k ∈Z },所以,角β的集合S =S 1∪S 2={β|β=k ·360°+60°,k ∈Z }∪{β|β=60°+180°+k ·360°,k ∈Z }={β|β=2k ·180°+60°,k ∈Z }∪{β|β=(2k +1)·180°+60°,k ∈Z }={β|β=n ·180°+60°,n ∈Z }.(2)由于-360°≤β<720°,即-360°≤60°+n ·180°<720°,n ∈Z ,解得-73≤n<113,n ∈Z ,所以n =-2,-1,0,1,2,3.所以S 中适合不等式-360°≤β<720°的元素为:-2×180°+60°=-300°;-1×180°+60°=-120°;0×180°+60°=60°;1×180°+60°=240°;2×180°+60°=420°;3×180°+60°=600°.。
2.1指数函数2.1.1指数与指数幂的运算第一课时根式根式[提出问题](1)若x2=9,则x是9的平方根,且x=±3;(2)若x3=64,则x是64的立方根,且x=4;(3)若x4=81,则x是81的4次方根,且x=±3;(4)若x5=-32,则x是-32的5次方根,且x=-2.问题1:观察(1)(3),你认为正数的偶次方根都是两个吗?提示:是.问题2:一个数的奇次方根有几个?提示:1个.问题3:由于22=4,小明说,2是4的平方根;小李说,4的平方根是2,你认为谁说的正确?提示:小明.[导入新知]根式及相关概念(1)a的n次方根定义:如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.(2)a的n次方根的表示:n的奇偶性a的n次方根的表示符号a的取值范围n 为奇数 n aR n 为偶数±na[0,+∞)(3)根式:式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. [化解疑难]根式记号的注意点(1)根式的概念中要求n >1,且n ∈N *.(2)当n 为大于1的奇数时,a 的n 次方根表示为na (a ∈R );当n 为大于1的偶数时,na (a ≥0)表示a 在实数范围内的一个n 次方根,另一个是-na ,从而⎝⎛⎭⎫±n a n =a .根式的性质[提出问题]问题1:⎝⎛⎭⎫323,⎝⎛⎭⎫3-23,⎝⎛⎭⎫424分别等于多少?提示:2,-2,2.问题2:3-23,323,4-24,424分别等于多少?提示:-2,2,2,2.问题3:等式a 2=a 及(a )2=a 恒成立吗?提示:当a ≥0时,两式恒成立;当a <0时,a 2=-a ,(a )2无意义. [导入新知]根式的性质(1)(na )n =a (n 为奇数时,a ∈R ;n 为偶数时,a ≥0,且n >1). (2)na n=⎩⎪⎨⎪⎧a n 为奇数,且n >1,|a |n 为偶数,且n >1.(3)n0=0.(4)负数没有偶次方根. [化解疑难](n a )n 与na n 的区别(1)当n 为奇数,且a ∈R 时,有n a n =(na )n =a ; (2)当n 为偶数,且a ≥0时,有n a n =(na )n =a .根式的概念[例1] (1)下列说法:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.其中说法正确的序号为________.(2)若31a -3有意义,则实数a 的取值范围是________. [解析] (1)①16的4次方根应是±2;②416=2,所以正确的应为③④. (2)要使31a -3有意义,则a -3≠0,即a ≠3. ∴a 的取值范围是{a |a ≠3}. [答案] (1)③④ (2){a |a ≠3} [类题通法]判断关于n 次方根的结论应关注两点(1)n 的奇偶性决定了n 次方根的个数;(2)n 为奇数时,a 的正负决定着n 次方根的符号. [活学活用]已知m 10=2,则m 等于( ) A.102B .-102C.210D .±102解析:选D ∵m 10=2,∴m 是2的10次方根. 又∵10是偶数,∴2的10次方根有两个,且互为相反数. ∴m =±102.利用根式的性质化简求值[例2] 化简: (1)nx -πn(x <π,n ∈N *);(2)4a 2-4a +1⎝⎛⎭⎫a ≤12. [解] (1)∵x <π,∴x -π<0, 当n 为偶数时,n x -πn=|x -π|=π-x ; 当n 为奇数时,nx -πn=x -π.综上,nx -πn=⎩⎪⎨⎪⎧π-x , n 为偶数,n ∈N *,x -π, n 为奇数,n ∈N *. (2)∵a ≤12,∴1-2a ≥0.∴4a 2-4a +1=2a -12=|2a -1|=1-2a .[类题通法]根式化简应注意的问题(1)⎝⎛⎭⎫n a n 已暗含了n a 有意义,据n 的奇偶性不同可知a 的取值范围. (2)n a n 中的a 可以是全体实数,na n 的值取决于n 的奇偶性. [活学活用] 求下列各式的值: (1)8x -28;(2)3-22+(31-2)3.解:(1)8x -28=|x -2|=⎩⎪⎨⎪⎧x -2,x ≥2,2-x ,x <2.(2)因为3-22=12-22+(2)2=(2-1)2, 所以3-22+(31-2)3=2-12+1-2=2-1+1-2=0.条件根式的化简[例3] (1)若xy ≠0,则使4x 2y 2=-2xy 成立的条件可能是( ) A .x >0,y >0 B .x >0,y <0 C .x ≥0,y ≥0D .x <0,y <0(2)设-3<x <3,求x 2-2x +1-x 2+6x +9的值.(1)[解析] ∵4x 2y 2=2|xy |=-2xy , ∴xy ≤0.又∵xy ≠0,∴xy <0,故选B. [答案] B (2)[解] 原式=x -12-x +32=|x -1|-|x +3|.∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2. 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎪⎨⎪⎧-2x -2-3<x <1,-4 1≤x <3.[类题通法]有条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.[活学活用]若n <m <0,则m 2+2mn +n 2-m 2-2mn +n 2等于( ) A .2m B .2n C .-2mD .-2n 解析:选C 原式=m +n2-m -n2=|m +n |-|m -n |,∵n <m <0,∴m +n <0,m -n >0, ∴原式=-(m +n )-(m -n )=-2m .5.忽略n 的范围导致式子na n a ∈R 化简出错 [典例] 化简31+23+41-24=________.[解析]31+23+41-24=(1+2)+|1-2|=1+2+2-1=2 2.[答案] 2 2 [易错防范] 1.本题易忽视41-24>0,而误认为41-24=1-2而导致解题错误.2.对于根式n a n 的化简一定要注意n 为正奇数还是正偶数,因为na n =a (a ∈R )成立的条件是n 为正奇数,如果n 为正偶数,那么na n =|a |.[活学活用]当a ,b ∈R 时,下列各式恒成立的是( ) A .(4a -4b )4=a -b B .(4a +b )4=a +b C.4a 4-4b 4=a -b D.4a +b4=a +b解析:选B 当且仅当a =b ≥0时,(4a -4b )4=a -b ; 当且仅当a ≥0,b ≥0时,4a 4-4b 4=a -b ; 当且仅当a +b ≥0时,4a +b4=a +b .由于a ,b 符号未知,因此选项A ,C ,D 均不一定恒成立. 选项B 中,由4a +b 可知a +b ≥0,所以(4a +b )4=a +b .故选B.[随堂即时演练]1.化简1-2x2⎝⎛⎭⎫x >12的结果是( ) A .1-2x B .0 C .2x -1 D .(1-2x )2解析:选C ∵1-2x 2=|1-2x |,x >12, ∴1-2x <0, ∴1-2x2=2x -1.2.下列式子中成立的是( )A .a -a =-a 3B .a -a =-a 3C .a -a =--a 3D .a -a =a 3解析:选C 要使a -a 有意义,则a ≤0, 故a -a =-(-a )-a =--a2-a =--a 3,故选C.3.若x >3,则x 2-6x +9-|2-x |=________. 解析:x 2-6x +9-|2-x |=x -32-|2-x |=|x -3|-|2-x |=x -3-(x -2)=-1.答案:-1 4.化简(a -1)2+1-a2+31-a 3=________.解析:由根式a -1有意义可得a -1≥0,即a ≥1, ∴原式=(a -1)+(a -1)+(1-a )=a -1. 答案:a -15.已知a <b <0,n >1,n ∈N *,化简na -bn+na +bn.解:∵a <b <0,∴a -b <0,a +b <0.当n 是奇数时,原式=(a -b )+(a +b )=2a ; 当n 是偶数时,原式=|a -b |+|a +b | =(b -a )+(-a -b )=-2a . ∴na -bn+na +bn=⎩⎪⎨⎪⎧2a ,n 为奇数,-2a ,n 为偶数. [课时达标检测]一、选择题1.4a -2+(a -4)0有意义,则a 的取值范围是( ) A .a ≠2 B .a ≥2C .a ≠4D .2≤a <4或a >4解析:选D 要使原式有意义,只需⎩⎪⎨⎪⎧a -2≥0,a -4≠0,即a ≥2且a ≠4.2.3-63+45-44+35-43的值为( )A .-6B .25-2C .2 5D .6解析:选A3-63=-6,45-44=|5-4|=4-5,35-43=5-4,∴原式=-6+4-5+5-4=-6. 3.化简x +32-3x -33得( ) A .6 B .2xC .6或-2xD .6或2x 或-2x 解析:选C 注意开偶次方根要加绝对值,x +32-3x -33=|x +3|-(x -3)=⎩⎪⎨⎪⎧6,x ≥-3,-2x ,x <-3,故选C.4.7+43+7-43等于( ) A .-4 B .2 3 C .-2 3D .4解析:选D7+43+7-43=2+32+2-32=(2+3)+(2-3)=4.5.已知二次函数y =ax 2+bx +0.1的图象如图所示,则4a -b4的值为( )A .a +bB .-(a +b )C .a -bD .b -a 解析:选D 由图象知a (-1)2+b ×(-1)+0.1<0, ∴a <b ,∴4a -b4=|a -b |=b -a .二、填空题6.设m <0,则(-m )2=________. 解析:∵m <0,∴-m >0,∴(-m )2=-m . 答案:-m7.若x 2-8x +16=x -4,则实数x 的取值范围是________. 解析:∵x 2-8x +16=x -42=|x -4|又x 2-8x +16=x -4, ∴|x -4|=x -4,∴x ≥4. 答案:x ≥48.设f (x )=x 2-4,若0<a ≤1,则f ⎝⎛⎭⎫a +1a =________. 解析:f ⎝⎛⎭⎫a +1a =⎝⎛⎭⎫a +1a 2-4 =a 2+1a2-2=⎝⎛⎭⎫a -1a 2=⎪⎪⎪⎪a -1a , 由于0<a ≤1,所以a ≤1a ,故f ⎝⎛⎭⎫a +1a =1a -a . 答案:1a-a9.写出使下列等式成立的x 的取值范围: (1)3⎝⎛⎭⎫1x -33=1x -3; (2)x -5x 2-25=(5-x )x +5.解:(1)要使3⎝⎛⎭⎫1x -33=1x -3成立, 只需x -3≠0即可, 即x ≠3. (2)x -5x 2-25=x -52x +5.要使x -52x +5=(5-x )x +5成立,只需⎩⎪⎨⎪⎧x +5≥0,x -5≤0,即-5≤x ≤5. 10.化简(a -1)2+1-a2+7a -17.解:由题意可知a -1有意义,∴a ≥1. ∴原式=(a -1)+|1-a |+(a -1) =a -1+a -1+a -1=3a -3.第二课时 指数幂及运算分数指数幂的意义[提出问题]问题1:判断下列运算是否正确. (1)5a 10=5a 25=a 2=a 4105(a >0);(2)3a 12=3a 43=a 4=a123(a >0).提示:正确.问题2:能否把4a 3,3b 2,4c 5 写成下列形式: 4a 3=a 34(a >0); 3b 2=b 23 (b >0); 4c 5=c 54 (c >0).提示:能. [导入新知]分数指数幂的意义(1)规定正数的正分数指数幂的意义是: am n=na m (a >0,m ,n ∈N *,且n >1).(2)规定正m n数的负分数指数幂的意义是: am n=1an m)=1n a m(a >0,m ,n ∈N *,且n >1).(3)0的正分数指数幂等于0,0的负分数指数幂无意义. [化解疑难]对分数指数幂的理解(1)指数幂a m n 不可以理解为mn 个a 相乘,它是根式的一种新写法.在定义的规定下,根式与分数指数幂是表示相同意义的量,只是形式上不同而已,这种写法更便于指数运算,所以分数指数幂与根式可以相互转化;(2)通常规定分数指数幂的底数a >0,但要注意在像(-a )14=4-a 中的a ,则需要a ≤0.有理指数幂的运算性质[导入新知]有理数指数幂的运算性质(1)a r a s =a r +s (a >0,r ,s ∈Q ); (2)(a r )s =a rs (a >0,r ,s ∈Q ); (3)(ab )r =a r ·b r (a >0,b >0,r ∈Q ).[化解疑难]有理指数幂的运算性质的理解与巧记(1)有理数指数幂的运算性质是由整数指数幂的运算性质推广而来,可以用文字语言叙述为:①同底数幂相乘,底数不变,指数相加;②幂的幂,底数不变,指数相乘;③积的幂等于幂的积.(2)有理数指数幂的运算性质中幂指数运算法则遵循:乘相加,除相减,幂相乘.根式与分数指数幂的互化[例1] (1)下列根式与分数指数幂的互化正确的是( ) A .-x =(-x )12(x >0) B.6y 2=y 13(y <0) C .x34-=41x3(x >0)D .x13-=-3x (x ≠0)(2)用分数指数幂的形式表示下列各式. ①a 2·a (a >0); ②a a (a >0);③⎝⎛⎭⎪⎫4b -2323- (b >0);④y 2xx 3y 3y 6x 3(x >0,y >0). (1)[解析] -x =-x 12(x >0); 6y 2=[(y )2] 16=-y 13(y <0); x34-=(x -3)14=4⎝⎛⎭⎫1x 3(x >0); x13-=⎝⎛⎭⎫1x 13=31x(x ≠0). [答案] C (2)[解] ①a 2·a =a 2·a 12=a 2+12=a 52.②a a =a ·a 12=a 32=⎝⎛⎭⎫a 3212=a 32.③原式=⎣⎡⎦⎤()b 23-1423-=b212343⎛⎫-⨯⨯- ⎪⎝⎭=b 19. ④法一:从外向里化为分数指数幂.y 2xx 3y 3y 6x 3=⎝ ⎛⎭⎪⎫y 2xx 3y 3y 6x 312=⎣⎢⎡⎦⎥⎤y 2x ⎝ ⎛⎭⎪⎫x 3y 3y 6x 31212 =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y 2x ⎣⎢⎡⎦⎥⎤x 3y ⎝⎛⎭⎫y 6x 3 1212 =⎝⎛⎭⎫y 2x 12·⎝⎛⎭⎫x 3y 14·⎝⎛⎭⎫y 6x 3112 =y x 12·x 34y 14·y 12x 14=x 34·y23x 34·y 14=y 54. 法二:从里向外化为分数指数幂.y 2x x 3y 3y 6x 3=y 2x x 3y ⎝⎛⎭⎫y 6x 3 13=y 2xx 3y ·y 2x=y 2xx 2·y 12=⎝⎛⎭⎫y 2x ·xy 1212=y 54. [类题通法]根式与分数指数幂的互化技巧(1)在解决根式与分数指数幂互化的问题时,关键是熟记根式与分数指数幂的转化式子:a m n=n a m 和am n-=1am n=1n a m,其中字母a 要使式子有意义.(2)将含有多重根号的根式化为分数指数幂的途径有两条:一是由里向外化为分数指数幂;二是由外向里化为分数指数幂.[活学活用]将下列根式化为分数指数幂的形式: (1) 1a 1a(a >0); (2)13x ·5x 22(x >0);(3) ab 3ab 5(a >0,b >0).解:(1)原式=1a ⎝⎛⎭⎫1a 12=⎝⎛⎭⎫1a 32=⎝⎛⎭⎫1a 34=a 34-.(2)原式=13x ·⎝⎛⎭⎫x 252=13x ·x45=13x95=1⎝⎛⎭⎫x 9513=1x35=x35-.(3)原式=[ab 3(ab 5) 12]12=[a ·a12b 3(b 5) 12]12=⎝⎛⎭⎫a 32b 11212=a 34b 114.指数幂的运算[例2] 计算下列各式: (1)⎝⎛⎭⎫2350+2-2×⎝⎛⎭⎫21412--0.010.5; (2)0.06413--⎝⎛⎭⎫-780+[(-2)3] 43-+16-0.75;(3)⎝⎛⎭⎫1412-·4ab-130.1-2a 3b-312(a >0,b >0).[解] (1)原式=1+14×⎝⎛⎭⎫4912-⎝⎛⎭⎫110012=1+16-110=1615. (2)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716.(3)原式=412·432100·a 32·a 32-·b 32-·b 32=425a 0b 0=425.[类题通法]利用指数幂的运算性质化简求值的方法(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示. [活学活用]计算下列各式的值:(1)0.02713--⎝⎛⎭⎫-17-2+⎝⎛⎭⎫27912-()2-10;(2)⎝⎛⎭⎫812513--⎝⎛⎭⎫-350+160.75+0.2512;(3)⎝⎛⎭⎫14-2+3+23-2-1.030×⎝⎛⎭⎫-623.解:(1)原式=⎝⎛⎭⎫271 00013--⎝⎛⎭⎫17-2+⎝⎛⎭⎫25912-1=103-49+53-1=-45.(2)原式=52-1+1634+0.5=52-1+8+0.5=10.(3)原式=42+3+223-2-1×⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎫32123=16+5+26+346=21+114 6.4.含附加条件的幂的求值问题[典例](12分)已知x+y=12,xy=9,且x<y,求:(1)x12+y12;(2)x12-y12;(3)x-y.[解题流程]求x12+y12,x12-y12,x-y的值,应建立其与x+y及xy的关系后求解1将x12+y12,x12-y12平方后即可建立其与x+y及xy的关系;,2可利用平方差公式将x-y分解成x12+y12x12-y12求解x 12+y122=x +y +2xy↓x 12-y122=x +y -2xy↓ (x -y =x 122-y122=x 12+y122=x 12+y12x 12-y12[规范解答](1)⎝⎛⎭⎫x 12+y 122=x +y +2xy =18,(2分) ∴x 12+y 12=3 2.(4分)(2)⎝⎛⎭⎫x 12-y 122=x +y -2xy =6,(6分)又x <y ,∴x 12-y 12=- 6.(8分)(3)x -y =⎝⎛⎭⎫x 122-⎝⎛⎭⎫y 122=⎝⎛⎭⎫x 12+y 12⎝⎛⎭⎫x 12-y 12 (10分)=32×(-6)=-3×212×212×312=-6 3.(12分)[名师批注]由x 与x 12,y 与y 12都具有平方关系,故可先求⎝⎛⎭⎫x 12+y 122,然后求x 12+y 12的值,解题时常因找不到此关系而使问题不能得以正确求解.易忽视条件x <y ,而得出错误答案. 此处巧妙利用了12的结论使问题得以解决.[活学活用]已知a +a -1=5,求下列各式的值; (1)a 2+a -2; (2)a 12-a12-.解:(1)法一:由a +a -1=5两边平方得: a 2+2aa -1+a -2=25, 即:a 2+a -2=23;法二:a 2+a -2=a 2+2aa -1+a -2-2aa -1 =(a +a -1)2-2=25-2=23; (2)∵(a 12-a 12-)2=a +a -1-2=5-2=3,∴|a 12-a12-|= 3.∴a 12-a 12-=±3.[随堂即时演练]1.若2<a <3,化简2-a2+43-a 4的结果是( )A .5-2aB .2a -5C .1D .-1解析:选C 由于2<a <3, 所以2-a <0,3-a >0, 所以原式=a -2+3-a =1. 2.(-2a 13b34-·(-a 12b13-)6÷(-3a 23b14-)等于( )A.23a 83b 52- B .-23a 83C .-23a 16b 56-D.23a 16b 52- 解析:选A 原式=(-2)×(-1)6÷(-3)·(a 13b 34-)·(a 3·b -2)÷(a 23b14-)=23a 12+333-b 312_44⎛⎫⎪⎝⎭--=23a 83b52-注意符号不能弄错.3.若10x =3,10y =4,则102x -y =________. 解析:∵10x =3,∴102x =9,∴102x -y =102x 10y =94.答案:944.化简3a a 的结果是________. 解析:3a a =()a a 13=⎝⎛⎭⎫a ·a 1213=⎝⎛⎭⎫a 3213=a 12.答案:a 125.计算(或化简)下列各式:(1)42+1·23-22·6423-;(2)a -ba 12+b12-a +b -2a 12·b 12a 12-b 12. 解:(1)原式=(22)2+1·23-22·(26) 23-=222+2·23-22·2-4=222+2+3-22-4=21=2.(2)原式=a 12+b12a 12-b12a 12+b12-a 12-b 122a 12-b12=a 12-b 12-⎝⎛⎭⎫a 12-b 12=0.[课时达标检测]一、选择题 1.a 3a ·5a 4(a >0)的值是( )A .1B .aC .a 15D .a 1710解析:选D 原式=a 3·a -12·a -45=a 3-12-45=a 1710.2.化简[3-52]34的结果为( ) A .5 B. 5 C .- 5D .-5解析:选B [3-52]34=[(-5)23]34=512= 5. 3.⎝⎛⎭⎫1120-(1-0.5-2)÷⎝⎛⎭⎫27823的值为( ) A .-13B.13C.43D.73解析:选D 原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73.故选D. 4.若a >1,b >0,a b +a -b =22,则a b -a -b等于( )A. 6 B .2或-2 C .-2D .2解析:选D ∵a >1,b >0,∴a b >a -b ,(a b -a -b )2=(a b +a -b )2-4=(22)2-4=4, ∴a b -a -b =2.5.设x ,y 是正数,且x y =y x ,y =9x ,则x 的值为( ) A.19 B.43 C .1D.39解析:选B x 9x =(9x )x ,(x 9)x =(9x )x , ∴x 9=9x .∴x 8=9.∴x =89=43. 二、填空题6.化简a 3b 23ab 2⎝⎛⎭⎫a 14b 1243b a(a >0,b >0)的结果是________.解析:原式=a 3·b 2·a 13·b2312a ·b 2·a -13·b13=a 32+16-1+13·b 1+13-2-13=ab.答案:a b7.已知x =12(51n -5-1n ),n ∈N *,则(x +1+x 2)n 的值为________.解析:因为1+x 2=14(52n +2+5-2n )=14(51n +5-1n )2,所以(x +1+x 2)n =⎣⎡⎦⎤1251n-5-1n +1251n +5-1n n =⎝⎛⎭⎫51n n =5. 答案:58.设a 2=b 4=m (a >0,b >0),且a +b =6,则m 等于________. 解析:∵a 2=b 4=m (a >0,b >0), ∴a =m 12,b =m 14,a =b 2.由a +b =6得b 2+b -6=0,解得b =2或b =-3(舍去). ∴m 14=2,m =24=16.答案:16 三、解答题 9.化简求值:(1)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23-3π0+3748; (2)⎝⎛⎭⎫-338-23+(0.002)-12-10(5-2)-1+(2-3)0; (3)(a -2b -3)·(-4a -1b )÷(12a -4b -2c ); (4)23a ÷46a ·b ×3b 3.解:(1)原式=⎝⎛⎭⎫25912+10.12+⎝⎛⎭⎫6427-23-3+3748 =53+100+916-3+3748=100. (2)原式=(-1)-23×⎝⎛⎭⎫338-23+⎝⎛⎭⎫1500-12-105-2+1 =⎝⎛⎭⎫278-23+(500)12-10(5+2)+1 =49+105-105-20+1=-1679. (3)原式=-4a-2-1b -3+1÷(12a -4b -2c )=-13a -3-(-4)b -2-(-2)c -1=-13ac -1=-a 3c .(4)原式=2a 13÷(4a 16b 16)×(3b 32)=12a 13-16b -16·3b 32=32a 16b 43. 10.已知a =3,求11+a 14+11-a 14+21+a12+41+a 的值.解:11+a 14+11-a 14+21+a12+41+a=2⎝⎛⎭⎫1+a 14⎝⎛⎭⎫1-a 14+21+a 12+41+a=21-a 12+21+a12+41+a =41-a121+a12+41+a=41-a +41+a =81-a 2=-1. 2.1.2 指数函数及其性质 第一课时 指数函数及其性质指数函数的定义[提出问题]观察下列从数集A 到数集B 的对应: ①A =R ,B =R ,f :x →y =2x ; ②A =R ,B =(0,+∞),f :x →y =⎝⎛⎭⎫12x. 问题1:这两个对应能构成函数吗? 提示:能.问题2:这两个函数有什么特点? 提示:底数是常数,指数是自变量. [导入新知]指数函数的定义函数y =a x (a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R . [化解疑难]指数函数的概念中规定a >0且a ≠1的原因(1)若a =0,则当x >0时,a x =0;当x ≤0时,a x 无意义.(2)若a <0,则对于x 的某些数值,可使a x 无意义.如(-2)x ,这时对于x =14,x =12,…,在实数范围内函数值不存在.(3)若a =1,则对于任何x ∈R ,a x =1,是一个常量,没有研究的必要性.为了避免上述各种情况的发生,所以规定a>0,且a≠1.在规定以后,对于任何x∈R,a x都有意义,且a x>0.指数函数的图象与性质[提出问题]问题1:试作出函数y=2x(x∈R)和y=(12)x(x∈R)的图象.提示:问题2:两函数图象有无交点?提示:有交点,其坐标为(0,1).问题3:两函数的定义域是什么?值域是什么?单调性如何?提示:定义域都是R;值域都是(0,+∞);函数y=2x是增函数,函数y=⎝⎛⎭⎫12x是减函数.