基于Ansys的超大型平头塔式起重机平衡臂优化设计
- 格式:pdf
- 大小:226.94 KB
- 文档页数:4
ANSYS结构优化在起重臂设计中的应用研究随着工程技术的不断发展,结构优化在各种工程领域中得到了广泛的应用。
起重臂设计作为机械设计领域中的重要分支,在应用中也面临着一系列挑战,包括重量减轻、强度提高、结构稳定性等问题。
在这些问题中,ANSYS结构优化技术具有着独特的优势,能够帮助工程师设计出更加优化的起重臂结构,提高其性能和效率。
一、ANSYS结构优化技术概述ANSYS是世界领先的工程仿真软件提供商,其结构优化技术能够帮助工程师对复杂结构进行优化设计,并有效地解决工程问题。
结构优化技术主要包括拓扑优化、形状优化、尺寸优化和拓扑尺寸优化等方法。
通过这些方法,工程师可以优化设计出更加轻量化、强度更高的结构,提高结构的性能和效率。
二、起重臂设计中的挑战起重臂是起重机的重要部件,负责吊装和搬运重物。
在起重臂设计中,通常需要考虑结构的重量、强度、刚度和稳定性等问题。
同时,起重臂通常工作在恶劣环境下,需要考虑结构的耐久性和可靠性。
因此,起重臂设计中面临着一系列挑战,需要工程师综合考虑多个方面因素来设计出最优的结构。
三、ANSYS结构优化在起重臂设计中的应用在起重臂设计中,工程师可以利用ANSYS结构优化技术来优化设计结构。
首先是拓扑优化,通过优化结构的拓扑形状,可以有效地减轻结构重量、提高结构强度和刚度。
其次是形状优化,通过优化结构的形状,可以进一步提高结构的性能和效率。
此外,还可以通过尺寸优化和拓扑尺寸优化等方法来优化设计起重臂的尺寸和结构布局,提高结构的工作效率和稳定性。
四、结论在起重臂设计中,ANSYS结构优化技术能够帮助工程师设计出更加优化的结构,提高其性能和效率。
通过结构优化技术,工程师可以优化设计结构的拓扑形状、形状、尺寸和布局,从而实现结构轻量化、强度提高、工作效率和稳定性等目标。
因此,ANSYS结构优化技术在起重臂设计中具有着重要的应用价值,有助于解决工程实际中面临的挑战,推动起重臂设计技术的发展。
基于ANSYS的起重机结构设计优化作者:李聪张亚鹏连冬晓来源:《时代汽车》2021年第12期摘要:在随车起重机的前期設计论证阶段,需进行详细的结构设计及强度校核计算,结构设计包括整机外形的布置、技战术指标的实现及三维模型的建立等方面,在初步确定三维模型结构后,可对整体结构进行有限元分析计算,加入强度及刚度有限元计算后,可有效模拟实际工作状况中部件的受力状况,从而对危险受力点及截面进行预判,根据分析结果对结构进行改变并重新分析直至受力状况优化,从而能对结构优化及实际生产起到有效的指导作用。
正确的有限元分析常常会有效的提高产品质量,以致减小实际生产的成本,对于从设计到生产都能起到极大的促进作用。
关键词:随车起重机三维模型有限元分析结构优化Study on the Performance of Lithium-ion Battery in Electric Vehicle during Cycling TestLi Cong Zhang Yapeng Lian dongXiaoAbstract:In the preliminary design demonstration stage of the truck-mounted crane, detailed structural design and strength check calculations are required. The structural design includes thelayout of the overall machine shape, the realization of technical and tactical indicators, and the establishment of three-dimensional models. The three-dimensional model structure is initially determined After that, finite element analysis and calculation of the overall structure can be carried out. After adding the finite element calculation of strength and stiffness, it can effectively simulate the force status of the components in actual working conditions, so as to predict the dangerous force points and cross-sections. According to the analysis results The structure is changed and re-analyzed until the stress condition is optimized, which can effectively guide the structure optimization and actual production. Correct finite element analysis can often effectively improve product quality, so as to reduce the actual production cost, which can greatly promote the process from design to production.Key words:Truck mounted crane, 3D model, Finite element analysis,Structure optimization1 引言随车起重机是指安装在汽车底盘上,在一定范围内垂直提升和水平搬运重物的起重机械,又称随车吊,属于物料搬运机械,是众多起重运输机械中的一个分支。
