【精品讲义】七年级上册数学 直线线段射线计算
- 格式:doc
- 大小:366.50 KB
- 文档页数:14
一对一辅导讲义学生姓名性别年级初一学科数学授课教师上课时间年月日第()次课共()次课课时:3课时教学课题1.理解几何图形的概念,并能对具体图形进行识别或判断;2. 掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.教学目标1.了解三视图,理解一个几何体的三个视图之间的位置和大小关系.2.通过辨识简单几何体的三视图,及由简单三视图想象出相应的几何体,培养空间想象能力和逻辑思维能力.3.培养用数学眼光看世界,应用数学的意识,提高学习数学的兴趣.教学重点与难点1.辨识简单立体图形三视图.2.由简单三视图想象出相应的几何体.3.通过三视图的教学,培养空间想象能力.直线1.表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线l.2.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:直线的特征:(1)直线没有长短,向两方无限延伸.(2)直线没有粗细.(3)两点确定一条直线.(4)两条直线相交有唯一一个交点.4.点与直线的位置关系:(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.线段1.概念:直线上两点和它们之间的部分叫做线段.2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.3. “作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图6所示,在A,B两点所连的线中,线段AB的长度是最短的.要点诠释:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(2)连接两点间的线段的长度,叫做这两点的距离.(3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.要点三、射线1.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图8所示,直线l上点O和它一旁的部分是一条射线,点O是端点.l2.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线OA.(2)也可以用一个小写英文字母表示,如图8所示,射线OA可记为射线l.要点诠释:(1)端点相同,而延伸方向不同,表示不同的射线.如图9中射线OA,射线OB是不同的射线.(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图10中射线OA、射线OB、射线OC都表示同一条射线.图6图8图9要点四、直线、射线、线段的区别与联系1.直线、射线、线段之间的联系(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线.2.三者的区别如下表经过一点能画出无数条直线,经过两点能画出一条直线.得到一个基本事实:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.过点作直线个数例1:经过一点O画直线能画出几条?经过两点A、B呢?拓展:1.平面内有A、B、C三点,画直线,最多可画出条直线,最少可画出条直线2.平面内有A、B、C、D画直线,最多可画出条直线,最少可画出条直线BAO图103.平面内有A、B、C、D……画直线,最多可画出条直线,最少可画出条直线最短问题例:如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B练习:下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设④把弯曲的道路改直,就能缩短路程。
内容基本要求略高要求较高要求线段、射线、直线会表示点、线段、射线、直线,知道它们之间的联系和区别;结合图形理解两点之间的距离的概念;会比较两条线段的大小,并能进行与线段有关的简单计算会用尺规作图:做一条线段等于已知线段,做已知线段的垂直平分线;会用线段中点的知识解决简单问题;结合图形认识线段间的数量关系会运用两点间的距离解决有关问题板块一 基本概念直线、射线、线段的概念:① 在直线的基础上定义射线、线段:直线上的一点和这点一旁的部分叫射线,这个点叫做射线的端点. 直线上两点和中间的部分叫线段,这两个点叫线段的端点. ② 在线段的基础上定义直线、射线:把线段向一方无限延伸所形成的图形叫射线, 把线段向两方无限延伸所形成的图形是直线. 点与直线的关系:点在直线上;点在直线外. 两个重要公理:① 经过两点有且只有一条直线,也称为“两点确定一条直线”. ② 两点之间的连线中,线段最短,简称“两点之间,线段最短”. 两点之间的距离:两点确定的线段的长度.