[导入新知]指数函数的图象和性质a>10<a<1图象性质定义域R值域(0,+∞)过定点过点(0,1)即x=0时,y=1单调性是R上的增函数是R上的减函数[化解疑难]透析指数函数的图象与性质(1)当底数a大小不确定时,必须分a>1和0<a<1两种情况讨论函数的图象和性质.(2)当a>1时,x的值越小,函数的图象越接近x轴;当0<a<1时,x的值越大,函数的图象越接近x 轴.(3)指数函数的图象都经过点(0,1),且图象都在第一、二象限.指数函数的概念[例1] (1)①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3(2)函数y =(a -2)2a x 是指数函数,则( ) A .a =1或a =3 B .a =1 C .a =3D .a >0且a ≠1[解析] (1)①中,3x 的系数是2,故①不是指数函数; ②中,y =3x+1的指数是x +1,不是自变量x ,故②不是指数函数;③中,y =3x,3x 的系数是1,幂的指数是自变量x ,且只有3x 一项,故③是指数函数; ④中,y =x 3中底数为自变量,指数为常数,故④不是指数函数.所以只有③是指数函数.(2)由指数函数定义知⎩⎪⎨⎪⎧a -22=1,a >0,且a ≠1,所以解得a =3.[答案] (1)B (2)C [类题通法]判断一个函数是否为指数函数的方法判断一个函数是否是指数函数,其关键是分析该函数是否具备指数函数三大特征: (1)底数a >0,且a ≠1. (2)a x 的系数为1.(3)y =a x 中“a 是常数”,x 为自变量,自变量在指数位置上. [活学活用]下列函数中是指数函数的是________(填序号). ①y =2·(2)x ;②y =2x -1;③y =⎝⎛⎭⎫π2x ;④y =x x; ⑤y =3-1x ;⑥y =x 13.解析:①中指数式(2)x 的系数不为1,故不是指数函数;②中y =2x -1=12·2x ,指数式2x 的系数不为1,故不是指数函数;④中底数为x ,不满足底数是唯一确定的值,故不是指数函数;⑤中指数不是x,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填③.答案:③指数函数的图象问题[例2](1)x x x x a,b,c,d与1的大小关系为()A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c(2)函数y=a x-3+3(a>0,且a≠1)的图象过定点________.[解析](1)由图象可知③④的底数必大于1,①②的底数必小于1.过点(1,0)作直线x=1,如图所示,在第一象限内直线x=1与各曲线的交点的纵坐标即为各指数函数的底数,则1<d<c,b<a<1,从而可知a,b,c,d与1的大小关系为b<a<1<d<c.(2)法一:因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x =3,得y=1+3=4,即函数的图象过定点(3,4).法二:将原函数变形,得y-3=a x-3,然后把y-3看作是(x-3)的指数函数,所以当x-3=0时,y-3=1,即x=3,y=4,所以原函数的图象过定点(3,4).[答案](1)B(2)(3,4)[类题通法]底数a对函数图象的影响(1)底数a与1的大小关系决定了指数函数图象的“升降”:当a>1时,指数函数的图象“上升”;当0<a<1时,指数函数的图象“下降”.(2)底数的大小决定了图象相对位置的高低:不论是a>1,还是0<a<1,在第一象限内底数越大,函数图象越靠近y轴.当a>b>1时,①若x>0,则a x>b x>1;②若x<0,则1>b x>a x>0.当1>a>b>0时,①若x>0,则1>a x>b x>0;②若x<0,则b x>a x>1.[活学活用]若函数y =a x +(b -1)(a >0,且a ≠1)的图象不经过第二象限,则有( ) A .a >1且b <1 B .0<a <1且b ≤1 C .0<a <1且b >0D .a >1且b ≤0解析:选D 由指数函数图象的特征可知0<a <1时,函数y =a x +(b -1)(a >0,且a ≠1)的图象必经过第二象限,故排除选项B 、C.又函数y =a x +(b -1)(a >0,且a ≠1)的图象不经过第二象限,则其图象与y 轴的交点不在x 轴上方,所以当x =0时,y =a 0+(b -1)≤0,即b ≤0,故选项D 正确.与指数函数有关的定义域、值域问题[例3] (1)y =1-3x ;(2)y =21x -4;(3)y =⎝⎛⎭⎫23-|x |.[解] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30, 因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0]. 因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1,所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1).(2)要使函数式有意义,则x -4≠0,解得x ≠4,所以函数y =21x -4的定义域为{x ∈R |x ≠4}.因为1x -4≠0,所以21x -4≠1,即函数y =21x -4的值域为{y |y >0且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0,所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.而y=⎝⎛⎭⎫23-|x |=⎝⎛⎭⎫230=1,则函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}.[类题通法]指数型函数的定义域、值域的求法(1)求与指数函数有关的函数的定义域时,首先观察函数是y =a x 型还是y =a f (x )型,前者的定义域是R ,后者的定义域与f (x )的定义域一致,而求y =f a x 型函数的定义域时,往往转化为解指数不等式(组).(2)求与指数函数有关的函数的值域时,在运用前面介绍的求函数值域的方法的前提下,要注意指数函数的值域为(0,+∞),切记准确运用指数函数的单调性.[活学活用]求函数y =⎝⎛⎭⎫12x 2-2x -3的定义域和值域. 解:定义域为R .∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16.又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16].5.利用换元法求函数的值域[典例] (12分)已知函数y =a 2x +2a x -1(a >0,且a ≠1),当x ≥0时,求函数f (x )的值域. [解题流程]求函数f x 的值域,应确定函数的类型1若令t =a x ,则原函数可变为y =t 2+2t -1,从而可利用二次函数的有关性质解决;2应明确换元后的定义域;3由于t =a x a >0,a ≠1,因此应分类确定t 的取值范围令t =a x ―→分a >1和0<a <1两种情况,讨论t 的范围―→利用二次函数的知识求值域[随堂即时演练]1.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )解析:选C 由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交,交点在下面的是函数y =m x 的图象,故选C.2.若函数y =(1-2a )x 是实数集R 上的增函数,则实数a 的取值范围为( ) A.⎝⎛⎭⎫12,+∞ B .(-∞,0) C.⎝⎛⎭⎫-∞,12 D.⎝⎛⎭⎫-12,12 解析:选B 由题意知,此函数为指数函数,且为实数集R 上的增函数,所以底数1-2a >1,解得a <0.3.指数函数y =f (x )的图象过点(2,4),那么f (2)·f (4)=________. 解析:设f (x )=a x (a >0且a ≠1), 又f (2)=a 2=4,∴f (2)·f (4)=a 2·a 4=4·42=43=64. 答案:644.函数f (x )=⎝⎛⎭⎫13x-1,x ∈[-1,2]的值域为________. 解析:∵-1≤x ≤2,∴19≤⎝⎛⎭⎫13x ≤3.∴-89≤⎝⎛⎭⎫13x-1≤2.∴值域为⎣⎡⎦⎤-89,2.答案:⎣⎡⎦⎤-89,2 5.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域. 解:(1)因为函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1, 于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2].[课时达标检测]一、选择题1.下列函数中,指数函数的个数为( )①y =(12)x -1;②y =a x (a >0,且a ≠1);③y =1x ;④y =(12)2x -1.A .0个B .1个C .3个D .4个解析:选B 由指数函数的定义可判定,只有②正确. 2.函数y =(3-1)x 在R 上是( ) A .增函数 B .奇函数 C .偶函数D .减函数解析:选D 由于0<3-1<1,所以函数y =(3-1)x 在R 上是减函数,f (-1)=(3-1)-1=3+12,f (1)=3-1,则f (-1)≠f (1),且f (-1)≠-f (1),所以函数y =(3-1)x 不具有奇偶性. 3.当x >0时,函数f (x )=(a 2-1)x 的值总大于1,则实数a 的取值范围是( ) A .1<|a |< 2 B .|a |<1 C .|a |>1D .|a |> 2解析:选D 依题意得a 2-1>1,a 2>2,∴|a |> 2. 4.函数y =xa x|x |(0<a <1)的图象的大致形状是( )解析:选D 当x >0时,y =a x (0<a <1),故去掉A 、B ,当x <0时,y =-a x ,与y =a x (0<a <1,x <0)的图象关于x 轴对称,故选D.5.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限 D .第一、二、四象限 解析:选A ∵a >1,且-1<b <0,故其图象如图所示.二、填空题6.给出函数f (x )=⎩⎪⎨⎪⎧2x , x ≥3,f x +1, x <3,则f (2)=________.解析:f (2)=f (3)=23=8. 答案:87.图中的曲线C 1,C 2,C 3,C 4是指数函数y =a x 的图象,而a ∈{23,13,5,π},则图象C 1,C 2,C 3,C 4对应的函数的底数依次是________,________,________,________.解析:由底数变化引起指数函数图象变化的规律,在y 轴右侧,底大图高,在y 轴左侧,底大图低.则知C 2的底数<C 1的底数<1<C 4的底数<C 3的底数,而13<23<5<π,故C 1,C 2,C 3,C 4对应函数的底数依次是23,13,π, 5. 答案:23 13π 58.若x 1,x 2是方程2x =⎝⎛⎭⎫12-1x +1的两个实数解,则x 1+x 2=________. 解析:∵2x =⎝⎛⎭⎫12-1x +1, ∴2x =21x -1,∴x =1x -1,∴x 2+x -1=0. ∴x 1+x 2=-1. 答案:-1 三、解答题9.画出函数y =2|x |的图象,观察其图象有什么特征?根据图象指出其值域和单调区间. 解:当x ≥0时, y =2|x |=2x ; 当x <0时, y =2|x |=2-x =(12)x .∴函数y =2|x |的图象如图所示,由图象可知,y =2|x |的图象关于y 轴对称,且值域是[1,+∞),单调递减区间是(-∞,0],单调递增区间是[0,+∞). 10.如果函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上的最大值为14,求a 的值.解:函数y =a 2x +2a x -1=(a x +1)2-2,x ∈[-1,1].若a >1,则x =1时,函数取最大值a 2+2a -1=14,解得a =3.若0<a <1,则x =-1时,函数取最大值a -2+2a -1-1=14,解得a =13.综上所述,a =3或13.第二课时 指数函数及其性质的应用(习题课)1.指数函数的定义是什么?2.指数函数的定义域和值域分别是什么?3.指数函数y =a x (a >0,a ≠1)图象的位置与底数a 之间有什么关系?4.指数函数的单调性与底数之间有什么关系?利用指数函数的单调性比较大小[例1] (1)已知a =5-1,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.(2)比较下列各题中两个值的大小:①⎝⎛⎭⎫57-1.8,⎝⎛⎭⎫57-2.5;②⎝⎛⎭⎫23-0.5,⎝⎛⎭⎫34-0.5;③0.20.3,0.30.2. (1)[解析] 因为a =5-12∈(0,1),所以函数f (x )=a x 在R 上是减函数.由f (m )>f (n )得m <n . [答案] m <n(2)[解] ①因为0<57<1,所以函数y =⎝⎛⎭⎫57x 在其定义域R 上单调递减,又-1.8>-2.5,所以⎝⎛⎭⎫57-1.8<⎝⎛⎭⎫57-2.5.②在同一平面直角坐标系中画出指数函数y =⎝⎛⎭⎫23x与y =⎝⎛⎭⎫34x 的图象,如图所示.当x =-0.5时,由图象观察可得⎝⎛⎭⎫23-0.5>⎝⎛⎭⎫34-0.5.③因为0<0.2<0.3<1,所以指数函数y =0.2x 与y =0.3x 在定义域R 上均是减函数,且在区间(0,+∞)上函数y =0.2x 的图象在函数y =0.3x 的图象的下方,所以0.20.2<0.30.2.又根据指数函数y =0.2x 的性质可得0.20.3<0.20.2,所以0.20.3<0.30.2. [类题通法]三类指数式的大小比较问题(1)底数相同、指数不同:利用指数函数的单调性解决.(2)底数不同、指数相同:利用指数函数的图象解决.在同一平面直角坐标系中画出各个函数的图象,依据底数a 对指数函数图象的影响,按照逆时针方向观察,底数在逐渐增大,然后观察指数所取值对应的函数值即可.(3)底数不同、指数也不同:采用介值法(中间量法).取中间量1,其中一个大于1,另一个小于1;或者以其中一个指数式的底数为底数,以另一个指数式的指数为指数.比如,要比较a c 与b d 的大小,可取a d 为中间量,a c 与a d 利用函数的单调性比较大小,b d 与a d 利用函数的图象比较大小.[活学活用]比较下列各题中两个值的大小:(1)3-1.8,3-2.5;(2)7-0.5,8-0.5;(3)6-0.8,70.7.解:(1)因为3>1,所以函数y =3x 在定义域R 上单调递增,又-1.8>-2.5,所以3-1.8>3-2.5. (2)依据指数函数中底数a 对函数图象的影响,画出函数y =7x 与y =8x 的图象(图略),可得7-0.5>8-0.5.(3)因为1<6<7,所以指数函数y =6x 与函数y =7x 在定义域R 上是增函数,且6-0.8<1,70.7>1,所以6-0.8<70.7.解简单的指数不等式[例2] (1)已知3x (2)已知0.2x <25,求实数x 的取值范围.[解] (1)因为3>1,所以指数函数f (x )=3x 在R 上是增函数. 由3x ≥30.5,可得x ≥0.5,即x 的取值范围为[0.5,+∞). (2)因为0<0.2<1,所以指数函数f (x )=0.2x 在R 上是减函数. 又25=⎝⎛⎭⎫15-2=0.2-2,所以0.2x <0.2-2,则x >-2, 即x 的取值范围为(-2,+∞). [类题通法]解指数不等式应注意的问题(1)形如a x >a b 的不等式,借助于函数y =a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如a x >b 的不等式,注意将b 转化为以a 为底数的指数幂的形式,再借助于函数y =a x 的单调性求解.[活学活用] 如果a-5x>a x +7(a >0,且a ≠1),求x 的取值范围.解:①当a >1时,∵a -5x>a x +7,∴-5x >x +7,解得x <-76.②当0<a <1时,∵a-5x>a x +7,∴-5x <x +7解得x >-76.综上所述,当a >1时,x ∈(-∞,-76);当0<a <1时,x ∈(-76,+∞).指数函数性质的综合应用[例3] 已知函数f (x )=2x +2ax +b ,且f (1)=52,f (2)=174.(1)求a ,b 的值;(2)判断f (x )的奇偶性并证明;(3)判断并证明函数f (x )在[0,+∞)上的单调性,并求f (x )的值域.[解] (1)∵⎩⎨⎧f 1=52,f2=174,∴根据题意得⎩⎨⎧f 1=2+2a +b =52,f2=22+22a +b =174,解得⎩⎪⎨⎪⎧a =-1,b =0.故a ,b 的值分别为-1,0.(2)由(1)知f (x )=2x +2-x ,f (x )的定义域为R ,关于原点对称. 因为f (-x )=2-x +2x =f (x ),所以f (x )为偶函数.(3)设任意x 1<x 2,且x 1,x 2∈[0,+∞),则f (x 1)-f (x 2)=(2x 1+2-x 1)-(2x 2+2-x 2)=(2x 1-2x 2)+⎝⎛⎭⎫12x 1-12x 2=(2x 1-2x 2)·2x 1+x 2-12x 1+x 2. 因为x 1<x 2,且x 1,x 2∈[0,+∞),所以2x 1-2x 2<0,2x 1+x 2>1,所以2x 1+x 2-1>0,则f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以f (x )在[0,+∞)上为增函数. 当x =0时,函数取得最小值,为f (0)=1+1=2,所以f (x )的值域为[2,+∞). [类题通法]解决指数函数性质的综合问题应关注两点(1)指数函数的单调性与底数有关,因此讨论指数函数的单调性时,一定要明确底数与1的大小关系.与指数函数有关的函数的单调性也往往与底数有关,其解决方法一般是利用函数单调性的定义.(2)指数函数本身不具有奇偶性,但是与指数函数有关的函数可以具有奇偶性,其解决方法一般是利用函数奇偶性的定义和性质.[活学活用]已知函数f (x )=2x -12x +1.(1)求证:f (x )是奇函数;(2)用单调性的定义证明:f (x )在R 上是增函数.证明:(1)f (x )的定义域是R ,对任意的x ∈R ,都有f (-x )=2-x -12-x +1=2-x -1·2x 2-x+1·2x =1-2x 1+2x =-2x -12x +1=-f (x ),所以f (x )是奇函数.(2)f (x )=2x -12x +1=2x +1-22x +1=1-22x +1(可以不分离常数,但分离常数后计算较简单).设x 1,x 2是R 上的任意两个值,且x 1<x 2,则f (x 1)-f (x 2)=(1-22x 1+1)-⎝⎛⎭⎫1-22x 2+1=22x 2+1-22x 1+1=22x 1-2x 22x 1+12x 2+1.因为x 1<x 2,所以2x 1<2x 2,2x 1+1>1,2x 2+1>1,所以2x 1-2x 2<0,则f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在R 上是增函数.6.警惕底数a 对指数函数单调性的影响[典例] 若指数函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值是最小值的2倍,则实数a 的值为________.[解析] 当0<a <1时,f (x )=a x 为减函数,最小值为a 2,最大值为a ,故a =2a 2,解得a =12.当a >1时,f (x )=a x 为增函数,最小值为a ,最大值为a 2. 故a 2=2a ,解得a =2. 综上,a =12或a =2.[答案] 12或2[易错防范]1.解决上题易忽视对a 的讨论,错认为a 2=2a ,从而导致得出a =2的错误答案.2.求函数f (x )=a x (a >0,a ≠1)在闭区间[s ,t ]上的最值,应先根据底数的大小对指数函数进行分类.当底数大于1时,指数函数为[s ,t ]上的增函数,最小值为a s ,最大值为a t .当底数大于0小于1时,指数函数为[s ,t ]上的减函数,最大值为a s ,最小值为a t .[活学活用]f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值与最小值之和为6,则a =________.解析:由于a x (a >0,且a ≠1)在[1,2]上是单调函数,故其最大值与最小值之和为a 2+a =6,解得a =-3(舍去),或a =2,所以a =2.答案:2[随堂即时演练]1.若2x +1<1,则x 的取值范围是( ) A .(-1,1) B .(-1,+∞) C .(0,1)∪(1,+∞)D .(-∞,-1)解析:选D 不等式2x +1<1=20,∵y =2x 是增函数, ∴x +1<0,即x <-1.2.已知三个数a =60.7,b =0.70.8,c =0.80.7,则三个数的大小关系是( )A .a >b >cB .b >c >aC .c >b >aD .a >c >b解析:选D a =60.7>60=1,c =0.80.7>0.70.7>0.70.8=b ,且c =0.80.7<0.80=1,所以a >c >b . 3.不等式2x <22-3x的解集是________.解析:由2x <22-3x得x <2-3x ,即x <12,解集为{x |x <12}.答案:{x |x <12}4.函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,则a 的值为________.解析:(1)若a >1,则f (x )在[1,2]上递增, ∴a 2-a =a 2,即a =32或a =0(舍去).(2)若0<a <1,则f (x )在[1,2]上递减, ∴a -a 2=a 2,即a =12或a =0(舍去).综上所述,所求a 的值为12或32.答案:12或325.设函数f (x )=e x a +ae x (e 为无理数,且e≈2.718 28…)是R 上的偶函数且a >0.(1)求a 的值;(2)判断f (x )在(0,+∞)上的单调性. 解:(1)∵f (x )是R 上的偶函数, ∴f (-1)=f (1),∴e -1a +a e -1=e a +a e ,即1a e -a e =ea -a e. ∴1e ⎝⎛⎭⎫1a -a =e ⎝⎛⎭⎫1a -a , ∴1a -a =0,∴a 2=1. 又a >0,∴a =1.(2)f (x )=e x +e -x ,设x 1,x 2>0,且x 1<x 2,f (x 2)-f (x 1)=e x 2+e -x 2-e x 1-e -x 1=e x 2-e x 1+1e x 2-1e x 1=e x 2-e x 1+e x 1-e x 2e x 1e x 2=(e x 2-e x 1)⎝⎛⎭⎫1-1e x 1e x 2.。
高一数学教学中的教学方法与教学技巧在高一数学教学中,为了提高学生的学习兴趣和学习效果,教师应该采用合适的教学方法和教学技巧。
本文将探讨几种在高一数学教学中常用的教学方法和教学技巧。
一、启发式教学法启发式教学法是一种基于学生参与和发现的教学方法。
在高一数学教学中,教师可以利用启发式教学法激发学生的思维,培养学生的独立思考能力。
例如,当教师讲解一个新的数学概念时,可以通过提出问题,引导学生自己去发现和解决问题,进而理解概念。
这种方法可以激发学生的学习兴趣,培养他们的分析和解决问题的能力。
二、差异化教学法差异化教学法是根据学生的不同学习能力和需求,针对性地进行教学。
在高一数学教学中,学生的数学水平和学习能力有很大的差异。
为了解决这个问题,教师可以采取差异化教学法。
例如,可以根据学生的学习能力和掌握情况,安排不同难度和深度的数学问题,让每个学生都能够在适合自己的学习水平上进行学习。
这种教学方法可以帮助学生更好地理解和掌握数学知识。
三、互动式教学法互动式教学法是指教师和学生之间的互动和合作。
在高一数学教学中,鼓励学生参与到教学中是非常重要的。
教师可以通过提问、讨论、小组活动等方式,激发学生的学习热情,并培养他们的团队合作和沟通能力。
例如,教师可以组织学生进行小组讨论,让学生之间相互交流和合作,共同解决数学问题。
这种教学方法可以提高学生的学习动力,促进他们的学习效果。
四、情景教学法情景教学法是一种通过将数学知识应用到实际情境中进行教学的方法。
在高一数学教学中,很多数学知识是抽象的,学生往往难以理解和应用。
因此,教师可以利用情景教学法将数学知识与实际生活相结合,让学生在具体的情境中进行学习和应用。
例如,教师可以设计一些数学问题,并将其应用到学生熟悉的场景中,让学生在实践中应用数学知识。
这种教学方法可以提高学生对数学的兴趣和理解。
总结起来,在高一数学教学中,启发式教学法、差异化教学法、互动式教学法和情景教学法都是有效的教学方法和技巧。