⑴ 点的表示方法:我们经常用一个大写的英文字母表示点:A ,B ,C ,D ,…… ⑵ 直线的表示方法:① 用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB ,如下图⑴也可以写作直线BA .(1) (2)lA B② 用一个小写字母来表示,如直线l ,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序. ⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO .② 用一个小写字母来表示,如射线l ,如图⑷.(3) (4)lAO注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.例题精讲中考要求线段、射线、直线⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.(5) (6)AB注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.中点:【例1】 下列说法正确的是( )A. 直线上一点一旁的部分叫做射线B. 直线是射线的2倍C. 射线AB 与射线BA 是同一条射线D. 过两点P Q 、可画出两条射线【巩固】 下列说法中正确的是( )A. 直线的一半是射线B. 延长线段AB 至C ,使BC ABC. 从北京到上海火车行驶的路程就是这两地的距离D. 三条直线两两相交,有三个交点【巩固】 下面说法中错误的是( )A. 直线AB 和直线BA 是同一条直线B.射线AB 和射线BA是同一条射线 C. 线段AB 和线段BA 是同一条线段D.把线段AB 向两端无限延伸便得到直线BA【巩固】 下列叙述正确的是( )A .孙悟空在天上画一条十万八千里的直线B .笔直的公路是一条直线C .点A 一定在直线A B 上D .过点A 、B 可以画两条不同的直线,分别为直线A B 和直线B A【例2】 根据直线、射线、线段各自的性质,如下图,能够相交的是( )D.C.B.B AA.【巩固】下列四个图形中各有一条射线和一条线段,它们能相交的是()C.B.A.【例3】下列叙述正确的是( )A.可以画一条长5cm的直线B.一根拉紧的线是一条直线C.直线AB经过C点D.直线AB与直线BA是不同的直线【例4】如图所示根据要求作图:⑴连结AB;⑵作射线AC;⑶作直线BC.ABC板块二点线问题公理:两点确定一条直线【例5】如图,图中共有条线段.ED FCA【巩固】平面上有三个点,经过两点画一条直线,则可以画几条直线?【例6】平面上有四个点,经过两点画一条直线,则可以画几条直线?【巩固】已知平面上任意四点A、B、C、D过其中每两点画一条直线,最多可以画()A.6条B.4条C.1条D.6条,4条或1条【例7】平面内两两相交的6条直线,其交点个数最少为多少个?最多为多少个?【例8】在一个圆上有6个点,它们之间可以连一些线段,那么至少连多少条线段,可以使得这6个点钟任意三点之间都至少有一条线段?请说明理由。
第11讲直线、射线和线段1.了解方直线、射线与线段的概念;2.理解两点确定一条直线与两点之间线段最短的事实;3.掌握直线、射线、线段的表示方法和画法,以及它们的联系与区别;4.知道两点间的距离和线段中点的含义,并能进行线段的计算.知识点1:直线、射线与线段的概念注意:直线是可以向两边无限延伸的,射线受端点的限制,只能向一边无限延伸;线段不能延伸,所以直线与射线不可测量长度,只有线段可以测量。
知识点2:基本事实1.经过两点有一条直线,并且仅有一条直线,即两点确定一条直线2.两点之间的线段中,线段最短,简称两点间线段最短知识点3:线段的性质两点之间的线段中,线段最短,简称:两点间线段最短。
知识点4:基本概念1.两点间的距离:两个端点之间的长度叫做两点间的距离。
2.线段的等分点:把一条线段平均分成两份的点,叫做这个线段的中点知识点5:双中点模型:C 为AB 上任意一点,M 、N 分别为AC 、BC 中点,则AB MN 21考点1:直线、射线和线段的定义例1.(2023春•广饶县期中)如图,已知三点A 、B 、C ,画射线AB ,画直线BC ,连接AC .画图正确的是()A .B .C .D .【答案】B 【解答】解:画射线AB ,画直线BC ,连接AC ,如图所示:故选:B .【变式1-1】(2023•邯山区校级开学)下列各图中所给的线段、射线、直线能相交的是()A .B .C .D .【答案】B 【解答】解:A 、直线AB 与射线EF 无交点,故此选项不符合题意;B 、直线AB 与射线EF 有交点,故此选项符合题意;C 、直线AB 与射线EF 无交点,故此选项不符合题意;D、直线AB与射线EF无交点,故此选项不符合题意.故选:B.【变式1-2】(2023春•泰山区期中)如图,下列说法正确的是()A.点O在射线AB上B.点B是直线AB的一个端点C.点A在线段OB上D.射线OB和射线AB是同一条射线【答案】C【解答】解:A、点O在射线AB的反向延长线上,故此选项不符合题意;B、直线没有端点,故此选项不符合题意;C、点A在线段OB上,原说法正确,故此选项符合题意;D、射线OB和射线AB的端点不同,不是同一条射线,故此选项不符合题意.故选:C.【变式1-3】(2022秋•运城期末)下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MP是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【解答】解:A、直线MN与直线NM是同一条直线,选项正确,不符合题意;B、射线PM与射线MP不是同一条射线,选项错误,符合题意;C、射线PM与射线PN是同一条射线,选项正确,不符合题意;D、线段MN与线段NM是同一条线段,选项正确,不符合题意.故选:B.考点2:直线的性质和运用例2.(2022秋•黄陂区校级期末)在下列现象中,体现了基本事实“两点确定一条直线”的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:第一、二、三幅图中的生活、生产现象可以用基本事实“两点确定一条直线”来解释,第四幅图中利用的是“两点之间,线段最短”的知识.故选:C.【变式2-1】(2022秋•永年区期末)在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线【答案】B【解答】解:由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线,故选:B.【变式2-2】(2022秋•渭滨区期末)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.以上都不是【答案】B【解答】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:B.例3.(2023春•高青县期中)如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票?()A.10B.11C.18D.20【答案】D【解答】解:图中线段有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10条,单程要10种车票,往返就是20种,即5×(5﹣1)=20,故选:D.【变式3-1】(2023春•东平县期中)如图所示,由泰山始发终点至青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的单程火车票()种.A.5B.10C.15D.20【答案】B【解答】解:=10(种),∴要为这次列车制作的单程火车票10种.故选:B.【变式3-2】(2022秋•海门市期末)往返A,B两地的客车,中途停靠两个站,客运站根据两站之间的距离确定票价(距离不相等,票价就不同).若任意两站之间的距离都不相等,则不同的票价共有()A.4种B.5种C.6种D.7种【答案】C【解答】解:由题意可知,不同的票价有1+2+3=6(种),故选:C.【变式3-3】(2022秋•宛城区期末)济青高铁北线,共设有5个不同站点,要保证每两个站点之间都有高铁可乘,需要印制不同的火车票()A.20种B.42种C.10种D.84种【答案】A【解答】解:如图,图中有5个站点.经分析,往同一个方向(从1站点往5站点的方向),需要印制不同的火车票种类的数量有4+3+2+1=10(种).∴保证任意两个站点双向都有车票,需要印制车票种类的数量为2×10=20(种).故选:A.考点3:尺规作图-直线、射线和线段例4.(2022秋•忠县期末)已知A、B、C三点如图所示.(1)画直线AB,射线AC,线段BC;(2)在线段BC上任取一点E(不同于B,C),连接AE,并延长AE至D,使DE=AE;(用尺规作图,不写作法,保留作图痕迹)(3)在完成(1)(2)后,图中的线段共有多少条?并写出以点A为端点的所有线段.【答案】(1)(2)见图,(3)图中共8条线段,以点A为端点的线段:线段AB、线段AC、线段AE、线段AD.【解答】解:(1)画直线AB,线段BC,射线AC,如图;(2)连接AE,并延长AE,在AE的延长线上用圆规截取DE=AE,如图;(3)图中共8条线段,以点A为端点的线段:线段AB、线段AC、线段AE、线段AD.【变式4-1】(2022秋•惠州期末)如图,平面上有四个点A、B、C、D,根据下列语句画图:(1)射线BA;(2)直线BD与线段AC相交于点E;【答案】(1)见解析;(2)见解析.【解答】解:(1)如图所示:(2)如图所示:【变式4-2】(2022秋•黄陂区期末)如图,平面上有A,B,C,D四个点,根据下列语句画图.(1)画射线AD、BC交于点F.(2)连接AC,并将其反向延长;(3)取一点P,使点P既在直线AB上又在直线CD上;(4)取一点Q,使点Q到A,B,C,D四点的距离之和最小.【答案】作图见解答过程.【解答】解:(1)如图,射线AD、BC交于点F,点F即为所求;(2)如图,连接AC,并将其反向延长,CA即为所求;(3)如图,直线AB和直线CD相交于点P,点P即为所求;(4)如图,连接AC、BD,交点为点Q,点Q即为所求.