第2课时对数的运算1.理解对数的运算性质.(重点)2.能用换底公式将一般对数转化成自然对数或常用对数.(难点) 3.会运用运算性质进行一些简单的化简与证明(易混点).[基础·初探]教材整理1 对数的运算性质阅读教材P64至P65“例3”以上部分,完成下列问题.对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=log a M+log a N;(2)log a MN=log a M-log a N;(3)log a M n=nlog a M__(n∈R).判断(正确的打“√”,错误的打“×”)(1)积、商的对数可以化为对数的和、差.( )(2)log a xy=log a x·log a y.( )(3)log a(-2)3=3log a(-2).( )【解析】(1)√.根据对数的运算性质可知(1)正确;(2)×.根据对数的运算性质可知log a xy=log a x+log a y;(3)×.公式log a M n=n log a M(n∈R)中的M应为大于0的数.【答案】(1)√(2)×(3)×教材整理2 换底公式阅读教材P 65至P 66“例5”以上部分,完成下列问题. 对数换底公式:log a b =logcblogca (a >0,且a ≠1,b >0,c>0,且c ≠1); 特别地:log a b ·log b a =1(a >0,且a ≠1,b >0,且b ≠1).计算:log 29·log 34=________.【解析】 由换底公式可得log 29·log 34=2lg 3lg 2·2lg 2lg 3=4. 【答案】4[小组合作型](1)lg 14-2lg 73+lg 7-lg 18; 【导学号:97030098】 (2)2lg 2+lg 32+lg 0.36+2lg 2;(3)log 34273+lg 25+lg 4+7log 72; (4)2log 32-log 3329+log 38-52log 53.【精彩点拨】 当对数的底数相同时,利用对数运算的性质,将式子转化为只含一种或少数几种真数的形式再进行计算.【自主解答】 (1)法一 原式=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二 原式=lg 14-lg ⎝ ⎛⎭⎪⎫732+lg 7-lg 18=lg 14×7⎝ ⎛⎭⎪⎫732×18=lg 1=0.(2)原式=2lg 2+lg 32+lg 36-2+2lg 2=错误!=错误!=错误!.(3)原式=log 33343+lg (25×4)+2=log 33-14+lg 102+2=-14+2+2=154. (4)原式=2log 32-(log 325-log 39)+3log 32-5log 532 =2log 32-5log 32+2log 33+3log 32-9=2-9=-7.1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系. 2.对于复杂的运算式,可先化简再计算;化简问题的常用方法:①“拆”:将积(商)的对数拆成两对数之和(差);②“收”:将同底对数的和(差)收成积(商)的对数.[再练一题]1.求下列各式的值: (1)lg 25+lg 2·lg 50;(2)23lg 8+lg 25+lg 2·lg 50+lg 25.【解】 (1)原式=lg 25+(1-lg 5)(1+lg 5)=lg 25+1-lg 25=1. (2)23lg 8+lg 25+lg 2·lg 50+lg 25=2lg 2+lg 25+lg 2(1+lg 5)+2lg 5=2(lg 2+lg 5)+lg 2 5+lg 2+lg 2·lg 5=2+lg 5(lg 5+lg 2)+lg 2=2+lg 5+lg 2=3.一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13(结果保留1个有效数字)?(lg 2≈0.301 0,lg 3≈0.477 1)【精彩点拨】 由题目可知经过一年物质剩余的质量约是原来的75%,由此首先找到剩余量与年数的关系,再利用对数计算.【自主解答】 设物质的原有量为a ,经过t 年,该物质的剩余量是原来的13,由题意可得a ·0.75t =13a ,∴⎝ ⎛⎭⎪⎫34t =13,两边取以10为底的对数得lg ⎝ ⎛⎭⎪⎫34t=lg 13,∴t(lg 3-2lg 2)=-lg 3, ∴t =-lg 3lg 3-2lg 2≈0.477 12×0.301 0-0.477 1≈4(年).解对数应用题的步骤[再练一题]2.地震的震级R 与地震释放的能量E 的关系为R =23(lgE -11.4).根据英国天空电视台报道,英格兰南部2007年4月28日发生地震,欧洲地震监测站称,地震的震级为5.0级,而2011年3月11日,日本本州岛发生9.0级地震,那么此次地震释放的能量是5.0级地震释放能量的________倍.【解】 设9.0级地震所释放的能量为E 1,5.0级地震所释放的能量为E 2.由9.0=23(lg E 1-11.4),得lg E 1=32×9.0+11.4=24.9. 同理可得lg E 2=32×5.0+11.4=18.9, 从而lg E 1-lg E 2=24.9-18.9=6.故lg E 1-lg E 2=lg E1E2=6,则E1E2=106=1 000 000,即9.0级地震释放的能量是5.0级地震释放能量的1 000 000倍.[探究共研型]探究1 假设log25log23=x ,则log 25=xlog 23,即log 25=log 23x ,从而有3x =5,进一步可以得到什么结论?【提示】 进一步可以得到x =log 35,即log 35=log25log23.探究2 由探究1,你能猜测logcblogca 与哪个对数相等吗?如何证明你的结论?【提示】 logcb logca =log a b .假设logcblogca =x ,则log c b =xlog c a ,即log c b =log c a x ,所以b =a x ,则x =log a b ,所以logcblogca =log a b.(1)已知log 1227=a ,求log 616的值;(2)计算(log 2125+log 425+log 85)(log 52+log 254+log 1258)的值.【导学号:02962014】【精彩点拨】 各个对数的底数都不相同,需先统一底数再化简求值. 【自主解答】 (1)由log 1227=a ,得3lg 32lg 2+lg 3=a ,∴lg 2=3-a2a lg 3. ∴log 616=lg 16lg 6=4lg 2lg 2+lg 3=4×3-a 2a1+3-a 2a=错误!. (2)法一 原式=⎝ ⎛⎭⎪⎫log253+log225log24+log25log28·log 52+log54log525+log58log5125=⎝ ⎛⎭⎪⎫3log25+2log252log22+log253log22log 52+2log522log55+3log523log55=⎝ ⎛⎭⎪⎫3+1+13log 25·(3log 52) =13log 25·log22log25=13.法二 原式=⎝ ⎛⎭⎪⎫lg 125lg 2+lg 25lg 4+lg 5lg 8lg 2lg 5+lg 4lg 25+lg 8lg 125=⎝ ⎛⎭⎪⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝ ⎛⎭⎪⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5 =⎝ ⎛⎭⎪⎫13lg 53lg 2⎝ ⎛⎭⎪⎫3lg 2lg 5=13. 法三 原式=(log 2153+log 2252+log 2351)·(log 512+log 5222+log 5323)=⎝ ⎛⎭⎪⎫3log25+log25+13log25(log 52+log 52+log 52)=3×⎝ ⎛⎭⎪⎫3+1+13log 25·log 52=3×133=13.1.在利用换底公式进行化简求值时,一般情况下是根据题中所给对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.2.在运用换底公式时,还可结合底数间的关系恰当选用一些重要的结论,如log a b ·log b a =1,log a b ·log b c·log c d =log a d ,log a m b n =n m log a b ,log a a n =n ,等,将会达到事半功倍的效果.[再练一题]3.求值:log 225·log 3116·log 519=________.【解析】 原式=log 252·log 32-4·log 53-2=2lg 5lg 2·-4lg 2lg 3·-2lg 3lg 5=16. 【答案】 161.若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是( ) ①log a x 2=2log a x ;②log a x 2=2log a |x |; ③log a (xy )=log a x +log a y ; ④log a (xy )=log a |x |+log a |y |. A .②④ B .①③ C .①④D .②③【解析】 ∵xy >0,∴①中,若x <0,则不成立;③中,若x <0,y <0也不成立,故选B . 【答案】 B2.lg 2516-2lg 59+lg 3281等于( ) A .lg 2 B .lg 3 C .lg 4D .lg 5【解析】 lg 2516-2lg 59+lg 3281=lg ⎝ ⎛⎭⎪⎫2516÷2581×3281=lg 2.故选A .【答案】 A3.(2016·宝鸡高一检测)已知log a 2=m ,log a 3=n ,则log a 18=________.(用m ,n 表示) 【解析】 log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n . 【答案】 m +2n4.计算(lg 2)2+lg 2·lg 50+lg 25=________. 【解析】 原式=(lg 2)2+lg 2·(1+lg 5)+2lg 5 =lg 2(1+lg 5+lg 2)+2lg 5=2lg 2+2lg 5=2. 【答案】 25.已知log 189=a ,18b =5,求log 3645. 【导学号:97030099】 【解】 法一 ∵log 189=a ,18b =5,即log 185=b , 于是log 3645=log1845log1836=错误!=错误!=错误!=错误!. 法二 ∵log 189=a ,18b =5, 即log 185=b .于是log 3645=错误!=错误!=错误!.法三 ∵log 189=a ,18b =5,∴lg 9=alg 18,lg 5=blg 18. ∴log 3645=lg 45lg 36=错误!=错误!=错误!=错误!.。
_3.1函数与方程3.1.1方程的根与函数的零点函数的零点[提出问题]如图为函数f(x)在[-4,4]上的图象:问题1:根据函数的图象,你能否得出方程f(x)=0的根的个数?提示:方程f(x)=0的根即为函数f(x)的图象与x轴交点的横坐标,由图可知,方程有3个根,即x=-3,-1,2.问题2:你认为方程的根与对应函数的图象有什么关系?提示:方程的根是使函数值等于零的自变量值,也就是函数图象与x轴交点的横坐标.[导入新知]1.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.2.方程、函数、图象之间的关系方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.[化解疑难]函数零点的本质(1)函数的零点的本质是方程f(x)=0的实数根,因此,函数的零点不是点,而是一个实数.例如函数f(x)=x+1,当f(x)=x+1=0时,仅有一个实数根x=-1,所以函数f(x)=x+1有一个零点-1,由此可见函数f(x)=x+1的零点是一个实数-1,而不是一个点.(2)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点.函数零点的判断[提出问题]函数f (x )=x 2-4x +3图象如图.问题1:函数的零点是什么? 提示:1,3.问题2:判断f (0)·f (2)与f (2)·f (4)的符号. 提示:∵f (0)=3,f (2)=-1,f (4)=3, ∴f (0)·f (2)<0,f (2)·f (4)<0. [导入新知]函数零点的存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0.那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[化解疑难]对函数零点存在性的探究(1)并不是所有的函数都有零点,如函数y =1x.(2)当函数y =f (x )同时满足:①函数的图象在[a ,b ]上是连续曲线;②f (a )·f (b )<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(3)当函数y =f (x )的图象在[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.求函数的零点[例1] (1)(1)f (x )=x +3x ;(2)f (x )=x 2+2x +4;(3)f (x )=2x -3;(4)f (x )=1-log 3x .[解] (1)令x +3x =0,解得x =-3,所以函数f (x )=x +3x 的零点是x =-3.(2)令x 2+2x +4=0,由于Δ=22-4×1×4=-12<0, 所以方程x 2+2x +4=0无实数根,所以函数f (x )=x 2+2x +4不存在零点. (3)令2x -3=0,解得x =log 23. 所以函数f (x )=2x -3的零点是x =log 23. (4)令1-log 3x =0,解得x =3, 所以函数f (x )=1-log 3x 的零点是x =3. [类题通法]函数零点的求法求函数f (x )的零点时,通常转化为解方程f (x )=0,若方程f (x )=0有实数根,则函数f (x )存在零点,该方程的根就是函数f (x )的零点;否则,函数f (x )不存在零点.[活学活用]判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=-x 2-4x -4; (2)f (x )=x -1x 2-4x +3x -3;(3)f (x )=4x +5; (4)f (x )=log 3(x +1).解:(1)令-x 2-4x -4=0,解得x =-2,所以函数的零点为x =-2. (2)令x -1x 2-4x +3x -3=0,解得x =1,所以函数的零点为x =1.(3)令4x +5=0,则4x =-5<0,即方程4x +5=0无实数根,所以函数不存在零点. (4)令log 3(x +1)=0,解得x =0,所以函数的零点为x =0. 3.1 函数与方程 第三章 函数的应用判断函数零点所在的区间[例2] (1)x -3 -2 -1 0 1 2 3 4 y6m-4-6-6-4n6不求a ,b ,c 的值,判断方程ax 2+bx +c =0的两根所在的区间是( ) A .(-3,-1)和(2,4) B .(-3,-1)和(-1,1) C .(-1,1)和(1,2) D .(-∞,-3)和(4,+∞)(2)函数f (x )=lg x -9x 的零点所在的大致区间是( )A .(6,7)B .(7,8)C .(8,9)D .(9,10)[解析] (1)利用f (a )f (b )<0,则f (x )=0在(a ,b )内有根来判定.∵f (-3)=6>0,f (-1)=-4<0,∴在(-3,-1)内必有根,又由f (2)=-4<0,f (4)=6>0,∴在(2,4)内必有根.故选A.(2)∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0,f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0.∴f (x )=lg x -9x 的零点的大致区间为(9,10).[答案] (1)A (2)D [类题通法]确定函数零点所在区间的方法确定函数的零点、方程的根所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.[活学活用]若x 0是方程⎝⎛⎭⎫12x =x 13的解,则x 0属于区间( ) A.⎝⎛⎭⎫23,1 B.⎝⎛⎭⎫12,23 C.⎝⎛⎭⎫13,12D.⎝⎛⎭⎫0,13 解析:选C 构造函数f (x )=⎝⎛⎭⎫12x -x 13,则函数f (x )的图象是连续不断的一条曲线,又f (0)=⎝⎛⎭⎫120-0>0,f ⎝⎛⎭⎫13=⎝⎛⎭⎫1213-⎝⎛⎭⎫1313>0,f ⎝⎛⎭⎫12=⎝⎛⎭⎫1212-⎝⎛⎭⎫1213<0,f ⎝⎛⎭⎫23=⎝⎛⎭⎫1223-⎝⎛⎭⎫2313<0,所以f ⎝⎛⎭⎫13·f ⎝⎛⎭⎫12<0,故函数的零点所在区间为⎝⎛⎭⎫13,12,即方程⎝⎛⎭⎫12x =x 13的解x 0属于区间⎝⎛⎭⎫13,12.判断函数零点的个数[例3] (1)函数f (x )=ln x -1x -1的零点的个数是( )A .0B .1C .2D .3(2)判断函数f (x )=2x +lg(x +1)-2的零点个数.(1)在同一坐标系中画出y =ln x 与y =1x -1的图象,如图所示,函数y=ln x 与y =1x -1的图象有两个交点,所以函数f (x )=ln x -1x -1的零点个数为2.[答案] C(2)[解] 法一:∵f (0)=1+0-2=-1<0, f (2)=4+lg 3-2>0,∴f (x )在(0,2)上必定存在零点,又f (x )=2x +lg(x +1)-2在(0,+∞)上为增函数, 故f (x )有且只有一个零点.法二:在同一坐标系下作出h (x )=2-2x 和g (x )=lg(x +1)的草图.由图象知g (x )=lg(x +1)的图象和h (x )=2-2x 的图象有且只有一个交点,即f (x )=2x +lg(x +1)-2有且只有一个零点. [类题通法]判断函数零点个数的方法判断函数零点的个数主要有以下几种方法: 法一:直接求出函数的零点进行判断; 法二:结合函数图象进行判断;法三:借助函数的单调性进行判断.若函数f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且在区间(a ,b )上单调,满足f (a )·f (b )<0,则函数f (x )在区间(a ,b )上有且仅有一个零点,如图所示.[活学活用]判断函数f (x )=x -3+ln x 的零点个数. 解:法一:令f (x )=x -3+ln x =0, 则ln x =3-x ,在同一平面直角坐标系内画出函数y =ln x 与y =-x +3的图象, 如图所示:由图可知函数y =ln x ,y =-x +3的图象只有一个交点,即函数f (x )=x -3+ln x 只有一个零点. 法二:因为f (3)=ln 3>0, f (2)=-1+ln 2=ln 2e<0,所以f (3)·f (2)<0,说明函数f (x )=x -3+ln x 在区间(2,3)内有零点.又f (x )=x -3+ln x 在(0,+∞)上是增函数,所以原函数只有一个零点.10.因函数图象不连续造成判断失误[典例] 函数f (x )=x +1x 的零点个数为( )A .0B .1C .2D .3[解析] 函数f (x )的定义域为{x |x ≠0},当x >0时,f (x )>0;当x <0时,f (x )<0,所以函数没有零点,故选A.[答案] A [易错防范]1.函数的定义域决定了函数的一切性质,分析函数的有关问题时必须先求出定义域,通过作图,可知函数f (x )=x +1x的图象不是连续的.若忽视该特征,易由f (-1)<0,f (1)>0,得出错误的答案B.2.零点存在性定理成立的条件有两个:一是函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线;二是f (a )·f (b )<0.这两个条件缺一不可,如果其中一个条件不成立,那么就不能使用该定理.[活学活用]函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0-2+ln x ,x >0的零点个数为( )A .0B .1C .2D .3解析:选C 当x ≤0时,令x 2+2x -3=0,解得x =-3; 当x >0时,令-2+ln x =0,解得x =e 2,所以函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0-2+ln x ,x >0有2个零点.[随堂即时演练]1.下列图象表示的函数中没有零点的是( )解析:选A 观察图象可知A 中图象表示的函数没有零点. 2.函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 因为函数f (x )的图象是连续不断的一条曲线,又f (-2)=e -2-4<0,f (-1)=e -1-3<0,f (0)=-1<0,f (1)=e -1>0,f (2)=e 2>0,所以f (0)·f (1)<0,故函数的零点所在的一个区间是(0,1).3.已知函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是________. 解析:由题意知,方程x 2-ax -b =0的两根为2、3,∴⎩⎪⎨⎪⎧2+3=a ,2×3=-b , 即a =5,b =-6,∴方程bx 2-ax -1=-6x 2-5x -1=0的根为-12、-13,即为函数g (x )的零点.答案:-12,-134.方程ln x =8-2x 的实数根x ∈(k ,k +1),k ∈Z ,则k =________. 解析:令f (x )=ln x +2x -8,则f (x )在(0,+∞)上单调递增. ∵f (3)=ln 3-2<0,f (4)=ln 4>0, ∴零点在(3,4)上,∴k =3. 答案:35.求函数f (x )=log 2x -x +2的零点的个数. 解:令f (x )=0,即log 2x -x +2=0, 即log 2x =x -2. 令y 1=log 2x ,y 2=x -2.画出两个函数的大致图象,如图所示.有两个不同的交点.所以函数f (x )=log 2x -x +2有两个零点.[课时达标检测]一、选择题1.已知函数f (x )的图象是连续不断的,有如下的x ,f (x )对应值表x12345 6 7f(x)136.13615.552-3.9210.88-52.488-232.06411.238由表可知函数f(x)存在零点的区间有()A.1个B.2个C.3个D.4个解析:选D∵f(2)f(3)<0,f(3)f(4)<0,f(4)f(5)<0,f(6)f(7)<0,∴共有4个零点.2.方程0.9x-221x=0的实数解的个数是() A.0个B.1个C.2个D.3个解析:选B设f(x)=0.9x-221x,则f(x)为减函数,值域为R,故有1个.3.函数y=x2+a存在零点,则a的取值范围是()A.a>0 B.a≤0C.a≥0 D.a<0解析:选B函数y=x2+a存在零点,则x2=-a有解,所以a≤0.4.已知f(x)=(x-a)(x-b)-2,并且α,β是函数f(x)的两个零点,则实数a,b,α,β的大小关系可能是()A.a<α<b<βB.a<α<β<bC.α<a<b<βD.α<a<β<b解析:选C∵α,β是函数f(x)的两个零点,∴f(α)=f(β)=0.又f(x)=(x-a)(x-b)-2,∴f(a)=f(b)=-2<0.结合二次函数f(x)的图象,如图所示,可知,a,b必在α,β之间,只有C满足.5.已知x0是函数f(x)=2x+11-x的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则()A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0解析:选B在同一平面直角坐标系中画出函数y=2x和函数y=1x-1的图象,如图所示,由图可知函数y=2x和函数y=1x-1的图象只有一个交点,即函数f (x )=2x +11-x只有一个零点x 0,且x 0>1.因为x 1∈(1,x 0),x 2∈(x 0,+∞),所以由函数图象可知,f (x 1)<0,f (x 2)>0. 二、填空题6.函数f (x )=ln x -x 2+2x +5的零点个数为________.解析:令ln x -x 2+2x +5=0得ln x =x 2-2x -5,画图可得函数y =ln x 与函数y =x 2-2x -5的图象有2个交点,即函数f (x )的零点个数为2.答案:27.若f (x )=x +b 的零点在区间(0,1)内,则b 的取值范围为________. 解析:∵f (x )=x +b 是增函数,又f (x )=x +b 的零点在区间(0,1)内,∴⎩⎪⎨⎪⎧f 0<0,f1>0.∴⎩⎪⎨⎪⎧b <0,1+b >0.∴-1<b <0. 答案:(-1,0)8.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 解析:函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)与函数y =x +a 的图象有两个交点,由图象可知当0<a <1时两函数的图象只有一个交点,不符合;当a >1时,因为函数y =a x (a >1)的图象过点(0,1),当直线y =x +a 与y 轴的交点(0,a )在(0,1)的上方时一定有两个交点.所以a >1.答案:(1,+∞) 三、解答题9.已知函数f (x )=2x -x 2,问方程f (x )=0在区间[-1,0]内是否有解,为什么? 解:因为f (-1)=2-1-(-1)2=-12<0,f (0)=20-02=1>0,而函数f (x )=2x -x 2的图象是连续曲线,所以f (x )在区间[-1,0]内有零点,即方程f (x )=0在区间[-1,0]内有解.10.已知二次函数f (x )=x 2-2ax +4,在下列条件下,求实数a 的取值范围. (1)零点均大于1;(2)一个零点大于1,一个零点小于1; (3)一个零点在(0,1)内,另一个零点在(6,8)内.解:(1)因为方程x 2-2ax +4=0的两根均大于1,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧-2a 2-16≥0,f 1=5-2a >0,a >1,解得2≤a <52.(2)因为方程x 2-2ax +4=0的一个根大于1,一个根小于1,结合二次函数的单调性与零点存在性定理得f(1)=5-2a<0,解得a>52.(3)因为方程x2-2ax+4=0的一个根在(0,1)内,另一个根在(6,8)内,结合二次函数的单调性与零点存在性定理得⎩⎪⎨⎪⎧f0=4>0,f1=5-2a<0,f6=40-12a<0,f8=68-16a>0,解得103<a<174.3.1.2用二分法求方程的近似解二分法[提出问题]在一档娱乐节目中,主持人让选手在规定时间内猜某物品的价格,若猜中了,就把物品奖给选手.某次竞猜的物品为价格在1000元之内的一款手机,选手开始报价,选手说“800”,主持人说“高了”;选手说“400”,主持人说“低了”.问题1:如果是你,你知道接下来该如何竞猜吗?提示:应猜400与800的中间值600.问题2:通过这种方法能猜到具体价格吗?提示:能.[导入新知]1.二分法的概念对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法(bisection).2.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:第一步,确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε.第二步,求区间(a,b)的中点c.第三步,计算f(c):(1)若f(c)=0,则c就是函数的零点;(2)若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));(3)若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).第四步,判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b),否则重复第二至四步.[化解疑难]利用二分法求方程近似解的过程图示二分法的概念[例1] (1)A .y =x +7 B .y =5x -1 C .y =log 3xD .y =⎝⎛⎭⎫12x-x(2)以下每个图象表示的函数都有零点,但不能用二分法求函数零点的是( )[解析] (1)A × 解方程x +7=0,得x =-7B × 解方程5x -1=0,得x =0C × 解方程log 3x =1,得x =1 D√无法通过方程⎝⎛⎭⎫12x -x =0得到零点(2)根据二分法的思想,函数f (x )在区间[a ,b ]上的图象连续不断,且f (a )·f (b )<0,即函数的零点是变号零点,才能将区间[a ,b ]一分为二,逐步得到零点的近似值,对各图象分析可知,A ,B ,D 都符合条件,而选项C 不符合,图象经过零点时函数值不变号,因此不能用二分法求函数零点.