【变式4-3】(2022秋•济南期末)如图,平面上有A、B、C、D四个点,请根据下列语句作图.(1)画直线AC;(2)线段AD与线段BC相交于点O;(3)射线AB与射线CD相交于点P.【答案】答案见解析.【解答】解:(1)直线AC如图所示.(2)线段AD与线段BC相交于点O,如图所示.(3)射线AB与射线CD相交于点P,如图所示.考点4:线段的性质例5.(2022秋•越秀区期末)如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短D.线段是直线的一部分【答案】B【解答】解:把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是两点之间线段最短.故选:B.【变式5-1】(2022秋•泉港区期末)小华从家里去学校有4条不同路线,路线a、b、c、d的路程分别为:5.2km、3.6km、2.9km、6.5km.若有一条路线是线段,则属于线段的路线是()A.路线a B.路线b C.路线c D.路线d【答案】C【解答】解:∵两点之间线段最短,∴路线a、b、c、d的路程分别为:5.2km、3.6km、2.9km、6.5km,若有一条路线是线段,则属于线段的路线是路线c.故选:C.【变式5-2】(2022秋•叙州区期末)如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.经过一点有无数条直线D.两点之间,线段最短【答案】D【解答】解:由于两点之间线段最短,∴剩下树叶的周长比原树叶的周长小,故选:D.【变式5-3】(2022秋•枣阳市期末)下列四个有关生活、生产中的现象:①用两个钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要定出两棵树的位置,就能确定同一行树所在的直线.其中可以用“两点之间,线段最短”来解释的现象有()A.①B.②C.③D.以上现象都可以【答案】B【解答】解:①属于“两点确定一条直线”,不可用“两点之间,线段最短”来解释,不符合题意;②可用“两点之间,线段最短”来解释,两点之间,线段最短,减少了距离,符合题意;③属于“两点确定一条直线”,不可用“两点之间,线段最短”来解释,不符合题意,∴可以用“两点之间,线段最短”来解释的现象有②,故选:B.考点5:线段的简单运算例6.(2022秋•东港区校级期末)已知点B在线段AC上,点D在线段AB上.(1)如图1,若AB=10cm,BC=6cm,D为线段AC的中点,求线段DB的长度;(2)如图2,若,E为线段AB的中点,EC=16cm,求线段AC的长度.【答案】(1)线段DB的长度为2cm;(2)线段AC的长度为24cm.【解答】解:(1)如图1所示:∵AB=10cm,BC=6cm,∴AC=AB+BC=10+6=16(cm),又∵D为线段AC的中点,∴,∴DB=DC﹣BC=8﹣6=2(cm);(2)如图2所示,设BD=xcm,∵,∴AB=4BD=4xcm,CD=3BD=3xcm,∴BC=DC﹣DB=3x﹣x=2x,∴AC=AB+BC=4x+2x=6x,∵E为线段AB的中点,∴,∴EC=BE+BC=2x+2x=4x,又∵EC=16cm,∴4x=16,解得:x=4,∴AC=6x=6×4=24(cm).【变式6-1】(2022秋•临县期末)如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BD=7cm,则BC的长为()A.2cm B.3cm C.4cm D.5cm【答案】C【解答】解:∵AB=10cm,BD=7cm,∴AD=3cm,∵D是线段AC的中点,∴AC=6cm.∴BC=4cm.故选:C.【变式6-2】(2022秋•交口县期末)直线上有A,B,C三点,已知AB=8cm,BC=2cm,则AC的长是()A.10cm B.6cm C.10cm或6cm D.不能确定【答案】C【解答】解:根据题意可得,如图1,,AC=AB+BC=8+2=10(cm);如图2,,AC﹣AB﹣BC=8﹣2=6(cm).所以AC的长是10cm或6cm.故答案为:C.【变式6-3】(2022秋•君山区期末)如图,线段AB=30,AC=10,点M是线段AC的中点.(1)则线段BC的长度为20;(2)在线段CB上取一点N,满足NB=3CN.求线段MN的长.【答案】(1)20;(2)10.【解答】解:(1)∵AB=30,AC=10,∴BC=AB﹣AC=30﹣10=20,故答案为:20.(2)∵BC=20,NB=3CN,∴,又∵点M是AC的中点,AC=10,∴,∴MN=MC+NC=5+5=10.考点6:线段的中双中点模型例7.(2022秋•秦淮区期末)如图,线段AB=12cm,C是线段AB上一点,AC=8cm,D、E分别是AB、BC的中点.(1)求线段CD的长;(2)求线段DE的长.【答案】(1)2cm;(2)4cm.【解答】解:(1)∵D是AB的中点,∴AD=AB=×12=6(cm),∵CD=AC﹣AD,∴CD=8﹣6=2(cm);(2)∵BC=AB﹣AC,∴BC=12﹣8=4(cm),∵E是BC的中点,∴CE=BC=×4=2(cm),∵DE=DC+CE,∴DE=2+2=4(cm).【变式7-1】(2022秋•朝阳区期末)如图,点C在线段AB上,AB=16,点E、F分别是线段AB、AC的中点,且EF=5.求线段AC的长.【答案】6.【解答】解:∵点E是AB的中点,∴.∵AB=16,∴.∵AF=AE﹣EF,EF=5,∴AF=8﹣5=3.∵点F是AC的中点,∴AC=2AF=2×3=6.∴线段AC的长为6.【变式7-2】(2022秋•贵池区期末)如图,C是线段AB上一点,M,N分别是AC,BC的中点.(1)若CN=CM,BN=2,求线段AB的长;(2)若AC+BC=m,求线段MN的长.【答案】(1)12;(2).【解答】解:(1)∵M,N分别是AC,BC的中点,∴,.∵,∴CM=4,∴BC=4,AC=8,∴AB=BC+AC=4+8=12;(2)∵AC+BC=m,M,N分别是AC,BC的中点,∴,.∵,∴.【变式7-3】(2022秋•成都期末)如图所示,点C是线段AB上一点,AC=2BC=8,点D是线段AB的中点.(1)求线段DC的长;(2)若E是线段BC的中点,F是线段AD的中点,求线段EF的长.【答案】(1)2;(2)7.【解答】解:(1)∵AC=2BC=8,∴BC=4,∴AB=AC+BC=12,∵点D是线段AB的中点,∴DB=AD=AB=6,∴DC=DB﹣BC=6﹣4=2;(2)∵E是线段BC的中点,F是线段AD的中点,∴EB=BC=2,AF=AD=3,∴EF=AB﹣EB﹣AF=12﹣2﹣3=7.1.(2022•柳州)如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是()A.①B.②C.③D.④【答案】B【解答】解:根据题意可得,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是②.故选:B.2.(2021•包头)已知线段AB=4,在直线AB上作线段BC,使得BC=2,若D是线段AC的中点,则线段AD的长为()A.1B.3C.1或3D.2或3【答案】C【解答】解:根据题意分两种情况,①如图1,∵AB=4,BC=2,∴AC=AB﹣BC=2,∵D是线段AC的中点,∴AD==;②如图2,∵AB=4,BC=2,∴AC=AB+BC=6,∵D是线段AC的中点,∴AD==×6=3.∴线段AD的长为1或3.故选:C.3.(2023•广东模拟)在墙壁上固定一根横放的木条,至少需要()A.1枚钉子B.2枚钉子C.3枚钉子D.随便多少枚钉子【答案】B【解答】解:至少需要2根钉子.故选:B.4.(2022•桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=4cm.【答案】4.【解答】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.1.(2022秋•宝塔区期末)下列各图中,表示“线段CD”的是()A.B.C.D.【答案】D【解答】解:A、是直线CD,故此选项不符合题意;B、是射线CD,故此选项不符合题意;C、是射线DC,故此选项符合题意;D、是线段CD,故此选项不符合题意;故选:D.2.(2022秋•淮滨县期末)平面上有A、B、C三点,经过任意两点画一条直线,可以画出直线的数量为()A.1条B.3条C.1条或3条D.无数条【答案】C【解答】解:①如果三点共线,过其中两点画直线,共可以画1条;②如果任意三点不共线,过其中两点画直线,共可以画3条.故选:C.3.(2022秋•晋中期末)高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做蕴含的数学道理是()A.两点之间,线段最短B.两点之间线段的长度,叫做这两点之间的距离C.两点确定一条直线D.平面内经过一点有无数条直线【答案】A【解答】解:在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做蕴含的数学道理是两点之间,线段最短.故选:A.4.(2023•铜仁市模拟)已知A、B、C为直线l上的三点,线段AB=9cm,BC=1cm,那么A、C两点间的距离是()A.10cm B.8cmC.10cm或8cm D.以上说法都不对【答案】C【解答】解:分两种情况:①点C在线段AB上,则AC=AB﹣BC=9﹣1=8(cm);②点C在线段AB的延长线上,AC=AB+BC=9+1=10(cm).故选:C.5.(2022秋•武侯区期末)已知在同一直线上有A,B,C三个点,且AB=3,BC=2,则AC的长为()A.5B.C.5或1D.或1【答案】C【解答】解:如图1,,AC=AB﹣BC=3﹣2=1;如图2,,AC=AB+BC=3+2=5,所以AC的长为5或1.故选:C.6.(2022秋•大东区期末)如图,BC=AB,D为AC的中点,DC=3,则AB的长是()A.B.5C.D.4【答案】D【解答】解:∵D为AC的中点,DC=3,∴AC=2DC=2×3=6,∵BC=AB,∴AB=AC=×6=4.