[答案] (1)D (2)C [类题通法]二分法的适用条件判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适用,对函数的不变号零点不适用.[活学活用]已知函数f(x)的图象如图,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4 D.4,3解析:选D图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.用二分法求函数的零点[例2]求函数f(x[解]由于f(-2)=-1<0,f(-3)=4>0,故取区间(-3,-2)作为计算的初始区间,用二分法逐次计算,列表如下:区间中点的值中点函数近似值(-3,-2)-2.5 1.25(-2.5,-2)-2.250.062 5(-2.25,-2)-2.125-0.484 4(-2.25,-2.125)-2.1875-0.214 8(-2.25,-2.187 5)-2.218 75-0.077 1由于|-2.25-(-2.187 5)|=0.062 5<0.1,所以函数的一个近似负零点可取-2.25.[类题通法]利用二分法求函数零点应关注三点(1)要选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.(2)用列表法往往能比较清晰地表达函数零点所在的区间.(3)根据给定的精确度,及时检验所得区间长度是否达到要求,以决定是停止计算还是继续计算.[活学活用]证明函数f (x )=2x +3x -6在区间[1,2]内有唯一零点,并求出这个零点(精确度0.1).解:由于f (1)=-1<0,f (2)=4>0,又函数f (x )在[1,2]内是增函数,所以函数在区间[1,2]内有唯一零点,不妨设为x 0,则x 0∈[1,2].下面用二分法求解.(a ,b ) (a ,b ) 的中点 f (a ) f (b ) f (a +b 2) (1,2) 1.5 f (1)<0 f (2)>0 f (1.5)>0 (1,1.5) 1.25 f (1)<0 f (1.5)>0 f (1.25)>0 (1,1.25) 1.125 f (1)<0 f (1.25)>0 f (1.125)<0 (1.125,1.25) 1.187 5f (1.125)<0f (1.25)>0f (1.187 5)<0因为|1.187 5-1.25|=0.062 5<0.1,所以函数f (x )=2x +3x -6的精确度为0.1的近似零点可取为1.25.用二分法求方程的近似解[例3] [解] 令f (x )=2x 3+3x -3,经计算,f (0)=-3<0,f (1)=2>0,f (0)·f (1)<0, 所以函数f (x )在(0,1)内存在零点, 即方程2x 3+3x =3在(0,1)内有解. 取(0,1)的中点0.5,经计算f (0.5)<0, 又f (1)>0,所以方程2x 3+3x -3=0在(0.5,1)内有解.如此继续下去,得到方程的正实数根所在的区间,如表:(a ,b ) 中点c f (a ) f (b ) f ⎝⎛⎭⎫a +b 2(0,1) 0.5 f (0)<0 f (1)>0 f (0.5)<0 (0.5,1) 0.75 f (0.5)<0 f (1)>0 f (0.75)>0 (0.5,0.75) 0.625 f (0.5)<0 f (0.75)>0 f (0.625)<0 (0.625,0.75) 0.6875f (0.625)<0f (0.75)>0f (0.687 5)<0(0.687 5,0.75) |0.687 5-0.75|=0.062 5<0.1由于|0.6875-0.75|=0.0625<0.1,所以0.75可作为方程的一个正实数近似解. [类题通法]用二分法求方程的近似解应明确两点(1)根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f (x )=0的近似解,即按照用二分法求函数零点近似值的步骤求解.(2)对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.[活学活用]求方程lg x=3-x的近似解(精确度0.1).解:分别画函数y=lg x和y=3-x的图象,如图所示,在两个函数图象的交点处,函数值相等.因此,这个点的横坐标就是方程lg x=3-x的解.由函数y=lg x与y=3-x的图象可以发现,方程lg x=3-x有唯一解,记为x1,并且这个解在区间(2,3)内.设f(x)=lg x+x-3,利用计算器计算得:f(2)<0,f(3)>0⇒x1∈(2,3);f(2.5)<0,f(3)>0⇒x1∈(2.5,3);f(2.5)<0,f(2.75)>0⇒x1∈(2.5,2.75);f(2.5)<0,f(2.625)>0⇒x1∈(2.5,2.625);f(2.562 5)<0,f(2.625)>0⇒x1∈(2.562 5,2.625);因为2.625-2.562 5=0.062 5<0.1,所以此方程的近似解可取为2.625.11.对精确度的理解不正确导致错误[典例]用二分法求方程f(x)=0在[0,1]内的近似解时,经计算,f(0.625)<0,f(0.75)>0,f(0.687 5)<0,即可得出方程的一个近似解为________(精确度0.1).[解析]因为|0.75-0.687 5|=0.062 5<0.1,所以区间[0.687 5,0.75]内的任何一个值都可作为方程的近似解.[答案]0.75(答案不唯一)[易错防范]1.由于f(0.625)<0,f(0.75)>0,故在区间(0.625,0.75)内也存在零点,但|0.75-0.625|>0.1,所以不符合精确度0.1的要求,解决本题时极易忽视此条件而导致解题错误.2.利用二分法求方程的根,在计算到第几步时,区间(a n,b n)的长度应小于精确度.[活学活用]用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:f(1.600 0)=0.200f(1.587 5)=0.133f(1.575 0)=0.067f(1.562 5)=0.003f(1.556 2)=-0.029f(1.550 0)=-0.060解析:由表中数据可知:f(1.562 5)·f(1.556 2)<0.而|1.562 5-1.556 2|=0.006 3<0.1.∴零点x0∈(1.556 2,1.562 5)可取零点为1.556 2(或1.562 5).答案:1.556 2或(1.562 5)[随堂即时演练]1.下列函数不宜用二分法求零点的是()A.f(x)=x3-1B.f(x)=ln x+3C.f(x)=x2+22x+2 D.f(x)=-x2+4x-1解析:选C因为f(x)=x2+22x+2=(x+2)2≥0,不存在小于0的函数值,所以不能用二分法求零点.2.用二分法求函数f(x)=x3+5的零点可以取的初始区间是()A.[-2,1] B.[-1,0]C.[0,1] D.[1,2]解析:选A∵f(-2)=-3<0,f(1)=6>0,f(-2)·f(1)<0,故可以取区间[-2,1]作为计算的初始区间,用二分法逐次计算.A.3.已知二次函数f(x)=x2-x-6在区间[1,4]上的图象是一条连续的曲线,且f(1)=-6<0,f(4)=6>0,由零点存在性定理可知函数在[1,4]内有零点,用二分法求解时,取(1,4)的中点a,则f(a)=________.解析:显然(1,4)的中点为2.5,则f(a)=f(2.5)=2.52-2.5-6=-2.25.答案:-2.254.用二分法求方程x3-2x-5=0在区间[2,3]内的实数根时,取区间中点x0=2.5,那么下一个有根区间是________.解析:∵f(2)<0,f(2.5)>0,∴下一个有根区间是(2,2.5).答案:(2,2.5)5.求方程x2=2x+1的一个近似解(精确度0.1).解:设f(x)=x2-2x-1.∵f(2)=-1<0,f(3)=2>0.∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0.取2与3的平均数2.5,∵f(2.5)=0.25>0,∴2<x0<2.5;再取2与2.5的平均数2.25,∵f (2.25)=-0.437 5<0, ∴2.25<x 0<2.5; 如此继续下去,有f (2.375)<0,f (2.5)>0⇒x 0∈(2.375,2.5); f (2.375)<0,f (2.437 5)>0⇒x 0∈(2.375,2.437 5). ∵|2.375-2.437 5|=0.062 5<0.1,∴方程x 2=2x +1的一个精确度为0.1的近似解可取为2.4375.[课时达标检测]一、选择题1.下列关于函数f (x ),x ∈[a ,b ]的命题中,正确的是( ) A .若x 0∈[a ,b ]且满足f (x 0)=0,则x 0是f (x )的一个零点 B .若x 0是f (x )在[a ,b ]上的零点,则可以用二分法求x 0的近似值C .函数f (x )的零点是方程f (x )=0的根,但f (x )=0的根不一定是函数f (x )的零点D .用二分法求方程的根时,得到的都是近似解解析:选A 使用“二分法”必须满足“二分法”的使用条件B 不正确;f (x )=0的根也一定是函数f (x )的零点,C 不正确;用二分法求方程的根时,得到的也可能是精确解,D 不正确,只有A 正确.2.用二分法求图象是连续不断的函数f (x )在x ∈(1,2)内零点近似值的过程中得到f (1)<0,f (1.5)>0,f (1.25)<0,则函数的零点落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定解析:选B 因为f (1.5)>0,f (1.25)<0,所以f (1.5)·f (1.25)<0,则函数的零点落在区间(1.25,1.5). 3.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算得f (0)<0,f (0.5)>0,可得其中一个零点x 0∈________,第二次应计算________.以上横线上应填的内容分别为( )A .(0,0.5),f (0.25)B .(0.1),f (0.25)C .(0.5,1),f (0.25)D .(0,0.5),f (0.125)解析:选A ∵f (0)<0,f (0.5)>0,∴f (0)·f (0.5)<0,故f (x )的一个零点x 0∈(0,0.5),利用二分法,则第二次应计算f ⎝⎛⎭⎫0+0.52=f (0.25).4.若函数f (x )=x 3+x 2-2x -2的一个零点(正数)附近的函数值用二分法逐次计算,参考数据如下表:那么方程x 3+x 2-2x -2=0的一个近似解(精确度0.04)为( ) A .1.5 B .1.25 C .1.375D .1.437 5解析:选D 由参考数据知,f (1.406 25)≈-0.054,f (1.437 5)≈0.162,即f (1.406 25)·f (1.437 5)<0,且1.437 5-1.406 25=0.031 25<0.04,所以方程的一个近似解可取为1.43 75,故选D.5.已知曲线y =(110)x 与y =x 的交点的横坐标是x 0,则x 0的取值范围是( )A .(0,12)B.12 C .(12,1)D .(1,2)解析:选A 设f (x )=(110)x -x ,则f (0)=1>0,f (12)=(110)12-12=0.1-0.25<0, f (1)=110-1<0,f (2)=(110)2-2<0,显然有f (0)·f (12)<0.二、填空题6.某方程有一无理根在区间D =(1,3)内,若用二分法求此根的近似值,将D 等分________次后,所得近似值可精确到0.1.解析:由3-12n <0.1,得2n -1>10,∴n -1≥4,即n ≥5.答案:57.在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量小一点),现在只有一台天平,则应用二分法的思想,最多称________次就可以发现这枚假币.解析:将26枚金币平均分成两份,分别放在天平两端,则假币一定在质量小的那13枚金币里面;从这13枚金币中拿出1枚,然后将剩下的12枚金币平均分成两份,分别放在天平两端,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在质量小的那6枚金币里面;将这6枚金币平均分成两份,分别放在天平两端,则假币一定在质量小的那3枚金币里面;从这3枚金币中任拿出2枚,分别放在天平两端,若天平平衡,则剩下的那一枚即是假币,若不平衡,则质量小的那一枚即是假币.综上可知,最多称4次就可以发现这枚假币. 答案:48.某同学在借助计算器求“方程lg x =2-x 的近似解(精确到0.1)”时,设f (x )=lg x +x -2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了4个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他再取的x的4个值依次是________________.解析:第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.812 5).答案:1.5,1.75,1.875,1.812 5三、解答题9.从上海到美国旧金山的海底电缆有15个接点,现某接点发生故障,需及时修理,为了尽快找出故障的发生点,一般最多需要检查多少个接点?解:先检查中间的1个接点,若正常,则可断定故障在其另一侧的7个接点中;然后检查这一段中间的1个接点,若仍正常,则可断定故障在其另一侧的3个接点中;最后只需检查这3个接点中间的1个,即可找出故障所在.故一般最多只需检查3个接点.10.判断函数f(x)=2x3-1的零点个数,并用二分法求零点的近似值(精确度0.1).解:f(0)=-1<0,f(1)=1>0,即f(0)·f(1)<0,f(x)在(0,1)内有零点,又f(x)在(-∞,+∞)上是增函数,∴f(x)只有一个零点x0∈(0,1).取区间(0,1)的中点x1=0.5,f(0.5)=-0.75<0,∴f(0.5)·f(1)<0,即x0∈(0.5,1).取区间(0.5,1)的中点x2=0.75,f(0.75)=-0.156 25<0,∴f(0.75)·f(1)<0.即x0∈(0.75,1).取区间(0.75,1)的中点x3=0.875,f(0.875)≈0.34>0.∴f(0.75)·f(0.875)<0.即x0∈(0.75,0.875).取区间(0.75,0.875)的中点x4=0.812 5,f(0.812 5)=0.073>0.∴f(0.75)·f(0.812 5)<0,即x0∈(0.75,0.812 5),而|0.812 5-0.75|<0.1.所以,f(x)的零点的近似值可取为0.75.3.2函数模型及其应用3.2.1几类不同增长的函数模型指数函数、对数函数、幂函数模型[提出问题]观察如表给出的函数值:x 12345678910 f(x)=2x2481632641282565121024 2x+1-2x2481632641282565121024 g(x)=x2149162536496481100 (x+1)2-x23579111315171921h(x)=log2x 011.58522.32192.5852.80743 3.16993.3219log2(x+1)-log2x 10.5850.4150.32190.26310.22240.19260.16990.15200.1375问题1:函数f(x),g(x),h(x)随着x的增大,函数值有什么共同的变化趋势?提示:函数f(x),g(x),h(x)随着x的增大,函数值增大.问题2:函数f(x),g(x),h(x)增长的速度有什么不同?提示:各函数增长的速度不同,其中f(x)=2x增长的最快,其次是g(x)=x2,最慢的是h(x)=log2x.[导入新知]指数函数、对数函数和幂函数的增长差异一般地,在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,使得当x>x0时,就有log a x<x n<a x(a>1,n>0).[化解疑难]对比指数函数、对数函数和幂函数的增长趋势函数性质y=a x(a>1) y=log a x(a>1) y=x n(n>0) 在(0,+∞)上的增减性增函数增函数增函数增长的速度先慢后快先快后慢相对平稳图象的变化随着x的增大逐渐加快增大随着x的增大逐渐减慢增大随n值的不同而不同考查函数模型的增长差异[例1]1234x 151015202530y1226101226401626901y2232102432768 1.05×106 3.36×107 1.07×109y32102030405060y42 4.322 5.322 5.907 6.322 6.644 6.907 关于[解析]从表格观察函数值y1,y2,y3,y4的增加值,哪个变量的增加值最大,则该变量关于x 呈指数函数变化.以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数函数变化.故填y2.[答案]y2[类题通法]常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.(4)幂函数模型幂函数y =x n (n >0)的增长速度介于指数增长和对数增长之间. [活学活用]今有一组实验数据如下:t 1.99 3.0 4.0 5.1 6.12 v1.54.047.51218.01现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( ) A .v =log 2t B .v =log 12tC .v =t 2-12D .v =2t -2解析:选C 从表格中看到此函数为单调增函数,排除B ,增长速度越来越快,排除A 和D ,选C.指数函数、对数函数与幂函数模型的比较[例x 11(x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f (6),g (6),f (2 011),g (2 011)的大小. [解] (1)C 1对应的函数为g (x )=x 3,C 2对应的函数为f (x )=2x .(2)∵f (1)>g (1),f (2)<g (2),f (9)<g (9),f (10)>g (10),∴1<x 1<2,9<x 2<10,∴x 1<6<x 2,2 011>x 2. 从图象上可以看出,当x 1<x <x 2时,f (x )<g (x ), ∴f (6)<g (6).当x >x 2时,f (x )>g (x ),∴f (2 011)>g (2 011). 又g (2 011)>g (6),∴f (2 011)>g (2 011)>g (6)>f (6). [类题通法]由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.[活学活用]函数f (x )=lg x ,g (x )=0.3x -1的图象如图所示.(1)试根据函数的增长差异指出曲线C 1,C 2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f (x ),g (x )的大小进行比较).解:(1)C 1对应的函数为g (x )=0.3x -1,C 2对应的函数为f (x )=lg x .(2)当x <x 1时,g (x )>f (x );当x 1<x <x 2时,f (x )>g (x );当x >x 2时,g (x )>f (x );当x =x 1或x =x 2时,f (x )=g (x ).函数模型的选取[例3] 43万辆.已知该公司近三年的汽车生产量如下表所示:年份 2010 2011 2012 产量8(万)18(万)30(万)如果我们分别将2010、2011、2012、2013定义为第一、二、三、四年.现在你有两个函数模型:二次函数模型f (x )=ax 2+bx +c (a ≠0),指数函数模型g (x )=a ·b x +c (a ≠0,b >0,b ≠1),哪个模型能更好地反映该公司年销量y 与年份x 的关系?[解] 建立年销量y 与年份x 的函数,可知函数必过点(1,8),(2,18),(3,30). (1)构造二次函数模型f (x )=ax 2+bx +c (a ≠0), 将点坐标代入, 可得⎩⎪⎨⎪⎧a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得a =1,b =7,c =0,则f (x )=x 2+7x ,故f (4)=44,与计划误差为1.(2)构造指数函数模型g (x )=a ·b x +c (a ≠0,b >0,b ≠1), 将点坐标代入,可得⎩⎪⎨⎪⎧ab +c =8,ab 2+c =18,ab 3+c =30,解得a =1253,b =65,c =-42,则g (x )=1253·⎝⎛⎭⎫65x -42,故g (4)=1253·⎝⎛⎭⎫654-42=44.4,与计划误差为1.4.由(1)(2)可得,f (x )=x 2+7x 模型能更好地反映该公司年销量y 与年份x 的关系. [类题通法]不同函数模型的选取标准不同的函数模型能刻画现实世界中不同的变化规律: (1)线性函数增长模型适合于描述增长速度不变的变化规律;(2)指数函数增长模型适合于描述增长速度急剧的变化规律;(3)对数函数增长模型适合于描述增长速度平缓的变化规律;(4)幂函数增长模型适合于描述增长速度一般的变化规律.因此,需抓住题中蕴含的数学信息,恰当、准确地建立相应变化规律的函数模型来解决实际问题.[活学活用]某学校为了实现100万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且奖金y随生源利润x的增加而增加,但奖金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?解:借助工具作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(图略).观察图象可知,在区间[5,100]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y=0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.12.搞错函数的变化规律而致误[典例]下列函数中随x的增大而增大且速度最快的是()A.y=1100ex B.y=100ln x C.y=x100D.y=100·2x [解析]指数爆炸式形如指数函数.又e>2,∴1100ex比100·2x增大速度快.[答案] A [易错防范]1.影响指数型函数增长速度的量是指数函数的底数,而并非其系数,本题易发生误认为100>1100,所以100·2x比1100ex增大速度快的错误结论.2.函数y=a·b x+c(b>0,且b≠1,a≠0)图象的增长特点是随着自变量x的增大,函数值增大的速度越来越快(底数b>1,a>0),常形象地称为指数爆炸.[活学活用]四人赛跑,假设他们跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关。