故选:D.7.(2022秋•通道县期末)如图已知线段AB=14cm,C点在AB上,BC:AC=3:4,D为BC的中点,则线段AD的长为()A.10cm B.11cm C.12cm D.13cm【答案】B【解答】解:∵AB=14cm,BC:AC=3:4,∴,,∵D为BC的中点,∴,∴AD=AC+CD=8+3=11cm,故选:B.8.(2022秋•婺城区期末)杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票()A.20种B.15种C.10种D.5种【答案】A【解答】解:需要印制不同的火车票的种数是:2(1+2+3+4)=20(种).故选:A.9.(2022秋•市中区校级期末)如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题.(注此题作图不要求写出画法和结论)(1)作射线AC;(2)作直线BD与射线AC相交于点O;(3)分别连接AB、AD;(4)我们容易判断出线段AB+AD与BD的数量关系是AB+AD>BD,理由是两点之间,线段最短.【答案】见试题解答内容【解答】解:(1)(2)(3)如图所示:(4)AB+AD>BD,理由是:两点之间,线段最短.故答案为:AB+AD>BD,两点之间线段最短.10.(2022秋•惠山区校级期末)如图,已知点C是线段AB上一点,点D是线段AB的中点,若AB=10cm,BC=3cm.(1)求线段CD的长;(2)若点E是直线AB上一点,且BE=2cm,点F是BE的中点,求线段DF的长.【答案】(1)2cm;(2)6cm或4cm.【解答】解:(1)∵点D是线段AB的中点,AB=10cm,∴,∵BC=3cm,∴CD=BD﹣BC=2cm;(2)当点E在AB的延长线上时,如图,∵BE=2cm,点F是BE的中点,∴,∴DF=BD+BF=5+1=6cm;当点E在线段AB上时,如图,∵BE=2cm,点F是BE的中点,∴,∴DF=BD﹣BF=5﹣1=4cm;综上所述,线段DF的长为6cm或4cm.11.(2022秋•凤山县期末)如图,点C是线段AB上的一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=12cm,AM=4cm,求CN的长;(2)如果MN=8cm,求AB的长.【答案】(1)2;(2)16.【解答】解:(1)∵点M是线段AC的中点,AM=14cm,∴AC=2AM,∴AC=8cm,∵AB=12cm,∴BC=AB﹣AC=4(cm),∵点N是BC的中点,∴CN=BC=2(cm),答:CN的长为2cm;(2)∵点M是线段AC的中点,点N是线段BC的中点,∴BC=2NC,AC=2MC,∵MN=NC+MC=8(cm),∴AB=BC+AC=2NC+2MC=2MN=16(cm),答:AB的长为16cm.12.(2022秋•忠县期末)如图,长度为42cm的线段AD上有两点B、C,这两点将线段AD分成AB:BC:CD=2:1:4.(1)求线段AC的长;(2)点M为线段AB的中点,点N为线段CD的中点,求线段MN的长度.【答案】(1)18cm;(2)24cm.【解答】解:(1)AB:BC:CD=2:1:4.∴AD=42cm,∴AC=(cm);(2)由题意得AB=(cm),BC=6(cm),CD=24(cm),∵M为线段AB的中点,点N为线段CD的中点,∴MB=(cm),CN=(cm),∴MN=MB+BC+CN=6+6+12=24(cm).13.(2022秋•利川市校级期末)如图,已知点B在线段AC上,点D在线段AB上,满足BD:AB=1:4,且点D,E分别是线段AC,AB的中点,若EC=24,求线段AB和AC的长度.【答案】24,26.【解答】解:设BD=x,∵BD:AB=1:4,∴AB=4BD=4x,∵点E是线段AB的中点,∴BE=AE=AB=×4x=2x,∴DE=x,∴AD=3x,∵点D是线段AC的中点,∴AC=2AD=6x,∴CE=AC﹣AE=6x﹣2x=24,解得:x=6,∴AB=4x=4×6=24,AC=6x=6×6=36.。
英才教育一对一辅导讲义学生姓名性别年级初一学科数学授课教师上课时间年月日第()次课共()次课课时:课时教学课题1.理解几何图形的概念,并能对具体图形进行识别或判断;2. 掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.教学目标1.了解三视图,理解一个几何体的三个视图之间的位置和大小关系.2.通过辨识简单几何体的三视图,及由简单三视图想象出相应的几何体,培养空间想象能力和逻辑思维能力.3.培养用数学眼光看世界,应用数学的意识,提高学习数学的兴趣.教学重点与难点1.辨识简单立体图形三视图.2.由简单三视图想象出相应的几何体.3.通过三视图的教学,培养空间想象能力.基础:1.如图所示,C,D是线段AB上的两点,且D是线段AC的中点,若AB=10 cm,BC=4 cm,求AD的长。
2.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,求CD的长。
3.(1)已知点A,B,C都是直线l上的点,且AB=5 cm,BC=3 cm,求线段AC的长(2)已知线段AB的长为18cm,点C在线段AB的延长线上,且AC=BC35,则线段BC=___.(3)一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位.(4)如图,点C是线段AB上一点,点D、E分别是线段AC、BC的中点. 如果AB=a,AD=b,a b,那么CE= 。
其中2(5).下面由火柴杆拼出的一列图形中,第n个图形由几根火柴组成.通过观察可以发现:第4个图形中,火柴杆有_______根,第n个图形中,火柴杆有________根.4.如图所示,已知线段a,b,求作线段AB,使AB=4a-2b.5.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.6.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM的长.7.在同一条公路旁,住着5人,他们在同一家公司上班,如图所示,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?8.如图,延长线段AB到C,使12BC AB=,D为AC的中点,DC=2,求AB的长.9..已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC=6,BC=4,求线段MN的长度;(2)若AB=a,求线段MN的长度;(3)若将(1)小题中“点C在线段AB上”改为“点C在直线AB上”,(1)小题的结果会有变化吗?求出MN的长度.10.如图,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+ CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由. (3)若C在线段AB的延长线上,且满足AC CB bcm-=,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.11.如图,已知C、D是AB上两点,且AB=20cm,CD=6cm,M是AD的中点,N是BC的中点,则线段MN 的长为.12.知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?13.景区大楼AB段上有四处居民小区A,B,C,D,且有AC=CD=DB,为改善居民购物的环境,要在AB路建一家超市,每个小区的居民各执一词,难以确定超市的位置,如果由你出任超市负责人,以便民、获利的角度考虑,你将把超市建在哪儿?14.如图从A到C地,可供选择的方案是走水路、走陆路、走空中、从A到B有2条水路、2条陆路;从B地到C地有3条陆路可供选择;走空中从A不经B地直接到达C地,则从A地到C地可供选择的方案有()A.20种B.8种C.5种D.13种15.如图,B、C两点把线段AD分成2∶3∶4的三部分,M是AD的中点,CD=8,求MC的长.16.摄制组从A市到B市有一天的路程,计划上午比下午多走100千米到C市吃饭,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A、B两市相距多少千米?17.如图,线段AB=4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2,但他在反思的过程突发奇想:若点O运动到AB的延长线上,原有的结论“CD=2”是否仍成立?请帮小明画出图形并说明理由.ACO D18.如图,AB∶BC∶CD=2∶3∶4,AB的中点M与CD的中点N的距离是3 cm,则BC=19.已知:如图,线段MN=m,延长MN到点C,使NC=n,点A为MC的中点,点B为NC的中点,求线段AB的长.20.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.期末真题2015年越秀区1.如图,C、D两点将线段AB分成2:3:4三部分,E为线段AB的中点,CB=14cm,求:(1)线段AB的长;(2)线段ED的长.2.已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF 的度数;(2)如图2,若∠AOB=α,求∠EOF 的度数(用含α的式子表示);(3)若将题中的“OE 平分∠BOC ,OF 平分∠AOC ”的条件改为“∠EOB=∠BOC ,∠COF=∠AOC ”,且∠AOB=α,求∠EOF 的度数(用含α的式子表示)3,。