1.1集__合1.1.1 集合的含义与表示 第一课时 集合的含义集合的概念[提出问题] 观察下列实例: (1)某公司的所有员工;(2)平面内到定点O 的距离等于定长d 的所有的点;(3)不等式组⎩⎪⎨⎪⎧x +1≥3,x 2≤9的整数解;(4)方程x 2-5x +6=0的实数根; (5)某中学所有较胖的同学.问题1:上述实例中的研究对象各是什么? 提示:员工、点、整数解、实数根、较胖的同学. 问题2:你能确定上述实例的研究对象吗? 提示:(1)(2)(3)(4)的研究对象可以确定.问题3:上述哪些实例的研究对象不能确定?为什么?提示:(5)的研究对象不能确定,因为“较胖”这个标准不明确,故无法确定. [导入新知] 元素与集合的概念 定义表示元素 一般地,我们把研究对象统称为元素 通常用小写拉丁字母a ,b ,c ,…表示 集合把一些元素组成的总体叫做集合(简称为集)通常用大写拉丁字母A ,B ,C ,…表示[化解疑难]准确认识集合的含义(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.元素的特性及集合相等[提出问题]问题1:“知识点一”中的实例(3)组成的集合的元素是什么?提示:2,3.问题2:“知识点一”中的实例(4)组成的集合的元素是什么?提示:2,3.问题3:“知识点一”中的实例(3)与实例(4)组成的集合有什么关系?提示:相等.[导入新知]1.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.集合元素的特性集合元素的特性:确定性、互异性、无序性.[化解疑难]对集合中元素特性的理解(1)确定性:作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(2)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如由1,2,3构成的集与3,2,1构成的集合是同一个集合.元素与集合的关系及常用数集的记法[提出问题]某中学2017年高一年级20个班构成一个集合.问题1:高一(6)班、高一(16)班是这个集合中的元素吗?提示:是这个集合的元素.问题2:高二(3)班是这个集合中的元素吗?为什么? 提示:不是.高一年级这个集合中没有高二(3)班这个元素. [导入新知]1.元素与集合的关系(1)如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . (2)如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A . 2.常用的数集及其记法常用的数集 自然数集正整数集 整数集 有理数集实数集 记法NN *或N +ZQR[化解疑难]1.对“∈”和“∉”的理解(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a 与一个集合A 而言,只有“a ∈A ”与“a ∉A ”这两种结果.(2)“∈”和“∉”具有方向性,左边是元素,右边是集合,形如R ∈0是错误的. 2.常用数集关系网集合的基本概念[例1] (1)上到点A 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数是( )A .2B .3C .4D .5(2)判断下列说法是否正确,并说明理由. ①某个公司里所有的年轻人组成一个集合; ②由1,32,64,⎪⎪⎪⎪-12,12组成的集合有五个元素;③由a ,b ,c 组成的集合与由b ,a ,c 组成的集合是同一个集合.[解] (1)选A “接近于0的数”“比较小的正整数”标准不明确,即元素不确定,所以①②不是集合.同样,“2的近似值”也不明确精确到什么程度,因此很难判定一个数,比如2是不是它的近似值,所以⑤也不是一个集合.③④能构成集合.(2)①不正确.因为“年轻人”没有确定的标准,对象不具有确定性,所以不能组成集合. ②不正确.由于32=64,⎪⎪⎪⎪-12=12,由集合中元素的互异性知,这个集合是由1,32,12这三个元素组成的.③正确.集合中的元素相同,只是次序不同,但它们仍表示同一个集合. [类题通法]判断一组对象能否组成集合的标准及其关注点(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.[活学活用]判断下列每组对象能否构成一个集合. (1)著名的数学家;(2)某校2017年在校的所有高个子同学; (3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解; (5)平面直角坐标系内第一象限的一些点.解:(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合.(2)与(1)类似,也不能构成集合.(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)类似于(3),也能构成集合.(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.元素与集合的关系[例2](1)设集合A只含有一个元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A(2)下列所给关系正确的个数是()①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2C.3 D.4[解析](1)由元素与集合的关系可知,a∈A.(2)①π∈R显然是正确的;②3是无理数,而Q表示有理数集,∴3∉Q,正确;③N*表示不含0的自然数集,∴0∉N*,③错误;④|-4|=4∈N*,④错误,所以①②是正确的.[答案](1)C(2)B[类题通法]判断元素与集合间关系的方法判断一个对象是否为某个集合的元素,就是判断这个对象是否具有这个集合的元素具有的共同特征.如果一个对象是某个集合的元素,那么这个对象必具有这个集合的元素的共同特征.[活学活用]给出下列说法:①R中最小的元素是0;②若a∈Z,则-a∉Z;③若a∈Q,b∈N*,则a+b∈Q.其中正确的个数为()A.0B.1C.2 D.3解析:选B实数集中没有最小的元素,故①不正确;对于②,若a∈Z,则-a也是整数,故-a∈Z,所以②也不正确;只有③正确.集合中元素的特性及应用[例3]已知集合A中含有两个元素a和a,若1∈A,求实数a的值.[解]若1∈A,则a=1或a2=1,即a=±1.当a =1时,a =a 2,集合A 中有一个元素,∴a ≠1. 当a =-1时,集合A 中含有两个元素1,-1,符合互异性.∴a =-1. [类题通法]关注元素的互异性根据集合中元素的确定性,可以解出字母的所有可能取值,但要时刻关注集合中元素的三个特性,尤其是互异性,解题后要注意进行检验.[活学活用]已知集合A 中含有三个元素1,0,x ,若x 2∈A ,求实数x 的值.解:∵x 2∈A ,∴x 2是集合A 中的元素.又∵集合A 中含有3个元素,∴需分情况讨论:①若x 2=0,则x =0,此时集合A 中有两个元素0,不符合互异性,舍去;②若x 2=1,则x =±1.当x =1时,此时集合A 中有两个元素1,舍去;当x =-1时,此时集合A 中有三个元素1,0,-1,符合题意;③若 x 2=x ,则x =0或x =1,不符合互异性,都舍去.综上可知,x =-1.1.警惕集合元素的互异性[典例] 若集合A 中有三个元素x ,x +1,1,集合B 中也有三个元素x ,x 2+x ,x 2,且A =B ,则实数x 的值为________.[解析] ∵A =B ,∴⎩⎪⎨⎪⎧ x +1=x 2,1=x 2+x 或⎩⎪⎨⎪⎧x +1=x 2+x ,1=x 2.解得x =±1.经检验,x =1不适合集合元素的互异性,而x =-1适合. ∴x =-1. [答案] -1 [易错防范]1.上面例题易由方程组求得x=±1后,忽视对求出的值进行检验,从而得出错误的结论.2.当集合中元素含字母并要求对其求值时,求出的值一定要加以检验,看是否符合集合元素的互异性.[成功破障]若集合A中含有三个元素a-3,2a-1,a2-4,且-3∈A,则实数a的值为________.解析:①若a-3=-3,则a=0,此时A={-3,-1,-4},满足题意.②若2a-1=-3,则a=-1,此时A={-4,-3,-3},不满足元素的互异性.③若a2-4=-3,则a=±1.当a=1时,A={-2,1,-3},满足题意;当a=-1时,由②知不合题意.综上可知a=0或a=1.答案:0或1[随堂即时演练]1.下列选项中能构成集合的是()A.高一年级跑得快的同学B.中国的大河C.3的倍数D.有趣的书籍解析:选C根据集合的定义,选项A,B,D都不具备确定性.2.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是() A.梯形B.平行四边形C.菱形D.矩形解析:选A由于a,b,c,d四个元素互不相同,故它们组成的四边形的四条边都不相等.3.有下列说法:①集合N与集合N*是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的有________(填序号).解析:因为集合N*表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④4.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.解析:代入验证,若a=2,则6-2=4∈A,符合题意;若a=4,则6-4=2∈A,符合题意;若a=6,则6-6=0∉A,不符合题意,舍去.所以a=2或a=4.答案:2或45.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.解:因为集合A,B相等,则x=0或y=0.①当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.②当y=0时,x=x2,解得x=0或x=1.由①知x=0应舍去.综上知x=1,y=0.[课时达标检测]一、选择题1.下列判断正确的个数为()(1)所有的等腰三角形构成一个集合.(2)倒数等于它自身的实数构成一个集合.(3)素数的全体构成一个集合.(4)由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3 D.4解析:选C(1)正确;(2)若1a=a,则a2=1,∴a=±1,构成的集合为{1,-1},∴(2)正确;(3)也正确,任何一个素数都在此集合中,不是素数的都不在;(4)不正确,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故选C.2.设不等式3-2x <0的解集为M ,下列正确的是( ) A .0∈M,2∈M B .0∉M,2∈M C .0∈M,2∉MD .0∉M,2∉M解析:选B 从四个选项来看,本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可.当x =0时,3-2x =3>0,所以0不属于M ,即0∉M ;当x =2时,3-2x =-1<0,所以2属于M ,即2∈M .3.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x ≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于选项A 中P ,Q 元素完全相同,所以P 与Q 表示同一个集合,而选项B ,C ,D 中元素不相同,所以P 与Q 不能表示同一个集合.4.已知集合M 中的元素x 满足x =a +b 2,其中a ,b ∈Z ,则下列实数中不属于集合M 中元素的个数是( )①0;②-1;③32-1;④23-22;⑤8;⑥11-2. A .0 B .1 C .2 D .3解析:选A 当a =b =0时,x =0;当a =-1,b =0时,x =-1;当a =-1,b =3时,x =-1+32;23-22=2(3+22)(3-22)(3+22)=6+42,即a =6,b =4;当a =0,b =2时,x=22=8;11-2=1+2(1-2)(1+2)=-1-2,即a =-1,b =-1.综上所述:0,-1,32-1,23-22,8,11-2都是集合M 中的元素.5.由实数-a ,a ,|a |,a 2所组成的集合最多含有________个元素.( ) A .1 B .2 C .3D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a ≠0时,a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,-a ,a <0,所以一定与a 或-a 中的一个一致.故组成的集合中最多有两个元素.二、填空题6.方程x 2-2x -3=0的解集与集合A 相等,若集合A 中的元素是a ,b ,则a +b =________.解析:∵方程x 2-2x -3=0的解集与集合A 相等, ∴a ,b 是方程x 2-2x -3=0的两个根, ∴a +b =2. 答案:27.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ______A ,ab _____A .(填“∈”或“∉”)解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A . 答案:∉ ∈8.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A ,且3a ∈A ,则a 的值为________.解析:∵a ∈A ,且3a ∈A ,∴⎩⎪⎨⎪⎧a <6,3a <6, 解得a <2. 又∵a ∈N , ∴a =0或a =1. 答案:0或1 三、解答题9.已知集合M 由三个元素-2,3x 2+3x -4,x 2+x -4组成,若2∈M ,求x . 解:当3x 2+3x -4=2时,即x 2+x -2=0,x =-2或x =1,经检验,x =-2,x =1均不合题意;当x 2+x -4=2时,即x 2+x -6=0,x =-3或x =2,经检验,x =-3或x =2均合题意.∴x =-3或x =2.10.设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解:(1)由集合中元素的互异性可知,x ≠3,且x ≠x 2-2x ,x 2-2x ≠3. 解得x ≠-1且x ≠0,且x ≠3. (2)∵-2∈A ,∴x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, ∴x =- 2.11.数集M 满足条件:若a ∈M ,则1+a1-a∈M (a ≠±1且a ≠0).若3∈M ,则在M 中还有三个元素是什么?解:∵3∈M , ∴1+31-3=-2∈M , ∴1+(-2)1-(-2)=-13∈M ,∴1+⎝⎛⎭⎫-131-⎝⎛⎭⎫-13=2343=12∈M .又∵1+121-12=3∈M ,∴在M 中还有元素-2,-13,12.12.数集A 满足条件:若a ∈A ,则11-a ∈A (a ≠1).(1)若2∈A ,试求出A 中其他所有元素;(2)自己设计一个数属于A ,然后求出A 中其他所有元素;(3)从上面两小题的解答过程中,你能悟出什么道理?并大胆证明你发现的这个“道理”.解:根据已知条件“若a ∈A ,则11-a ∈A (a ≠1)”逐步推导得出其他元素.(1)其他所有元素为-1,12.(2)假设-2∈A ,则13∈A ,则32∈A .其他所有元素为13,32.(3)A 中只能有3个元素,它们分别是a ,11-a ,a -1a ,且三个数的乘积为-1.证明如下:由已知,若a ∈A ,则11-a ∈A 知,11-11-a =a -1a ∈A ,11-a -1a =a ∈A .故A 中只能有a ,11-a,a -1a 这3个元素.下面证明三个元素的互异性:若a =11-a ,则a 2-a +1=0有解,因为Δ=1-4=-3<0,所以方程无实数解,故a ≠11-a. 同理可证,a ≠a -1a ,11-a≠a -1a .结论得证.第二课时 集合的表示列举法[提出问题] 观察下列集合:(1)中国古代四大发明组成的集合; (2)20的所有正因数组成的集合.问题1:上述两个集合中的元素能一一列举出来吗?提示:能.(1)中的元素为造纸术、印刷术、指南针、火药,(2)中的元素为1,2,4,5,10,20. 问题2:如何表示上述两个集合? 提示:用列举法表示.[导入新知]列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.[化解疑难]使用列举法表示集合的四个注意点(1)元素间用“,”分隔开,其一般形式为{a1,a2,…,a n};(2)元素不重复,满足元素的互异性;(3)元素无顺序,满足元素的无序性;(4)对于含有有限个元素且个数较少的集合,采取该方法较合适;若元素个数较多或有无限个且集合中的元素呈现一定的规律,在不会产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.描述法[提出问题]观察下列集合:(1)不等式x-2≥3的解集;(2)函数y=x2-1的图象上的所有点.问题1:这两个集合能用列举法表示吗?提示:不能.问题2:如何表示这两个集合?提示:利用描述法.[导入新知]描述法(1)定义:用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[化解疑难]1.描述法表示集合的条件对于元素个数不确定且元素间无明显规律的集合,不能将它们一一列举出来,可以将集合中元素的共同特征描述出来,即采用描述法.2.描述法的一般形式它的一般形式为{x∈A|p(x)},其中的x表示集合中的代表元素,A指的是元素的取值范围;p(x)则是表示这个集合中元素的共同特征,其中“|”将代表元素与其特征分隔开来.一般来说,集合元素x 的取值范围A 需写明确,但若从上下文的关系看,x ∈A 是明确的,则x ∈A 可以省略,只写元素x .用列举法表示集合[例1] (1)设集合A ={1,2,3},B ={1,3,9},若x ∈A 且x ∉B ,则x =( ) A .1 B .2 C .3D .9(2)用列举法表示下列集合:①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[解] 选B (1)∵x ∈A , ∴x =1,2,3.又∵x ∉B ,∴x ≠1,3,9,故x =2.(2)①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集合是{0,2,4,6,8,10}.②方程x 2=x 的实数解是x =0或x =1,所以方程x 2=x 的所有实数解组成的集合为{0,1}. ③将x =0代入y =2x +1,得y =1,即交点是(0,1),故直线y =2x +1与y 轴的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.[类题通法]用列举法表示集合的步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.[活学活用]已知集合A={-2,-1,0,1,2,3},对任意a∈A,有|a|∈B,且B中只有4个元素,求集合B.解:对任意a∈A,有|a|∈B.因为集合A={-2,-1,0,1,2,3},由-1,-2,0,1,2,3∈A,知0,1,2,3∈B.又因为B中只有4个元素,所以B={0,1,2,3}.用描述法表示集合[例2](1)①A={x|x2-x=0},则1____A,-1____A;②(1,2)________{(x,y)|y=x+1}.(2)用描述法表示下列集合:①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.[解](1)①将1代入方程,成立;将-1代入方程,不成立.故1∈A,-1∉A.②将x=1,y=2代入y=x+1,成立,故填“∈”.(2)①偶数可用式子x=2n,n∈Z表示,但此题要求为正偶数,故限定n∈N*,所以正偶数集可表示为{x|x=2n,n∈N*}.②设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故x=3n+2,n∈N.所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.③坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.[答案](1)①∈∉②∈[类题通法]利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x ∈R|x <1}不能写成{x <1}.(2)所有描述的内容都要写在花括号内.例如,{x ∈Z|x =2k },k ∈Z ,这种表达方式就不符合要求,需将k ∈Z 也写进花括号内,即{x ∈Z|x =2k ,k ∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R|x 2-2x +1=0},也可写成{x |x 2-2x +1=0}.(5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等. [活学活用] 下列三个集合: ①A ={x |y =x 2+1}; ②B ={y |y =x 2+1}; ③C ={(x ,y )|y =x 2+1}. (1)它们是不是相同的集合? (2)它们各自的含义分别是什么?解:(1)由于三个集合的代表元素互不相同,故它们是互不相同的集合.(2)集合A ={x |y =x 2+1}的代表元素是x ,且x ∈R ,所以{x |y =x 2+1}=R ,即A =R ;集合B ={y |y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以{y |y =x 2+1}={y |y ≥1}.集合C ={(x ,y )|y =x 2+1}的代表元素是(x ,y ),是满足y =x 2+1的数对.可以认为集合C 是坐标平面内满足y =x 2+1的点(x ,y )构成的集合,其实就是抛物线y =x 2+1的图象.集合表示的应用[例3] (1)集合A ) A .{x |x =2n ±1,n ∈N} B .{x |x =(-1)n (2n -1),n ∈N} C .{x |x =(-1)n (2n +1),n ∈N} D .{x |x =(-1)n -1(2n +1),n ∈N}(2)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪62+x ∈N .①试判断元素1,2与集合B 的关系; ②用列举法表示集合B .[解] 选C (1)观察规律,其绝对值为奇数排列,且正负相间,且第一个为正数,故应选C.(2)①当x =1时,62+1=2∈N ; 当x =2时,62+2=32∉N.所以1∈B,2∉B . ②∵62+x∈N ,x ∈N , ∴2+x 只能取2,3,6.∴x 只能取0,1,4.∴B ={0,1,4}. [类题通法]判断元素与集合间关系的方法(1)用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .(2)用描述法给出的集合,判断元素与集合的关系时就比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?…,其次要清楚元素的共同特征是什么,最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.[活学活用]用列举法表示集合A ={(x ,y )|y =x 2,-1≤x ≤1,且x ∈Z}. 解:由-1≤x ≤1,且x ∈Z ,得x =-1,0,1,当x =-1时,y =1;当x =0时,y =0;当x =1时,y =1. ∴A ={(-1,1),(0,0),(1,1)}.1.集合与方程的综合应用[典例] 集合A ={x |ax 2+2x +1=0,a ∈R}中只有一个元素,求a 的取值范围.[解]当a=0时,原方程变为2x+1=0,,符合题意;此时x=-12当a≠0时,方程ax2+2x+1=0为一元二次方程,当Δ=4-4a=0,即a=1时,原方程的解为x=-1,符合题意.故当a=0或a=1时,原方程只有一个解,此时A中只有一个元素.[多维探究]解答上面例题时,a=0这种情况极易被忽视,对于方程“ax2+2x+1=0”有两种情况:一是a=0,即它是一元一次方程;二是a≠0,即它是一元二次方程,也只有在这种情况下,才能用判别式Δ来解决问题.求解集合与方程问题时,要注意相关问题的求解,如:1.在本例条件下,若A中至多有一个元素,求a的取值范围.解:A中至多有一个元素,即A中有一个元素或没有元素.当A中只有一个元素时,由例题可知,a=0或a=1.当A中没有元素时,Δ=4-4a<0,即a>1.故当A中至多有一个元素时,a的取值范围为{a|a=0或a≥1}.2.在本例条件下,若A中至少有一个元素,求a的取值范围.解:A中至少有一个元素,即A中有一个或两个元素.由例题可知,当a=0或a=1时,A中有一个元素;当A中有两个元素时,Δ=4-4a>0,即a<1.∴A中至少有一个元素时,a的取值范围为{a|a≤1}.3.若1∈A,则a为何值?解:∵1∈A,∴a+2+1=0,即a=-3.4.是否存在实数a,使A={1},若存在,求出a的值;若不存在,说明理由.解:∵A={1},∴1∈A,∴a+2+1=0,即a=-3.又当a=-3时,由-3x2+2x+1=0,得x=-1或x=1,3即方程ax 2+2x +1=0存在两个根-13和1,此时A =⎩⎨⎧⎭⎬⎫-13,1,与A ={1}矛盾.故不存在实数a ,使A ={1}.[随堂即时演练]1.方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D 解方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧x =5,y =-4,故解集为{(5,-4)}.2.下列四个集合中,不同于另外三个的是( ) A .{y |y =2} B .{x =2}C .{2}D .{x |x 2-4x +4=0}解析:选B 集合{x =2}表示的是由一个等式组成的集合,其他选项所表示的集合都是含有一个元素2.3.给出下列说法:①平面直角坐标内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{2,-2}; ③集合{(x ,y )|y =1-x }与集合{x |y =1-x }是相等的. 其中正确的是________(填序号).解析:直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2,解为有序实数对(2,-2),解集为{(2,-2)}或⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧ x =2,y =-2,故②不正确; 集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,前者是有序实数对,后者是实数,因此这两个集合不相等,故③不正确.答案:①4.已知A={-1,-2,0,1},B={x|x=|y|,y∈A},则B=________.解析:∵|-1|=1,|-2|=2,且集合中的元素具有互异性,∴B={0,1,2}.答案:{0,1,2}5.用适当的方法表示下列集合:(1)一年中有31天的月份的全体;(2)大于-3.5小于12.8的整数的全体;(3)梯形的全体构成的集合;(4)所有能被3整除的数的集合;(5)方程(x-1)(x-2)=0的解集;(6)不等式2x-1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}.(2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}.(3){x|x是梯形}或{梯形}.(4){x|x=3n,n∈Z}.(5){1,2}.(6){x|x>3}.[课时达标检测]一、选择题1.下列集合的表示,正确的是()A.{2,3}≠{3,2}B.{(x,y)|x+y=1}={y|x+y=1}C.{x|x>1}={y|y>1}D.{(1,2)}={(2,1)}解析:选C{2,3}={3,2},故A不正确;{(x,y)|x+y=1}中的元素为点(x,y),{y|x+y =1}中的元素为实数y,{(x,y)|x+y=1}≠{y|x+y=1},故B不正确;{(1,2)}中的元素为点(1,2),而{(2,1)}中的元素为点(2,1),{(1,2)}≠{(2,1)},故D不正确.2.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M解析:选D 当x ,y ,z 都大于零时,代数式的值为4,所以4∈M .当x ,y ,z 都小于零时,代数式的值为-4,所以-4∈M .当x ,y ,z 有两个为正,一个为负时,或两个为负,一个为正时,代数式的值为0.所以0∈M .综上知选D.3.集合{x ∈N *|x -3<2}的另一种表示法是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:选B ∵x -3<2,x ∈N *, ∴x <5,x ∈N *, ∴x =1,2,3,4.4.已知集合A ={x |x =2m -1,m ∈Z},B ={x |x =2n ,n ∈Z},且x 1,x 2∈A ,x 3∈B ,则下列判断不正确的是( )A .x 1·x 2∈AB .x 2·x 3∈BC .x 1+x 2∈BD .x 1+x 2+x 3∈A 解析:选D 集合A 表示奇数集,B 表示偶数集, ∴x 1,x 2是奇数,x 3是偶数,∴x 1+x 2+x 3应为偶数,即D 是错误的.5.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C 由题意知集合P *Q 的元素为点,当a =1时,集合P *Q 的元素为:(1,4),(1,5),(1,6),(1,7),(1,8)共5个元素.同样当a =2,3时,集合P *Q 的元素个数都为5个,当a =4时,集合P *Q 中元素为:(4,5),(4,6),(4,7),(4,8)共4个.因此P *Q 中元素的个数为19.二、填空题6.若集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则a -b =________.解析:由题意知a ≠0,a +b =0,b =1,则a =-1, 所以a -b =-2. 答案:-27.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉{x |2x +a >0}, ∴2×1+a ≤0,即a ≤-2. 答案:{a |a ≤-2}8.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________. 解析:由-5∈{x |x 2-ax -5=0},得(-5)2-a ×(-5)-5=0,所以a =-4,所以{x |x 2-4x +4=0}={2},所以集合中所有元素之和为2.答案:2 三、解答题9.