(1)如图,已知线段,a b 和线段()AM c c a b =>>用圆规和直尺在AM 上作线段AD ,使AD =2a b -.(不写作法,保留作图痕迹)(2)求(1)中线段DM 的长(用,,a b c 的代数式表示)2015年天河区4.已知C 是线段AB 上的一点,且AC =23AB ,D 是AB 的中点,问: (1)如图1,者AB =12cm ,求线段CB ,DC 的长;(2)如图2,若E 是CB 的中点,DE =6cm ,求线段AB 的长.5.如图l,已知∠AOB=∠COD=90°.(1)猜想∠l和∠AOD之间的数量关系:____________________.(2)如图2,∠EOF在∠AOD内部,已知∠EOF=100°,猜想∠l、∠2、∠3之间的数量关系,并说明你的猜想.(3)如图2,当∠EOF保持角度不变在∠AOD内部绕点D转动时,∠EOC和∠FOD的平分线的夹角大小会不会改变?若不变,请求出夹角度数;若改变,请说明理由.图1 图22015海珠区6.A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x=,y=,并请在数轴上标出A、B 两点的位置.(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z=.(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=.、7.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=°,∠AEN=°,∠BEC+∠AEN=°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.2016年越秀区期末如图,已知点A、B、C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)数轴上点A表示的数是,点B表示的数是;(2)动点P、Q同时从A、C出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以3个单位长度的速度沿数轴向左匀速运动,M为AP的中点, N在线段CQ上,且13CN CQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②t为何值时,原点O恰为线段PQ的中点..如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN= 2CQ.设运动的时间为t(t>0)秒.3①数轴上点M、N表示的数分别是_________________ (用含t的式子表示);②t为何值时,M、N两点到原点O的距离相等?如图,已知AB=2cm,延长线段AB至点C,使BC=2AB,点D是线段AC的中点,用刻度尺画出图形,并求出线段BD的长度动点1. 已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a-b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|PA|-|PB|=2时,求x的值;(3)若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时,下列两个结论:①|PM|+|PN|的值不变;②|PN|-|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.【武汉二中期末】2.如图1,已知数轴上有三点A、B、C,AB= 1/2AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中, 3/2QC-AM的值是否发生变化?若不变,求其值;若不变,请说明理由.【武昌区期末】3.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求(OB-AP)/EF的值.【汉阳区期末】4.如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇?(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/s的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点也能相遇,求点Q运动的速度.课后练习:1.已知(|m|-1)x2-(m-1)x+8=0是关于x的一元一次方程,求m的值.2.数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A 、B 两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A 、B 两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,且在运动过程中,始终有CB :CA=1:2,若干秒钟后,C 停留在-10处,求此时B 点的位置?3.(本题7分)如图,某轮船上午8时在A 处,测得灯塔S 在北偏东60°的方向上,向东行驶至中午12时,该轮船在B 处,测得灯塔S 在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,求∠ASB 的度数及AB 的长. 约定在C 站会面商议事谊。