已知集合A ={a +3,(a +1)2,a 2+2a +2},若1∈A ,求实数a 的值. 解:①若a +3=1,则a =-2,此时A ={1,1,2},不符合集合中元素的互异性,舍去. ②若(a +1)2=1,则a =0或a =-2. 当a =0时,A ={3,1,2},满足题意; 当a =-2时,由①知不符合条件,故舍去. ③若a 2+2a +2=1,则a =-1, 此时A ={2,0,1},满足题意. 综上所述,实数a 的值为-1或0. 10.用适当的方法表示下列集合: (1)比5大3的数;(2)方程x 2+y 2-4x +6y +13=0的解集;(3)二次函数y =x 2-10的图象上的所有点组成的集合. 解:(1)比5大3的数显然是8,故可表示为{8}.(2)方程x 2+y 2-4x +6y +13=0可化为(x -2)2+(y +3)2=0,∴⎩⎪⎨⎪⎧x =2,y =-3,∴方程的解集为{(2,-3)}.(3)“二次函数y =x 2-10的图象上的所有点”用描述法表示为{(x ,y )|y =x 2-10}.11.(1)已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪61+x ∈Z ,求M ;(2)已知集合C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎪⎪61+x∈Z x ∈N ,求C . 解:(1)∵x ∈N ,61+x ∈Z ,∴1+x 应为6的正约数. ∴1+x =1,2,3,6,即x =0,1,2,5. ∴M ={0,1,2,5}. (2)∵61+x ∈Z ,且x ∈N ,∴1+x 应为6的正约数,∴1+x =1,2,3,6,此时61+x 分别为6,3,2,1,∴C ={6,3,2,1}.12.若集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0有且只有一个元素,试求出实数k 的值,并用列举法表示集合A .解:当k =0时,方程组⎩⎪⎨⎪⎧ y =kx 2-2x -1,y =0可化为⎩⎪⎨⎪⎧y =-2x -1,y =0,解得⎩⎪⎨⎪⎧x =-12,y =0,此时集合A 为-12,0;当k ≠0时,要使集合A 有且只有一个元素,则方程kx 2-2x -1=0有且只有一个根,所以⎩⎪⎨⎪⎧k ≠0,Δ=(-2)2+4k =0,解得k =-1,代入⎩⎪⎨⎪⎧y =kx 2-2x -1,y =0中得⎩⎪⎨⎪⎧y =-x 2-2x -1,y =0, 解得⎩⎪⎨⎪⎧x =-1,y =0,即A ={(-1,0)}.综上可知,当k =0时,A =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫-12,0;当k =-1时,A ={(-1,0)}.1.1.2 集合间的基本关系子 集[提出问题]具有北京市东城区户口的人组成集合A ,具有北京市户口的人组成集合B . 问题1:集合A 中元素与集合B 有关系吗? 提示:有关系,集合A 中每一个元素都属于集合B . 问题2:集合A 与集合B 有什么关系? 提示:集合B 包含集合A . [导入新知] 子集的概念定义一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集记法与读法记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”)图示结论(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,若A⊆B,且B⊆C,则A⊆C[化解疑难]对子集概念的理解(1)集合A是集合B的子集的含义是:集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A中存在着不是集合B的元素,那么集合A不包含于B,或B不包含A,此时记作A B或B⊉A.(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N,而不能写成{0}∈N;“∈”只能用于元素与集合之间,如0∈N,而不能写成0⊆N.集合相等[提出问题]设A={x|x是有三条边相等的三角形},B={x|x是等边三角形}.问题1:三边相等的三角形是何三角形?提示:等边三角形.问题2:两集合中的元素相同吗?提示:相同.问题3:A是B的子集吗?B是A的子集吗?提示:是.是.[导入新知]集合相等的概念如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.[化解疑难]对两集合相等的认识。
高一数学第七讲 数列教师用一、数列的最大与最小项和最值问题1.直接求函数)(n f a n =的最大值或最小值,根据)(n f 的类型,并作出相应的变换,运用配方、重要不等式性质或根据)(n f 本身的性质求出)(n f 的最值。
2.研究数列)(n f a n =的正数与负数项的情况,这是求数列}{n a 的前n 项和n S 的最大值或最小值的一种重要方法. 二、数列的求和 (一)常用方法1.拆项求和法:将一个数列拆成若干个简单数列(如等差数列、等比数列、常数数列等等),然后分别求和.2.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.3.裂项求和法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项.4.错位求和法:将一个数列的每一项都作相同的变换,然后将得到的新数列错动一个位置与原数列的各项相减,这是仿照推导等比数列前n 项和公式的方法. (二)学习要点:“数列求和”是数列中的重要内容,在中学高考X 围内,学习数列求和不需要学习任何理论,上面所述求和方法只是将一些常用的数式变换技巧运用于数列求和之中. 在上面提到的方法中,“拆项”、“并项”、“裂项”方法使用率比较高。
三、数列其他知识1.(1) {}{}成等比数列成等差数列na n ba ⇔{}Bn An S B An a a n n n +=⇔+=⇔2成等差数列(2){}{}成等比数列成等比数列k n n a a ⇒{}{}成等差数列成等比数列n b a n a a n log 0⇔>2.递推数列:(1)能根据递推公式写出数列的前n 项(2)由n n n n S a a S f ,,0),(求= 解题思路:利用)2(,1≥-=-n S S a n n n 变化(1)已知0),(11=--n n a S f (2)已知0),(1=--n n n S S S f 例1(1)已知n a =,则 n S =___________。
_1.1集__合1.1.1 集合的含义与表示 第一课时 集合的含义集合的概念[提出问题] 观察下列实例:(1)山东天成书业集团的所有员工;(2)平面内到定点O 的距离等于定长d 的所有的点;(3)不等式组⎩⎪⎨⎪⎧x +1≥3x 2≤9的整数解;(4)方程x 2-5x +6=0的实数根; (5)某中学所有较胖的同学.问题1:上述实例中的研究对象各是什么? 提示:员工、点、整数解、实数根、较胖的同学. 问题2:你能确定上述实例的研究对象吗? 提示:(1)(2)(3)(4)的研究对象可以确定.问题3:上述哪些实例的研究对象不能确定?为什么?提示:(5)的研究对象不能确定,因为“较胖”这个标准不明确,故无法确定. [导入新知] 元素与集合的概念定义表示元素一般地,我们把研究对象统称为元素通常用小写拉丁字母a,b,c,…表示集合把一些元素组成的总体叫做集合(简称为集)通常用大写拉丁字母A,B,C,…表示[化解疑难]准确认识集合的含义(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.元素的特性及集合相等[提出问题]问题1:上述实例(3)组成的集合的元素是什么?提示:2,3.问题2:上述实例(4)组成的集合的元素是什么?提示:2,3.问题3:实例(3)与实例(4)组成的集合有什么关系?提示:相等.[导入新知]1.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.集合元素的特性集合元素的特性:确定性、互异性、无序性.[化解疑难]对集合中元素特性的理解(1)确定性:是指作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.(2)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如1,2,3与3,2,1构成的集合是同一个集合.元素与集合的关系及常用数集的记法[提出问题]某中学2013年高一年级20个班构成一集合.问题1:高一(6)班、高一(16)班是这个集合的元素吗?提示:是这个集合的元素.问题2:高二(3)班是这个集合中的元素吗?为什么?提示:不是.高一年级这个集合中没有高二(3)班这个元素.[导入新知]1.元素与集合的关系(1)如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.2.常用的数集及其记法常用的数集自然数集正整数集整数集有理数集实数集记法N N*或N+Z Q R[化解疑难]1.对∈和∉的理解(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a ∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.2.常用数集关系网实数集R⎩⎪⎨⎪⎧有理数集Q⎩⎨⎧整数集Z⎩⎨⎧⎭⎪⎬⎪⎫正整数集N*{0}自然数集N负整数集分数集无理数集集合的基本概念[例1](1)a 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数是() A.2B.3C.4 D.5(2)判断下列说法是否正确,并说明理由. ①某个公司里所有的年轻人组成一个集合; ②由1,32,64,⎪⎪⎪⎪-12,12组成的集合有五个元素; ③由a ,b ,c 组成的集合与由b ,a ,c 组成的集合是同一个集合.[解析] (1)“接近于0的数”“比较小的正整数”标准不明确,即元素不确定,所以①②不是集合.同样,“2的近似值”也不明确精确到什么程度,因此很难判定一个数,比如2是不是它的近似值,所以⑤也不是一个集合.③④能构成集合.[答案] A(2)[解] ①不正确.因为“年轻人”没有确定的标准,对象不具有确定性,所以不能组成集合. ②不正确.由于32=64,⎪⎪⎪⎪-12=12,由集合中元素的互异性知,这个集合是由1,32,12这三个元素组成的.③正确.集合中的元素相同,只是次序不同,所以它们仍表示同一个集合. [类题通法]判断一组对象能否组成集合的标准及其关注点(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.[活学活用]下列说法正确的是( )A .小明身高1.78 m ,则他应该是高个子的总体这一集合中的一个元素B .所有大于0小于10的实数可以组成一个集合,该集合有9个元素C .平面上到定直线的距离等于定长的所有点的集合是一条直线D .任意改变一个集合中元素的顺序,所得集合仍和原来的集合相等解析:选D A 中的高个子标准不能确定,因而不能构成集合;B 中对象能构成集合,但元素有无穷多个;C 中对象构成的是两条直线,D 反映的是集合元素的无序性.元素与集合的关系[例2] (1)设集合A A .0∈A B .a ∉A C .a ∈AD .a =A(2)下列所给关系正确的个数是( ) ①π∈R ;② 3∉Q ;③0∈N *;④|-4|∉N * A .1B .2C.3 D.4[解析](1)由元素与集合的关系可知,a∈A.(2)①π∈R显然是正确的;②3是无理数,而Q表示有理数集,∴3∉Q,正确;③N*表示不含0的自然数集,∴0∉N*,③错误;④|-4|=4∈N*,④错误,所以①②是正确的.[答案](1)C(2)B[类题通法]判断元素与集合间关系的方法判断一个对象是否为某个集合的元素,就是判断这个对象是否具有这个集合的元素具有的共同特征.如果一个对象是某个集合的元素,那么这个对象必具有这个集合的元素的共同特征.[活学活用]设不等式3-2x<0的解集为M,下列正确的是()A.0∈M,2∈M B.0∉M,2∈MC.0∈M,2∉M D.0∉M,2∉M解析:选B从四个选项来看,本题是判断0和2与集合M间的关系,因此只需判断0和2是否是不等式3-2x<0的解即可.当x=0时,3-2x=3>0,所以0不属于M,即0∉M;当x=2时,3-2x=-1<0,所以2属于M,即2∈M.集合中元素的特性及应用[例3][解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A有一个元素,∴a≠1.当a=-1时,集合A含有两个元素1,-1,符合互异性.∴a=-1.[类题通法]关注元素的互异性根据集合中元素的确定性,可以解出字母的所有可能取值,但要时刻关注集合中元素的三个特性,尤其是互异性,解题后要注意进行检验.[活学活用]设A表示由a2+2a-3,2,3构成的集合,B表示由2,|a+3|构成的集合,已知5∈A,且5∉B,求a的值.解:∵5∈A,∴a2+2a-3=5,解之得a=2或a=-4.当a=2时,|a+3|=5,当a=-4时,|a+3|=1.又∵5∉B , ∴a =-4.1.警惕集合元素的互异性[典例] 若集合A 中有三个元素,x ,x +1,1,集合B 中也有三个元素x ,x +x 2,x 2,且A =B ,则实数x 的值为________.[解析] ∵A =B ,∴⎩⎪⎨⎪⎧ x +1=x 2,1=x 2+x 或⎩⎪⎨⎪⎧x +1=x 2+x ,1=x 2.解得x =±1.经检验,x =1不适合集合元素的互异性,而x =-1适合. ∴x =-1. [答案] -1 [易错防范]1.上面例题易由方程组求得x =±1后,忽视对求出的值进行检验,从而得出错误的结论. 2.当集合中元素含字母并要求对其求值时,求出的值一定要加以检验,看是否符合集合元素的互异性.[成功破障]若集合A 中含有三个元素a -3,2a -1,a 2-4,且-3∈A ,则实数a 的值为________. 解析:(1)若a -3=-3,则a =0,此时A ={-3,-1,-4},满足题意. (2)若2a -1=-3,则a =-1,此时A ={-4,-3,-3},不满足元素的互异性.(3)若a 2-4=-3,则a =±1.当a =1时,A ={-2,1,-3},满足题意;当a =-1时,由(2)知不合题意.综上可知:a =0或a =1. 答案:0或1[随堂即时演练]1.下列说法正确的是( )A .某班中年龄较小的同学能够形成一个集合B .由1,2,3和 9,1,4组成的集合不相等C .不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素解析:选C A项中元素不确定.B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等.D项中方程的解分别是x1=1,x2=x3=-1.由互异性知,构成的集合含2个元素.2.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是() A.梯形B.平行四边形C.菱形 D.矩形解析:选A由于a、b、c、d四个元素互不相同,故它们组成的四边形的四条边都不相等.3.下列说法中①集合N与集合N+是同一个集合②集合N中的元素都是集合Z中的元素③集合Q中的元素都是集合Z中的元素④集合Q中的元素都是集合R中的元素其中正确的有________.解析:因为集合N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集,所以①③中的说法不正确,②④中的说法正确.答案:②④4.设由2,4,6构成的集合为A,若实数a∈A时,6-a∈A,则a=________.解析:代入验证,若a=2,则6-2=4∈A,符合题意;若a=4,则6-4=2∈A,符合题意;若a=6,则6-6=0∉A,不符合题意,舍去,所以a=2或a=4.答案:2或45.已知集合A中含有两个元素x,y,集合B中含有两个元素0,x2,若A=B,求实数x,y的值.解:因为集合A,B相等,则x=0或y=0.(1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.(2)当y=0时,x=x2,解得x=0或x=1.由(1)知x=0应舍去.综上知:x=1,y=0.[课时达标检测]一、选择题1.下列判断正确的个数为()(1)所有的等腰三角形构成一个集合.(2)倒数等于它自身的实数构成一个集合.(3)质数的全体构成一个集合.(4)由2,3,4,3,6,2构成含有6个元素的集合.A.1 B.2C.3 D.4解析:选C(1)正确,(2)若1a=a,则a2=1,∴a=±1,构成的集合为{1,-1},∴(2)正确,(3)也正确,任何一个质数都在此集合中,不是质数的都不在.(3)正确,(4)不正确,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故选C.2.若a ∈R ,但a ∉Q ,则a 可以是( ) A .3.14 B .-5 C.37D.7解析:选D 由题意知a 是实数但不是有理数,故a 应为无理数. 3.下列各组中集合P 与Q ,表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,|-3|构成的集合B .P 是由π构成的集合,Q 是由3.141 59构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x ≤1的自然数构成的集合,Q 是方程x 2=1的解集解析:选A 由于A 中P 、Q 元素完全相同,所以P 与Q 表示同一个集合,而B 、C 、D 中元素不相同,所以P 与Q 不能表示同一个集合.故选A.4.下列四个说法中正确的个数是( ) ①集合N 中的最小数为1; ②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2; ④所有小的正数组成一个集合; ⑤π∈Q ; ⑥0∉N ; ⑦-3∈Z ; ⑧5∉R . A .0 B .1 C .2D .3解析:选C ①错,因为N 中最小数是0;②错,因为0∈N ,而-0∈N ;③错,当a =1,b =0时,a +b =1;④错,小的正数是不确定的;⑤错,因为π不是有理数;⑥错,因为0是自然数;⑦正确,因为-3是整数;⑧正确,因为5是实数.5.由实数-a ,a ,|a |,a 2所组成的集合最多含有( )个元素. A .1 B .2 C .3D .4解析:选B 当a =0时,这四个数都是0,所组成的集合只有一个元素0.当a ≠0时,a 2=|a |=⎩⎪⎨⎪⎧a ,a >0,-a ,a <0,所以一定与a 或-a 中的一个一致.故组成的集合中有两个元素,故选B.二、填空题6.方程x 2-2x -3=0的解集与集合A 相等,若集合A 中的元素是a ,b ,则a +b =________. 解析:∵方程x 2-2x -3=0的解集与集合A 相等, ∴a ,b 是方程x 2-2x -3=0的两个根, ∴a +b =2. 答案:27.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ________A ,ab ________A .(填∈或∉).解析:∵a 是偶数,b 是奇数, ∴a +b 是奇数,ab 是偶数, 故a +b ∉A ,ab ∈A . 答案:∉ ∈8.若集合A 是不等式x -a >0的解集,且2∉A ,则实数a 的取值范围是________. 解析:∵2∉A ,∴2-a ≤0,即a ≥2. 答案:a ≥2 三、解答题9.设集合A 中含有三个元素3,x ,x 2-2x . (1)求实数x 应满足的条件; (2)若-2∈A ,求实数x .解:(1)由集合中元素的互异性可知,x ≠3,且x ≠x 2-2x ,x 2-2x ≠3. 解之得 x ≠-1且x ≠0,且x ≠3. (2)∵-2∈A ,∴x =-2或x 2-2x =-2. 由于x 2-2x =(x -1)2-1≥-1, ∴x =-2.10.数集M 满足条件:若a ∈M ,则1+a1-a ∈M (a ≠±1且a ≠0).若3∈M ,则在M 中还有三个元素是什么?解:∵3∈M ,∴1+31-3=-2∈M ,∴1+-21--2=-13∈M ,∴1+-131--13=2343=12∈M .又∵1+121-12=3∈M ,∴在M 中还有元素-2,-13,12.第二课时 集合的表示列举法[提出问题] 观察下列集合:(1)中国古代四大发明组成的集合; (2)20的所有正因数组成的集合.问题1:上述两个集合中的元素能一一列举出来吗?提示:能.(1)中的元素为造纸术、印刷术、指南针、火药,(2)中的元素为:1,2,4,5,10,20. 问题2:如何表示上述两个集合? 提示:用列举法表示. [导入新知]列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法. [化解疑难]使用列举法表示集合的四个注意点(1)元素间用“,”分隔开,其一般形式为{a 1,a 2,…,a n }; (2)元素不重复,满足元素的互异性; (3)元素无顺序,满足元素的无序性;(4)对于含有有限个元素且个数较少的集合,采取该方法较合适;若元素个数较多或有无限个且集合中的元素呈现一定的规律,在不会产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.描述法[提出问题] 观察下列集合:(1)不等式x -2≥3的解集;(2)函数y =x 2-1的图象上的所有点.问题1:这两个集合能用列举法表示吗? 提示:不能.问题2:如何表示这两个集合? 提示:利用描述法. [导入新知]描述法(1)定义:用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[化解疑难]1.描述法表示集合的条件对于元素个数不确定且元素间无明显规律的集合,不能将它们一一列举出来,可以将集合中元素的共同特征描述出来,即采用描述法.2.描述法的一般形式它的一般形式为{x ∈A |p (x )},其中的x 表示集合中的代表元素,A 指的是元素的取值范围;p (x )则是表示这个集合中元素的共同特征,其中“|”将代表元素与其特征分隔开来.一般来说集合元素x 的取值范围A 需写明确,但若从上下文的关系看,x ∈A 是明确的,则x ∈A 可以省略,只写元素x .用列举法表示集合[例1] 若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.(1)[解析] 集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4). [答案] B(2)[解] ①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.[类题通法]用列举法表示集合的步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次; (3)用花括号括起来. [活学活用]已知集合A ={-2,-1,0,1,2,3},对任意a ∈A ,有|a |∈B ,且B 中只有4个元素,求集合B . 解:对任意a ∈A ,有|a |∈B . 因为集合A ={-2,-1,0,1,2,3}, 由-1,-2,0,1,2,3∈A ,知0,1,2,3∈B . 又因为B 中只有4个元素, 所以B ={0,1,2,3}.用描述法表示集合[例2] (1)用符号“∈”或“∉”填空:①A ={x |x 2-x =0},则1________A ,-1________A ; ②(1,2)________{(x ,y )|y =x +1}. (2)用描述法表示下列集合: ①正偶数集;②被3除余2的正整数的集合;③平面直角坐标系中坐标轴上的点组成的集合.(1)[解析] ①将1代入方程成立,将-1代入方程不成立,故1∈A ,-1∉A . ②将x =1,y =2代入y =x +1成立,故填∈. [答案] ①∈ ∉ ②∈(2)[解] ①偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.②设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.③坐标轴上的点(x ,y )的特点是横、纵坐标中至少有一个为0,即xy =0,故坐标轴上的点的集合可表示为{(x ,y )|xy =0}.[类题通法]利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x ∈R |x <1}不能写成{x <1}.(2)所有描述的内容都要写在花括号内.例如,{x ∈Z |x =2k },k ∈Z ,这种表达方式就不符合要求,需将k ∈Z 也写进花括号内,即{x ∈Z |x =2k ,k ∈Z }.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R |x 2-2x +1=0},也可写成{x |x 2-2x +1=0}.(5)在不引起混淆的情况下,可省去竖线及代表元素,如{直角三角形},{自然数}等. [活学活用] 下列三个集合: ①A ={x |y =x 2+1}; ②B ={y |y =x 2+1}; ③C ={(x ,y )|y =x 2+1}. (1)它们是不是相同的集合? (2)它们各自的含义分别是什么?解:(1)由于三个集合的代表元素互不相同,故它们是互不相同的集合.(2)集合A ={x |y =x 2+1}的代表元素是x ,且x ∈R ,所以{x |y =x 2+1}=R ,即A =R ;集合B ={y |y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以{y |y =x 2+1}={y |y ≥1}.集合C ={(x ,y )|y =x 2+1}的代表元素是(x ,y ),是满足y =x 2+1的数对.可以认为集合C 是坐标平面内满足y =x 2+1的点(x ,y )构成的集合,其实就是抛物线y =x 2+1的图象.集合表示的应用[例3] (1)集合A =A .{x |x =2n ±1,n ∈N } B .{x |x =(-1)n (2n -1),n ∈N } C .{x |x =(-1)n (2n +1),n ∈N } D .{x |x =(-1)n -1(2n +1),n ∈N }(2)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪62+x ∈N. ①试判断元素1,2与集合B 的关系;②用列举法表示集合B .(1)[解析] 观察规律,其绝对值为奇数排列,且正负相间,且第一个为正数,故应选C. [答案] C(2)[解] ①当x =1时,62+1=2∈N .当x =2时,62+2=32∉N .所以1∈B,2∉B .②∵62+x ∈N ,x ∈N ,∴2+x 只能取2,3,6.∴x 只能取0,1,4.∴B ={0,1,4}. [类题通法]判断元素与集合间关系的方法(1)用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .(2)用描述法给出的集合,判断元素与集合的关系时就比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?……,其次要清楚元素的共同特征是什么,最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.[活学活用]定义集合A ,B 的一种运算:A *B ={x |x =x 1+x 2,其中x 1∈A ,x 2∈B },若A ={1,2,3},B ={1,2},试用列举法表示出集合A *B .解:当x 1=1时,x 2可以取1或2,则x 1+x 2=2或3; 当x 1=2时,x 2可以取1或2,则x 1+x 2=3或4; 当x 1=3时,x 2可以取1或2,则x 1+x 2=4或5. ∴A *B ={2,3,4,5}.1.集合与方程的综合应用[典例] 集合A ={x |ax 2+2x +1=0,a ∈R }中只有一个元素,求a 的取值范围. [解] 当a =0时,原方程变为2x +1=0, 此时x =-12,符合题意;当a ≠0时,方程ax 2+2x +1=0为一元二次方程,Δ=4-4a =0,即a =1,原方程的解为x =-1,符合题意.故当a =0或a =1时,原方程只有一个解,此时A 中只有一个元素. [多维探究]解答上面例题时,a =0这种情况极易被忽视,对于方程“ax 2+2x +1=0”有两种情况:一是a =0,即它是一元一次方程;二是a ≠0,即它是一元二次方程,也只有在这种情况下,才能用判别式Δ来解决问题.求解集合与方程问题时,要注意相关问题的求解,如: (1)在本例条件下,若A 中至多有一个元素,求a 的取值范围. 解:A 中至多含有一个元素,即A 中有一个元素或没有元素. 当A 中只有一个元素时,由本例可知,a =0或1. 当A 中没有元素时,Δ=4-4a <0,即a >1.故当A 中至多有一个元素时,a 的取值范围为a =0或a ≥1. (2)在本例条件下,若A 中至少有一个元素,求a 的取值范围. 解:A 中至少有一个元素,即A 中有一个或两个元素. 由例题可知,当a =0或a =1时,A 中有一个元素; 当A 中有两个元素时,Δ=4-4a >0,即a <1. ∴A 中至少有一个元素时,a 的取值范围为a ≤1. (3)若1∈A ,则a 为何值?解:∵1∈A ,∴a +2+1=0,即a =-3.(4)是否存在实数a ,使A ={1},若存在,求出a 的值;若不存在,说明理由. 解:∵A ={1},∴1∈A ,∴a +2+1=0,即a =-3. 又当a =-3时 ,由 -3x 2+2x +1=0,得x =-13或x =1,即方程ax 2+2x +1=0存在两个根-13和1,此时A ={-13,1},与A ={1}矛盾.故不存在实数a ,使A ={1}.[随堂即时演练]1.方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D 解方程组⎩⎪⎨⎪⎧ x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧x =5,y =-4,故解集为{(5,-4)},选D. 2.下列四个集合中,不同于另外三个的是( )A .{y |y =2}B .{x =2}C .{2}D .{x |x 2-4x +4=0}解析:选B 集合{x =2}表示的是由一个等式组成的集合,其它选项所表示的集合都是含有一个元素2.3.给出下列说法:①直角坐标平面内,第一、三象限的点的集合为{(x ,y )|xy >0}; ②方程x -2+|y +2|=0的解集为{2,-2}; ③集合{(x ,y )|y =1-x }与{x |y =1-x }是相等的. 其中正确的是________(填写正确说法的序号).解析:直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x ,y ),故①正确;方程x -2+|y +2|=0等价于⎩⎪⎨⎪⎧ x -2=0,y +2=0,即⎩⎪⎨⎪⎧x =2,y =-2,解为有序实数对(2,-2),解集为{(2,-2)}或{(x ,y )|⎩⎪⎨⎪⎧x =2y =-2},故②不正确;集合{(x ,y )|y =1-x }的代表元素是(x ,y ),集合{x |y =1-x }的代表元素是x ,前者是有序实数对,后者是实数,因此这两个集合不相等,故③不正确.答案:①4.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. 解析:由题意可知集合B 是由A 中元素的平方构成的,故B ={4,9,16}. 答案:{4,9,16}5.用适当的方法表示下列集合: (1)一年中有31天的月份的全体; (2)大于-3.5小于12.8的整数的全体; (3)梯形的全体构成的集合; (4)所有能被3整除的数的集合; (5)方程(x -1)(x -2)=0的解集; (6)不等式2x -1>5的解集.解:(1){1月,3月,5月,7月,8月,10月,12月}. (2){-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}. (3){x |x 是梯形}或{梯形}. (4){x |x =3n ,n ∈Z }. (5){1,2}. (6){x |2x -1>5}.[课时达标检测]一、选择题1.下列各组中的两个集合M和N,表示同一集合的是()A.M={π},N={3.141 59}B.M={2,3},N={(2,3)}C.M={x|-1<x≤1,x∈N},N={1}D.M={1,3,π},N={π,1,|-3|}解析:选D选项A中两个集合的元素互不相等,选项B中两个集合一个是数集,一个是点集,选项C中集合M={0,1},只有D是正确的.2.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是()A.0∉M B.2∈MC.-4∉M D.4∈M解析:选D当x,y,z都大于零时,代数式的值为4,所以4∈M,故选D.3.集合{x∈N*|x-3<2}的另一种表示法是()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}解析:选B∵x-3<2,x∈N*,∴x<5,x∈N*,∴x=1,2,3,4.故选B.4.已知集合A={x|x=2m-1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断不正确的是()A.x1·x2∈A B.x2·x3∈BC.x1+x2∈B D.x1+x2+x3∈A解析:选D集合A表示奇数集,B表示偶数集,∴x1、x2是奇数,x3是偶数,∴x1+x2+x3应为偶数,即D是错误的.5.设P={1,2,3,4},Q={4,5,6,7,8},定义P*Q={(a,b)|a∈P,b∈Q,a≠b},则P*Q中元素的个数为()A.4 B.5C.19 D.20解析:选C由题意知集合P*Q的元素为点,当a=1时,集合P*Q的元素为:(1,4),(1,5),(1,6),(1,7),(1,8)共5个元素.同样当a=2,3时集合P*Q的元素个数都为5个,当a=4时,集合P*Q中元素为:(4,5),(4,6),(4,7),(4,8)共4个.因此P*Q中元素的个数为19个,故选C.二、填空题6.设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A ,B 相等,则实数a =________.解析:由集合相等的概念得⎩⎪⎨⎪⎧a 2-1=0,a 2-3a =-2,解得a =1.答案:17.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉{x |2x +a >0}, ∴2×1+a ≤0,即a ≤-2. 答案:a ≤-28.已知-5∈{x |x 2-ax -5=0},则集合{x |x 2-4x -a =0}中所有元素之和为________. 解析:由-5∈{x |x 2-ax -5=0}得(-5)2-a ×(-5)-5=0,所以a =-4,所以{x |x 2-4x +4=0}={2},所以集合中所有元素之和为2.答案:2 三、解答题9.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x .解:当3x 2+3x -4=2时,即x 2+x -2=0,则x =-2或x =1.经检验,x =-2,x =1均不合题意.当x 2+x -4=2时,即x 2+x -6=0,则x =-3或2.经检验,x =-3或x =2均合题意.∴x =-3或x =2.10.(1)已知集合M ={x ∈N |61+x ∈Z },求M ;(2)已知集合C ={61+x∈Z |x ∈N },求C .解:(1)∵x ∈N ,61+x ∈Z ,∴1+x 应为6的正约数.∴1+x =1,2,3,6,即x =0,1,2,5. ∴M ={0,1,2,5}. (2)∵61+x∈Z ,且x ∈N , ∴1+x 应为6的正约数,∴1+x =1,2,3,6,此时61+x 分别为6,3,2,1,∴C ={6,3,2,1}.1.1.2 集合间的基本关系子集[提出问题]具有北京市东城区户口的人组成集合A,具有北京市户口的人组成集合B. 问题1:A中元素与集合B有关系吗?提示:有关系,A中每一个元素都属于B.问题2:集合A与集合B有什么关系?提示:集合B包含集合A.[导入新知]子集的概念定义一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集记法与读法记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”)图示结论(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,若A⊆B,且B⊆C,则A⊆C[化解疑难]对子集概念的理解(1)集合A是集合B的子集的含义是:集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A中存在着不是集合B的元素,那么集合A不包含于B,或B不包含A.此时记作A⃘B或B⊉A.(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N.而不能写成{0}∈N,“∈”只能用于元素与集合之间.如0∈N,而不能写成0⊆N.集合相等[提出问题]设A={x|x是有三条边相等的三角形},B={x|x是等边三角形}.问题1:三边相等的三角形是何三角形?提示:等边三角形.问题2:两集合中的元素相同吗?提示:相同.问题3:A是B的子集吗?B是A的子集吗?提示:是,是.[导入新知]集合相等的概念如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B 中的元素是一样的,因此,集合A与集合B相等,记作A=B.[化解疑难]对两集合相等的认识(1)若A⊆B,又B⊆A,则A=B;反之,如果A=B,则A⊆B,且B⊆A.这就给出了证明两个集合相等的方法,即欲证A=B,只需证A⊆B与B⊆A同时成立即可.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.真子集[提出问题]给出下列集合:A={a,b,c},B={a,b,c,d,e}.问题1:集合A与集合B有什么关系?提示:A⊆B.问题2:集合B中的元素与集合A有什么关系?提示:集合B中的元素a,b,c都在A中,但元素d,e不在A中.[导入新知]真子集的概念定义如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集记法记作A B(或B A)图示结论(1)A B且B C,则A C;(2)A⊆B且A≠B,则A B[化解疑难]对真子集概念的理解(1)在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.(2)若A不是B的子集,则A一定不是B的真子集.空集[提出问题]一个月有32天的月份组成集合T.问题1:含有32天的月份存在吗?提示:不存在.问题2:集合T存在吗?是什么集合?提示:存在,是空集.[导入新知]空集的概念定义我们把不含任何元素的集合,叫做空集记法∅规定空集是任何集合的子集,即∅⊆A特性(1)空集只有一个子集,即它的本身,∅⊆∅(2)A≠∅,则∅A[化解疑难]∅与{0}的区别(1)∅是不含任何元素的集合;(2){0}是含有一个元素的集合,∅{0}.集合间关系的判断[例1](1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0} A.1B.2C.3 D.4(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.(1)[解析]对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一。
第1章集合1.1集合的含义及其表示(教师用书独具)●三维目标1.知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义,理解集合相等的含义.(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2.过程与方法(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合,掌握集合的表示方法.3.情感、态度与价值观(1)了解集合的含义,体会元素与集合的“属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力,初步培养学生实事求是、扎实、严谨的科学态度.●重点、难点重点:集合的含义及集合的表示方法.难点:集合的特征性质和概念以及运用特征性质用描述法表示一些简单的集合.(教师用书独具)●教学建议1.关于集合含义的教学建议教师在教学过程中通过大量具体实例,引导学生抽象出集合的含义,这样可以培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.2.关于元素、集合及其关系的表示的教学对于元素,集合的字母表示以及元素与集合之间的“属于”或“不属于”关系.建议教师让学生在具体运用中逐渐熟悉,对于常用数集的表示也要求学生记住.3.关于列举法和描述法表示集合的教学建议教师讲清元素不多的有限集常用列举法表示,无限集常用描述法表示,同时也要说明两种方法的优缺点.●教学流程创设问题情境,通过具体实例,引入两个集合的交集与并集的概念⇒引导学生借助Venn图,理解集合的交集与并集运算,并探究两种基本运算的性质。
⇒借助数轴直观表示,使学生理角区间的符合表示方法⇒通过例1及其变式训练,使学生掌握集合交集运算的方法⇒通过例2及其变式训练,使学生掌握集合并集运算的方法⇒通过例3及其变式训练,使学生掌握利用交集、并集的性质求参数范围的方法⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正课标解读 1.理解集合的含义,知道常用数集及其记法(重点).2.了解属于关系和集合相等的意义(重点).3.了解有限集、无限集、空集的意义.4.掌握集合的表示方法——列举法、描述法和Venn图法,并能正确地表示一些简单的集合(重点、难点).集合的概念观察下面的语句(1)高一(2)班的女生;(2)方程x2-2=0的所有实根;(3)2012年7月参加伦敦奥运会的代表团;(4)高一(2)班的所有帅哥;(5)高一(2)班的好学生.1.上面语句中女生、实根、代表团、帅哥、好学生哪些能被清晰的确定出来?【提示】女生、实根、代表团.2.以上语句中为什么有的不能确定?【提示】因帅哥、好学生标准无法确定.1.元素与集合的概念一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素,简称元.2.元素与集合的符号表示通常用大写拉丁字母来表示集合,例如集合A、集合B等;通常用小写拉丁字母表示集合的元素,例如元素a,b等.元素与集合的关系某中学2013级高一年级的20个班构成一个集合,则高一(6)班是这个集合的元素吗?高二(3)班呢?【提示】高一(6)班是这个集合中的元素,高二(3)班不是.1.元素与集合的关系(1)属于(符号:∈),a是集合A中的元素.记作a∈A,读作“a属于A”.(2)不属于(符号:∉或∈),a不是集合A中的元素,记作a∉A或a∈A.读作“a不属于A”.2.常用数集及符号表示数集名称自然数集正整数集整数集有理数集实数集符号表示N N*或N+Z Q R集合的表示方法观察下列集合(1)中国的直辖市.(2)12的所有正因数.(3)不等式x-2≥3的解集.(4)所有偶数的集合.1.上述四个集合中的元素能分别一一列举出来吗?【提示】(1)、(2)中元素可以一一列举出来,(3)、(4)中元素不能一一列举,因为它们中的元素有无穷多个.2.设(3)、(4)中元素为x,请用等式(或不等式)分别将它们表示出来.【提示】(3)中元素x≥5,(4)中元素x=2n,n∈N.1.列举法将集合的元素一一列举出来,并置于花括号“{}”内.用这种方法表示集合,元素之间要用逗号分隔,但列举时与元素的次序无关.2.描述法将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.3.集合相等如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两个集合相等.集合的分类你班的学生人数可数吗?你能举出一个不可数的集合吗?【提示】可数自然数集.有限集:含有有限个元素的集合称为有限集.无限集:含有无限个元素的集合称为无限集.空集:不含任何元素的集合称为空集,记作∅ .集合的有关概念下列每组对象能否构成一个集合?(1)所有的好人;(2)平面上到原点的距离等于2的点的全体;(3)正三角形的全体;(4)方程x2=2的实数解;(5)不等式x+1>0的所有实数解.【思路探究】看一组对象能否构成集合,关键是看这组对象是不是确定的.【自主解答】“所有的好人”无确定的标准,因此(1)不能构成集合.而(2)(3)(4)(5)的对象尽管有点、图形、实数等不同之处,但它们是确定的.所以(2)(3)(4)(5)能构成集合.判断一组对象的全体能否构成集合,关键是看能否找到一个明确的标准,来判断整体中的每一个对象是不是确定的,若元素是确定的,又能看做一个整体,便构成一个集合,否则,就不能构成集合,同时要兼顾集合中每个对象所代表的元素的无序性和互异性.下列对象:①不超过π的正整数;②高一数学课本中的所有难题;③所有的正三角形;④我国近代著名的数学家.其中能够构成集合的序号是________.【解析】由集合定义知①③中的对象可构成集合;②中的“难”与④中的“著名”都无明确的界限,不确定,所以不能构成集合.【答案】 ①③用列举法表示集合用列举法表示下列集合:(1)A ={x |-2≤x ≤2,x ∈Z };(2)B ={(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2x +y =8,x -y =1; (3)M ={x |(x -2)2(x -3)=0};(4){自然数中五个最小数的完全平方数}; (5)P ={y |y =-x 2+6,x ∈N ,y ∈N }.【思路探究】 解答本题首先弄清集合中元素的性质特点,然后按要求改写. 【自主解答】 (1)∵-2≤x ≤2,x ∈Z , ∴x =-2,-1,0,1,2, ∴A ={-2,-1,0,1,2}.(2)解方程组⎩⎪⎨⎪⎧ 2x +y =8,x -y =1,得⎩⎪⎨⎪⎧x =3,y =2,∴B ={(3,2)}.(3)∵2和3是方程的根,∴M ={2,3}. (4){0,1,4,9,16}.(5)∵y =-x 2+6≤6,且x ∈N ,y ∈N , ∴x =0,1,2,y =6,5,2, ∴P ={6,5,2}.应用列举法应注意的问题:(1)用列举法表示集合,要注意是数集还是点集;(2)列举法适合表示有限集,当集合中元素个数较少时,用列举法表示集合比较方便,且使人一目了然.因此,判定集合是有限集还是无限集,选择适当的表示方法是关键.把本题(5)中集合P 改为“{(x ,y )|y =-x 2+6,x ∈N ,y ∈N }”,求相应问题. 【解】 点(x ,y )满足条件y =-x 2+6,x ∈N ,y ∈N ,则⎩⎪⎨⎪⎧ x =0,y =6或⎩⎪⎨⎪⎧ x =1,y =5或⎩⎪⎨⎪⎧x =2,y =2∴Q ={(0,6),(1,5),(2,2)}.用描述法表示集合用描述法表示下列集合.(1)正奇数集;(2)使y = 2 006x 2+x -6有意义的实数x 的集合;(3)坐标平面内,在第二象限内的点所组成的集合; (4)坐标平面内,不在第一、三象限内的点所组成的集合.【思路探究】 本题主要考查集合的表示方法,可以把自然语言转化为集合语言,用描述法表示出来.【自主解答】 (1){x |x =2n +1,n ∈N }, 也可表示为{x |x =2n -1,n ∈N *}. (2){x |x ≠2且x ≠-3,x ∈R }. (3){(x ,y )|x <0且y >0,x ∈R ,y ∈R }. (4){(x ,y )|xy ≤0,x ∈R ,y ∈R }.使用描述法时,应注意六点: (1)写清楚集合中的代表元素; (2)说明该集合中元素的性质;(3)不能出现未被说明的字母;(4)多层描述时,应当准确使用“且”“或”;(5)所有描述的内容都要写在花括号内;(6)用于描述的语句力求简明、确切.用描述法表示下列集合:(1)偶数集;(2)被3除余2的正整数的集合;(3)不等式2x-3<0的解集.【解】(1)偶数可用式子x=2n,n∈Z表示,所以偶数集可表示为{x|x=2n,n∈Z}.(2)设被3除余2的数为x,则x=3n+2,n∈Z,但元素为正整数,故x=3n+2,n∈N,所以被3除余2的正整数集合可表示为{x|x=3n+2,n∈N}.(3)不等式2x-3<0,即x<32,所以不等式2x-3<0的解集可表示为{x|x<32}.运用方程的思想解决集合相等问题(12分)已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.【思路点拨】要求c的值此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性、无序性列方程求解.【规范解答】①若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,当a=0时,集合B中的三个元素均为0,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素相同,此时无解;②若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,∵a≠0,∴2c2-c-1=0,9分即(c-1)(2c+1)=0,又c≠1,故c=-12. 11分综上所述,c=-12.1.根据两集合中的元素完全相同,列出a,b,c满足的方程求解,这就是方程思想的应用.2.解决集合相等的问题易产生与互异性相矛盾的增根,这需要解题后进行检验.1.集合的概念可以从以下几个方面来理解:(1)集合是一个“整体”;(2)构成集合的对象必须具有“确定”且“不同”这两个特征.这两个特征不是模棱两可的.判定一组对象能否构成一个集合,关键要看是否有一个明确的客观标准来鉴定这些对象,若鉴定对象确定的客观标准存在,则这些对象就能构成集合,否则不能构成集合.2.集合的表示方法:列举法简明、直观适用于元素个数较少的集合;描述法应用更广泛,多适用于元素个数有无穷多的集合.3.集合的分类:集合分为有限集和无限集,根据元素的特性,还可以分为数集、点集、图形集等.1.下列各组对象不能确定一个集合的是________.①某校高一年级开设的课程;②某校高一年级任教的教师;③某校高一年级1998年出生的学生;④某校高一年级比较聪明的学生.【解析】 因为①②③中对象都是确定的,它们都能确定一个集合,而④中“比较聪明”没有明确的判断标准,故④不能确定一个集合.【答案】 ④2.下列关系式中,正确的序号是________.①a ∈{a ,b };②0∈∅;③{x |x 2≤0}=∅;④{x |x 2+2x +5=0}=∅.【解析】 空集不含任何元素,故②错;0∈{x |x 2≤0},故③错;①④正确. 【答案】 ①④3.下列叙述中,正确的个数是________.①1是集合N 中最小的数 ②若-a ∉N ,则a ∈N ③若a ∈N *,b ∈N ,则a +b 的最小值为2 ④方程x 2-4x =-4的解集为{2,2}.【解析】 N 中的最小数为0,故①错误;②可举反例:a =13,则-a =-13∉N ,但a =13∉N ,故②不正确;③可取a =1,b =0,则a +b =1,其最小值不为2,故③错;④方程的解集应为{2},故④错.所以正确个数为0.【答案】 04.用适当的方法表示下列集合. (1)中国古代四大发明的集合; (2)由大于0小于2的实数组成的集合; (3)绝对值等于1的实数的集合; (4)方程x (x 2+2x -3)=0的解集; (5)不等式x 2+2≤0的解集.【解】 (1)中国古代四大发明的集合可用列举法表示为{指南针,造纸术,火药,印刷术}.(2)由大于0且小于2的实数组成的集合用描述法可表示为{x |0<x <2}.(3)绝对值等于1的实数的集合用描述法可表示为{x ||x |=1},用列举法可表示为{-1,1}. (4)方程x (x 2+2x -3)=0的解集用描述法可表示为{x |x (x 2+2x -3)=0},用列举法可表示为{-3,0,1}.(5)不等式x 2+2≤0的解集为∅.一、填空题1.下列条件能形成集合的是________. (1)充分小的负数全体 (2)爱好飞机的一些人;(3)某班本学期视力较差的同学 (4)某校某班某一天所有课程.【解析】 综观(1)(2)(3)的对象不确定,唯有(4)某校某班某一天所有课程的对象确定,故能形成集合的是(4).【答案】 (4)2.方程组⎩⎪⎨⎪⎧x +y =2x -y =5的解集用列举法表示为________;用描述法表示为________.【解析】 因⎩⎪⎨⎪⎧x +y =2x -y =5的解集为方程组的解.解该方程组x =72,y =-32.则用列举法表示为{(72,-32)};用描述法表示为⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =2x -y =5.【答案】 {(72,-32)} ⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =2x -y =53.函数y =x 2-2x -1图象上的点组成的集合为A ,试用“∈”或“∉”号填空. ①(0,-1)________A ;②(1,-2)________A ; ③(-1,0)________A .【解析】 把各点分别代入函数式,可知(0,-1)∈A ,(1,-2)∈A ,(-1,0)∉A .【答案】 ∈,∈,∉4.(2013·徐州高一检测)若一个集合中的三个元素a ,b ,c 是△ABC 的三边长,则此三角形一定不是________三角形.(用“锐角,直角,钝角,等腰”填空)【解析】 由集合中元素的互异性可知a ≠b ≠c ,故该三角形一定不是等腰三角形. 【答案】 等腰5.用描述法表示如图1-1-1所示中阴影部分的点(包括边界上的点)的坐标的集合是________.图1-1-1【解析】 由图可知,所表示的集合为{(x ,y )|-2≤x ≤0,且-2≤y ≤0}. 【答案】 {(x ,y )|-2≤x ≤0,且-2≤y ≤0}6.(2013·南京高一检测)若集合A ={x |3x -a <0,x ∈N }表示二元集,则实数a 的取值范围是________.【解析】 由3x -a <0得,x <a 3,又x ∈N 且满足上述条件的只有两个元素,故1<a3≤2,解得3<a ≤6.【答案】 3<a ≤67.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz 的值所组成的集合是M ,则M =________.【解析】 分四种情况讨论:x ,y ,z 中三个都为正,代数式的值为4;x ,y ,z 中两个为正,一个为负,代数式值为0;x ,y ,z 中一个为正、两个为负,代数式值为0;x ,y ,z 都为负数时代数式值为-4.∴M ={-4,0,4}. 【答案】 {-4,0,4}8.设三元素集A ={x ,yx ,1},B ={|x |,x +y,0},其中x ,y 为确定常数且A =B ,则x 2013-y 2 013的值等于________.【解析】 由题意,知{x ,yx,1}={|x |,x +y,0}.∵x≠0,∴yx=0,即y=0.又∵x≠1,且|x|=1,∴x=-1,∴x2 013-y2 013=(-1)2 013-0=-1.【答案】-1二、解答题9.用列举法表示下列集合:(1){y|y=-x2-2x+3,x∈R,y∈N};(2)方程x2+6x+9=0的解集;(3){20以内的质数};(4){(x,y)|x2+y2=1,x∈Z,y∈Z};(5){(x,y)}|x∈N,且1≤x<4,y-2x=0};(6){a|65-a∈N,且a∈N}.【解】(1)y=-x2-2x+3=-(x+1)2+4,即y≤4,又y∈N,∴y=0,1,2,3,4.故{y|y=-x2-2x+3,x∈R,y∈N}={0,1,2,3,4}.(2)由x2+6x+9=0得x1=x2=-3,∴方程x2+6x+9=0的解集为{-3}.(3){20以内的质数}={2,3,5,7,11,13,17,19}.(4)因x∈Z,y∈Z,则x=-1,0,1时,y=0,1,-1.那么{(x,y)|x2+y2=1,x∈Z,y∈Z}={(-1,0),(0,1),(0,-1),(1,0)}.(5)当x∈N且1≤x<4时,x=1,2,3,此时y=2x,即y=2,4,6,那么{(x,y)|x∈N且1≤x<4,y-2x=0}={(1,2),(2,4),(3,6)}.(6)当a=-1,2,3,4时,65-a分别为1,2,3,6,故{a|65-a∈N,且a∈N}={-1,2,3,4}.10.用描述法表示下列集合:(1)被5除余1的正整数集合;(2)大于4的全体奇数构成的集合;(3)坐标平面内,两坐标轴上点的集合;(4)三角形的全体构成的集合; (5){2,4,6,8}.【解】 (1){x |x =5k +1,k ∈N }; (2){x |x =2k +1,k ≥2,k ∈N }; (3){(x ,y )|xy =0,x ∈R ,y ∈R }; (4){x |x 是三角形}或{三角形}; (5){x |x =2n,1≤n ≤4,n ∈N }.11.已知p ∈R ,且集合A ={x |x 2-px -52=0},集合B ={x |x 2-92x -p =0},12∈A ,求集合B 中的所有元素.【解】 ∵12∈A ,∴14-p 2-52=0,∴p =-92.∴B ={x |x 2-92x +92=0}.又方程x 2-92x +92=0的两根为x =32或x =3.∴B ={32,3}.(教师用书独具)若集合A ={x |x =3n +1,n ∈Z },B ={x |x =3n +2,n ∈Z },M ={x |x =6n +3,n ∈Z }. (1)若m ∈M ,问是否有a ∈A ,b ∈B ,使m =a +b?(2)对于任意a ∈A ,b ∈B ,是否一定有a +b =m 且m ∈M ?证明你的结论.【思路探究】 (1)由m ∈M ,可写出m 的表达式,再根据A 、B 中元素特征,寻找a 、b ;(2)可先表示a 、b ,然后找a +b ,最后观察a +b 的形式.【自主解答】(1)由m=6k+3=3k+1+3k+2(k∈Z),令a=3k+1,b=3k+2,则m=a+b.故若m∈M,一定有a∈A,b∈B,使m=a+b成立.(2)设a=3k+1,b=3l+2,k、l∈Z,则a+b=3(k+l)+3.∴当k+l=2p(p∈Z)时,a+b=6p+3∈M,此时有m∈M,使a+b=m成立;当k+l =2p+1(p∈Z)时,a+b=6p+6∉M,此时不存在m使a+b=m成立.在探索过程中,要紧抓各集合元素的特征,利用构造法去寻找,同时注意分类讨论.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是________个.【解析】∵P={0,2,5},Q={1,2,6},∴当a=0且b=1,2,6时,a+b=1,2,6;当a=2且b=1,2,6时,a+b=3,4,8;当a=5且b=1,2,6时,a+b=6,7,11.由上可知,只有一个相同的元素6,其他均不相同,故P+Q={1,2,3,4,6,7,8,11}.其所含元素个数为8.【答案】81.2子集、全集、补集(教师用书独具)●三维目标1.知识与技能(1)了解集合之间包含的含义,能识别给定集合的子集.(2)理解子集、真子集的概念.(3)能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感、态度与价值观(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.●重点、难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.(教师用书独具)●教学建议1.关于子集、真子集的概念,建议教师让学生从三个方面去理解它们.自然语言、符号语言、图形语言(Venn图),特别是图形语言即Venn图表示可以形象直观地表示集合间的关系,故学时要让学生知道表示集合的Venn图的边界是封闭曲线,它可以是圆、矩形,也可以是其他封闭曲线.2.关于包含符号“⊆”的理解,建议教师提醒学生符号的方向不要搞错,如A⊆B与B⊇A是相同的,而A⊆B与A⊇B是不同的,同时强调“A⊆B”包含两层含义;即“A B”或“A=B”.3.关于补集的教学建议教师讲解时:①充分利用Venn图的直观性引进概念,讲清概念的含义.②语言表述要确切无误.“∁U A是A在全集U中的补集”,不能把它简单地说成∁U A是A的补集,因为补集是在全集的前提下建立的概念,即补集是一个相对概念.4.关于全集的教学建议教师讲解时突出强调全集是相对于研究的问题而言的,如我们只在整数范围内研究问题则z为全集,而当问题扩展到实数集时,则R为全集.●教学流程创设问题情境,能过实例,引入子集、真子集、空集等概念及其表示法⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!错误!课标解读1.理解集合之间包含与相等的含义,能识别给定集合间是否具有包含关系(重点).2.了解全集与空集的含义,能在给定全集的基础上求已知集合的补集(重点).3.能通过分析元素的特点判断集合间的关系,并能根据集合间的关系确定一些参数的取值(难点).子集的概念及其性质给出两个集合A={2,4},B={1,2,3,4}.1.集合A中的元素都是集合B中的元素吗?【提示】是.2.集合B中的元素都是集合A中的元素吗?【提示】不全是.1.子集如果集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B),那么集合A称为集合B的子集,记为A⊆B或B⊇A,读作“集合A包含于集合B”或“集合B包含集合A”.可用Venn图表示为:子集的性质:(1)A⊆A,即任何一个集合是它本身的子集.(2)∅⊆A,即空集是任何集合的子集.2.真子集的概念真子集:如果A⊆B,并且A≠B,那么集合A称为集合B的真子集,记为A B或B A,读作“A真包含于B”或“B真包含A”.补集、全集的概念A={高一(1)班参加足球队的同学},B={高一(1)班没有参加足球队的同学},U={高一(1)班的同学}.1.集合A,B,U有何关系?【提示】U=A∪B.2.B中元素与U和A有何关系?【提示】B中元素在U中不在A中.1.补集(1)定义:设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集.记为∁S A(读作“A在S中的补集”).(2)符号表示∁S A={x|x∈S,且x∉A}.(3)图形表示:2.全集如果集合S包含我们所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.子集、真子集的概念已知集合M满足{1,2}M⊆{1,2,3,4},写出集合M.【思路探究】可按集合M中含有元素的个数分类讨论求解.【自主解答】①若M中含有3个元素时,M为{1,2,3}和{1,2,4}.②若M中含有4个元素时,M为{1,2,3,4}因此满足条件的集合M有3个即{1,2,3},{1,2,4},{1,2,3,4}.1.本类问题实质是考查包含于“⊆”和真包含于“”的运用,解答本题首先分清两符号的含义,确定集合中元素的个数然后进行分类讨论.2.求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集.集合子集、真子集个数的规律为:含n 个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集,其中空集和集合本身易漏掉.将本题中条件改为{1,2}⊆M⊆{1,2,3,4,5}如何求解?【解】①当M中含有2个元素时,M为{1,2};②当M中含有3个元素时,M为{1,2,3},{1,2,4},{1,2,5};③当M中含有4个元素时,M为{1,2,3,4},{1,2,3,5},{1,2,4,5};④当M中含有5个元素时,M为{1,2,3,4,5}.∴满足条件的集合M为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.集合的补集已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},求集合B.【思路探究】先由集合A与∁U A求出全集,再由补集定义求出集合B,或利用Venn 图求出集合B.【自主解答】法一A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7},又∁U B={1,4,6},∴B={2,3,5,7}.法二借助Venn图,如图所示,由图可知B={2,3,5,7}.根据补集定义,借助Venn图,可直观地求出全集,此类问题,当集合中元素个数较少时,可借助Venn图;当集合中元素无限时,可借助数轴,利用数轴分析法求解.(1)若U={1,2,3,4,5},S={1,2,3,4},A={1,2},则∁U A=________,∁S A=________.(2)已知全集U={x|x≥-3},集合A={x|x>1},则∁U A=________.【解析】(1)∵U={1,2,3,4,5},A={1,2},结合补集的定义可知∁U A={3,4,5}.同理可求,当S={1,2,3,4}时,∁S A={3,4}.(2)∵U={x|x≥-3},A={x|x>1},如图所示:∴∁U A={x|-3≤x≤1}.【答案】(1){3,4,5}{3,4}(2){x|-3≤x≤1}由集合间的关系确定参数的范围已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求实数m的取值范围.【思路探究】讨论集合B→列关于m的不等式(组)→求m的取值范围【自主解答】∵B⊆A,(1)当B=∅时,m+1≤2m-1,解得m≥2.(2)当B≠∅时,有⎩⎪⎨⎪⎧-3≤2m-1m+1≤42m-1<m+1,解得-1≤m<2,综上得m≥-1.1.解答本题注意不能忽视B=∅的情形.当集合中含有字母参数时,一般需要分类讨论.2.对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.(2013·银川高一检测)设集合A={x|a-2<x<a+2},B={x|-2<x<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使B⊆A?【解】 (1)借助数轴可得,a 应满足的条件为⎩⎪⎨⎪⎧ a -2>-2,a +2≤3,或⎩⎪⎨⎪⎧a -2≥-2,a +2<3,解得0≤a ≤1.(2)同理可得a 应满足的条件为⎩⎪⎨⎪⎧a -2≤-2,a +2≥3,得a 无解,所以不存在实数a 使B ⊆A .子集、全集、补集的综合应用已知集合A ={x |x ≥m },集合B ={x |-2<x <3},(1)若全集U =R ,且A ⊆∁U B ,求m 的取值范围;(2)若集合C ={x |m +1<x <2m },且C ⊆∁A B ,求m 的取值范围. 【思路探究】 (1)先求∁U B ,再利用A ⊆∁U B 得m 的取值范围. (2)先求∁A B ,再利用C ⊆∁A B 得m 的取值范围.【自主解答】 (1)由题意知∁U B ={x |x ≤-2或x ≥3}, ∵A ⊆∁U B ,如图:∴m ≥3,∴m 的取值范围为[3,+∞). (2)由题意知B ⊆A ,∴m ≤-2, ∴∁A B ={x |m ≤x ≤-2或x ≥3},①若C=∅,即m+1≥2m,即m≤1时,m≤-2.②若C≠∅,即m+1<2m,即m>1,与m≤-2矛盾,故此种情况不存在.综上,m的取值范围为(-∞,-2].针对此类问题,已知补集之间的关系求参数的取值范围时,常根据补集的定义及集合之间的关系,并借助数轴.列出参数a应满足的关系式,具体操作时要注意端点值的“取”与“不取”.设全集U=R,A={x|x>1},B={x|x+a<0},且B∁U A,求实数a的取值范围.【解】∵U=R,A={x|x>1},∴∁U A={x|x≤1}.∵x+a<0,x<-a,∴B={x|x<-a}.又∵B∁U A,∴-a≤1,∴a≥-1.忽略空集的情形导致错误已知集合A={x|x2-2x-3=0},B={x|ax-2=0},且B⊆A,求实数a的值.【错解】A={x|x2-2x-3=0}={-1,3}.由于B⊆A,因此B={-1}或B={3}.当B={-1}时,由a×(-1)-2=0,可得a=-2;当B={3}时,由a×3-2=0,可得a=23.综上所述,实数a的值为-2或23.【错因分析】B为空集时,显然也满足已知条件.解题时,需注意空集是任何一个集合的子集(这个“任何一个集合”当然也包含空集本身),是任何非空集合的真子集.【防范措施】根据“A⊆B”条件,在求相关参数值时,不可忽视集合A可以为空集这个特殊情况,同时还要进行检验,看是否满足元素的互异性.【正解】A={x|x2-2x-3=0}={-1,3}.当B≠∅时,由于B⊆A,因此B={-1}或B={3}.①当B={-1}时,由a×(-1)-2=0,可得a=-2;②当B={3}时,由a×3-2=0,可得a=23.当B=∅时,ax-2=0无解,可得a=0.综上所述,实数a的值为-2或2或0.31.正确地理解子集、真子集的概念:如果A是B的子集(即A⊆B),那么有A是B的真子集(A B)或A与B相等(A=B)两种情况.“A B”和“A=B”二者必居其一.反过来,A是B的真子集(A B)也可以说A是B的子集(A⊆B);A=B也可以说成A是B的子集(A⊆B).2.用Venn图表达集合与集合之间的关系,直观、方便,尤其是抽象集合之间关系的问题,常用Venn图求解.3.全集为研究一个问题的所有元素的全体,即该问题所涉及的元素的范围,是一个相对的概念,全集因问题的不同而异.4.补集与全集密不可分.同一集合在不同全集下的补集是不同的,因而说集合的补集的前提是必须先明确全集,一个集合与它的补集是互为补集的关系,补集也是一种思想,是一种思考和处理问题的思维方式.1.已知全集U={1,2,3,4,5,6,7},A={2,4,5},则∁U A=________.【解析】根据补集的定义,可知∁U A={1,3,6,7}.【答案】{1,3,6 ,7}2.集合A ={0,1,2}的真子集个数是________.【解析】 集合A ={0,1,2}的真子集有∅,{0},{1},{2},{0,1},{1,2},{0,2}共7个. 【答案】 73.设x 、y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx =1},则A 、B 的关系是________.【解析】 ∵B ={(x ,y )|yx =1}={(x ,y )|y =x ,且x ≠0},故B A .【答案】 B A4.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}. (1)若A ⊆B ,求a 的取值范围;(2)若全集U =R ,且A ⊆∁U B ,求a 的取值范围. 【解】 ∵A ={x |-4≤x ≤-2},B ={x |x ≥a }. (1)由A ⊆B ,结合数轴(如图所示).可知a 的范围为a ≤-4.(2)∵U =R ,∴∁U B ={x |x <a },要使A ⊆∁U B ,结合数轴(如图所示).只需a >-2.一、填空题1.下列命题中正确的个数为________. (1)空集没有子集;(2)任何集合至少有两个子集;(3)空集是任何集合的真子集;(4)若∅A,则A≠∅.【解析】(1)不正确,∅⊆∅;(2)不正确,∅只有一个子集;(3)不正确,∅没有真子集;(4)正确,理由同(3).【答案】 12.若全集U=R,集合A={x|x≥1},则∁U A=________.【解析】如图所示:∁U A={x|x<1}.【答案】{x|x<1}3.设A={x|1≤x≤3},B={x|x-a≥0},若A B,实数a的取值范围为________.【解析】B={x|x≥a},∵A B,∴结合数轴可得a≤1.【答案】a≤14.设A={x|1<x<2},B={x|x<a},若A B则实数a的取值范围是________.【解析】利用数轴易知应有a≥2.【答案】a≥25.已知集合A={1,3,-a3},B={1,a+2},若B⊆A,则实数a=________.【解析】∵B⊆A,∴a+2=3或a+2=-a3,解得a=1或a=-1,由互异性舍去a =-1,∴a=1.【答案】 16.设全集U={1,2,x2-2},A={1,x},则∁U A=______.【解析】若x=2,则x2-2=2,此时U={1,2,2}与互异性矛盾,不成立,所以x≠2.从而只能有x=x2-2,解得x=-1或x=2(舍去).当x=-1时,U={1,2,-1},A={1,-1},所以∁U A ={2}. 【答案】 {2}7.集合A {0,1,2,3},且A 中的元素至少有一个奇数,这样的集合有________个. 【解析】 含有一个元素时:{1},{3};含有两个元素时:{0,1},{1,2},{0,3},{2,3},{1,3}; 含有三个元素时:{0,1,2},{0,1,3},{0,2,3},{1,2,3}; 含有四个元素时:{0,1,2,3}. 【答案】 128.(2013·徐州高一检测)若非空集合A ={x |2a +1≤x ≤3a -5},B ={x |x <3或x >22},则能使A ⊆∁R B 成立的所有a 的集合是________.【解析】 ∵B ={x |x <3或x >22}, ∴∁R B ={x |3≤x ≤22}. 又∵A ≠∅且A ⊆∁R B , ∴⎩⎪⎨⎪⎧3a -5≥2a +1,3a -5≤22,2a +1≥3,∴6≤a ≤9.【答案】 {a |6≤a ≤9} 二、解答题9.已知{a }⊆A ⊆{a ,b ,c },求所有满足条件的集合A . 【解】 A 中含有一个元素时,A 为{a }, A 中含有两个元素时,A 为{a ,b },{a ,c }, A 中含有三个元素时,A 为{a ,b ,c }.所以满足条件的集合A 为{a },{a ,b },{a ,c },{a ,b ,c }. 10.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0}, 若∁U A ={1,2},求实数m 的值.【解】 ∵∁U A ={1,2},U ={0,1,2,3},∴A ={0,3}, ∴0,3是方程x 2+mx =0的两根,∴m =-3.11.设全集U =R ,A ={x |3m -1<x <2m },B ={x |-1<x <3},若A ∁U B ,求实数m 的范围.【解】 由题意知,∁U B ={x |x ≥3或x ≤-1}, (1)若A ∁U B ,且A ≠∅,则3m -1≥3或2m ≤-1, ∴m ≤-12或m ≥43.又A ≠∅,∴3m -1<2m ,∴m <1,即m ≤-12.(2)若A =∅,则3m -1≥2m ,m ≥1,综上所述:m ≤-12或m ≥1.(教师用书独具)若方程x 2+x +a =0至少有一个根为非负实数,求实数a 的取值范围.【思路探究】 该题中“至少有一个根为非负实数”种类多,较复杂,但其反面为“无非负实根”的情况较简单.这正是运用补集的思想解题.【自主解答】 若方程x 2+x +a =0无非负实根, 即方程无实根或有两个负根,则有: ①方程无实根, Δ=1-4a <0,解得a >14.②方程有两个负根,即⎩⎪⎨⎪⎧Δ=1-4a≥0,x1+x2=-1<0,x1x2=a>0.解得0<a≤14.综上所述,满足题意的a的取值范围是{a|a≤0}.若集合A={x|x2+x+m=0,x∈R}至少含有一个元素,求m的取值范围.【解】当集合为∅时,方程x2+x+m=0无解,即Δ=1-4m<0,解得m>14.所以,当集合{x|x2+x+m=0,x∈R}至少含有一个元素时,实数m的取值范围为{m|m≤14}.当题设条件中含有“至少”“至多”等词语且包含的情况较多时,在解答过程中往往进行分类讨论,为了避免分类讨论,我们可以利用补集思想来求解,即采用“正难则反”的原则从问题的对立面出发,进行求解,最后取相应的集合的补集.1.3交集、并集(教师用书独具)●三维目标1.知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.(2)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.。
立体几何初步
讲课时间:
一、常见的几何体
1.棱柱、
2.棱锥、
3.棱台、
4.圆柱、
5.圆锥、
6.圆台、
7.球
二、结构特征
例1. 画如图(1)(2)所示的三视图
例2. 如图(1)(2)(3)是一些立体图形的视图,但是观察的方向不
同,试说明下列各图可能是哪一种立体图形的视图。
例 4. 已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图
'C 'B 'A 的面积为( )
A. 2a 43
B. 2a 83
C. 2a 86
D. 2a 166
7、已知△ABC 的平面直观图△A 1B 1C 1是边长为a 的正三角形,那么
原△ABC 的面积为( )。
A.223a
B.243a
C.22
6a D.23a
例 1. 已知正四棱锥底面正方形的边长为4cm ,高与斜高的夹角为
30°,如图,求正四棱锥的侧面积和表面积。
(单位:2cm )
例2. 一个正四棱台两底面边长分别为m 、n ,侧面积等于两个底面积
之和,则这个棱台的高为( )
A. n m mn
+ B. n m mn
- C. mn n
m + D. mn n
m -
1、有一个几何体的三视图如下图所示,这个几何体应是一个( )
A 、棱台
B 、棱锥
C 、棱柱
D 、都不对
2、已知正方形的直观图是有一条边长为4的平行四边形,则此正方
形的面积是
高一知识回顾:
例1:已知函数y =862++-m mx mx 的定义域为R . 求m 的取值范围;
练习:(1)已知函数)(log )(22m mx x x f +-=的定义域是R ,并且在
)
,(1∞-上单调递减,求实数m 的取值范围 (2)求函数2()28f x x x =--在[]1,a -的值域。
主视图 左视图 俯视图
(3)函数2()42f x ax x =+-在[]1,3-上为增函数,求a 的取值范围
巩固练习题:
1.若函数()()log 0,1a f x x a a =>≠在区间]2,[a a 上的最大值是最小值
2.已知函数)(x f 在)2,0(上是增函数,且)2(+x f 是偶函数,则)2
7(),25(),1(f f f 的大小顺序
3.设)(x f 是R 上的奇函数,且10,)(1)2(≤≤=
+x x f x f 时x x f =)(,则)5.7(f 等于 解析:由条件1(2)()
f x f x +=可推出函数为周期为4的函数, 4.定义在(0,)+∞上的函数对任意的,(0,)x y ∈+∞,都有()()()f x f y f xy +=,
且当01x <<时,有()0f x >,判断()f x 在(0,)+∞上的单调性
5.(1)已知()f x 的定义域是[]0,2,求()2f x x +的定义域;
(2)已知函数()f x 的定义域为[1,1]-,求()2(1)1f x f x -++的定义域;
(3)已知()21f x -的定义域是(]0,1,求()f x 的定义域.
(4)已知()21f x -的定义域是(]0,1,求(32)f x -的定义域.
6.n n ++1log (n n -+1)=
7.函数x x y 212log log +=的定义域是
8.若log 9log 9m n <,试求,m n 满足的条件
例2:已知函数)sin()(ϕω+=x A x f 的部分图象如图所示,试依图指出:
(1)、f(x)的最小正周期; (2)使f(x)=0的x 的取值集合;
(3)、使f(x)<0的x 的取值集合; (4)、f(x)的单调递增区间和递减
区间;(5)、求使f(x)取最小值的x 的集合; (6)、图象的对称轴方程;
(7)、图象的对称中心.
练习:1.设)223(ππ,∈x ,化简x
x x x x x sin 1sin 1cos 1cos 1cos 1cos 1-+++--++-. 2.已知关于x 的方程0sin 2sin 2=--a x x 有实数解,则a 的取值范围 3.202020202020202020cos 5cos 15cos 25cos 35cos 45cos 55cos 65cos 75cos 85++++++++ 4.=︒++︒+︒+︒180cos ......3cos 2cos 1cos
5.函数y=cos 2x –3cosx+2的最小值是
6.函数sin cos 2y x x =++的最小值是
7.若|a |=|b |=1,a ⊥b ,且2a +3b 与k a -4b 互相垂直,求k 的值
8.已知a 和b 的夹角为60°,|a |=10,|b |=8,求:
(1)|a +b |;(2)a +b 与a 的夹角θ的余弦值。
9、已知1()log 1a x f x x
+=-(01)a a >≠且 (1)求()f x 的定义域;(2)判断()f x 奇偶性;
(3)求使()f x >0的x 的取值范围。
备用题:1、有一个正四棱台形状的油槽,可以装油190L ,假如它的两底面边长分别等于60cm 和40cm ,求它的深度为多少cm ?
2、已知正四棱锥底面正方形的边长为4cm ,高与斜高的夹角为30°,如图,求正四棱锥的侧面积和表面积。
(单位:2cm )
3、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为。