基于ANSYS的起重机若干结构部件的优化设计摘要在起重机设计领域,有限元分析法在机构优化方面得到了广泛的运用。
本文主要针对某些具体的部件实例,运用ANSYS实体模型法进行了分析,最后指出了ANSYS在结构优化方面的高效性与实用性。
关键词ANSYS;结构优化;实体模型法ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。
利用ANSYS有限元软件包,工程技术人员可以建立零部件、产品以及结构等的三维模型,通过设计参数进行模拟计算,检验设计对象是否符合要求。
这样一来,ANSYS能够帮助设计人员有目的开发产品,减少材料浪费、制造成本和设计时间,提高了设计效率和新产品的质量。
1 ANSYS的实体建模一旦定义了材料特性,在分析中下一步是建立能够恰当反映模型几何性质的有限元模型。
模型建立方法:1)直接生成法;2)实体建模法:几何模型+网格划分。
建模原则:建立有限元模型时,对于结构形势复杂,而对于要分析的问题来讲又不是很关键的局部位置,在建立几何模型时可以根据情况对其进行简化,以便降低建模难度。
建模方法选择:1)直接生成方法必须直接确定每个结点的位置,以及每个单元的大小、形状和连接关系,工作量大。
直接生成法法适用于小型简单模型。
缺点是改变网格和模型十分困难,易出错。
当模型复杂时,直接生成法叫人无法忍受。
2)实体模型法是先生成几何模型,在进行网格划分,相对来说容易些,适用于庞大而复杂的模型,特别是三维实体模型,它比直接生成法更加有效和通用,是一般建模的首选方法。
其优点是便于几何上的改进和单元类型的改变,容易实现有限元模型的生成;缺点是在某些条件下ANSYS可能不能生成有限元网格。
3)实体建模中的几何模型的生成方法。
对于不太复杂的模型,可以直接ANSYS的实体建模工具完成[Main Menu] Preprocessor/Modeling,如果模型过于复杂,可以考虑在专用的CAD中建立结婚模型,然后通过ANSYS提供的接口导入模型,导入方法:[Utility Menu] File/ImportANSYS支持的接口通常包括以下类型:IGES、CATIA、Pro/E、UG、SA等。
T6510塔机起重臂参数化设计与优化塔机设计计算中,起重臂结构复杂,参数化建模可有效节省设计优化时间。
ANSYS中参数化设计语言可在塔机起重臂优化设计中得到有效应用。
以起重臂、拉杆为研究对象,运用APDL语言建模,“Design Opt”模块自带算法,优化了起重臂结构。
优化后的起重臂结构合理,可靠性好。
标签:塔机;起重臂;APDL;Opt;优化1概述塔式起重机由钢结构、传动机构、控制系统等组成。
合理的钢结构保证了塔机的整体稳定性。
塔机结构设计是以安全为前提,满足起重性能,使整体结构轻量化。
塔机起重臂为空间桁架结构,各节起重臂通过销轴连接。
起重臂是塔机的重要部件,良好的结构形式能够提升塔机的起重性能。
起重臂的优化可以使起重臂轻量化,提升市场竞争力。
运用APDL能够实现参数化建模、施加载荷、求解,便于优化分析。
模型参数修改容易,极大提高了分析求解效率。
APDL参数化有限元分析需定义一个分析文件和优化文件。
一个完整的分析文件包含完整的前处理、求解、后处理过程。
与通常ANSYS求解不同的是要首先定义参数化变量,确定设计变量、状态变量和目标函数,并提取需要的参数值。
优化文件中要定义设计变量、状态变量和目标函数的取值范围,选择合适的优化方法求解。
本文以T6510塔机起重臂为研究对象,运用APDL语言进行参数化建模,Ansys “Design Opt”模块相应算法对起重臂结构进行优化。
2优化设计2.1结构优化分析流程优化设计是定义参数、分析、评估、修正参数、求解的迭代的过程。
结构优化设计定义的变量通常为各零部件的外形尺寸,目标函数为总重量,优化流程如图1所示。
“Design Opt”模块中的优化方法包括零阶方法和一阶方法。
零阶方法是一个很完善的处理方法,可以有效的处理大多数工程问题,但精确性不高。
一阶方法是基于目标函数对设计变量的敏感度,更加适合于精确的优化分析。
本文运用零阶方法研究整个设计空间,然后使用一阶方法在合理的设计序列中搜索最优解。
内容摘要城市化建设的飞速发展,城市的高层建筑群越来越多,对适合于此类建筑物施工的高空作业车设备需求量与日俱增。
作业臂是高空作业平台的重要承载部件之一,也是整机结构强度相对薄弱的部分,其力学性能对机械的正常运转有直接影响,为了保证工作人员高空作业时的人身安全,其作业臂有着严格的设计要求。
针对此问题,在对其结构进行详细分析的基础上,可以利用ANSYS软件与CAD软件的数据交换功能,将AutoCAD软件中建立的作业臂的三维几何模型导入ANSYS中, 选择solid92实体单元,利用ANSYS强大的网格划分功能,分析作业臂的结构和受载特点,建立有限元模型进行作业臂结构的强度和刚度分析,确定危险截面或危险点得应力分布及变形,找出结构设计中的不合理因素,对作业臂模型的截面尺寸形式进行了合理的优化设计,以达到节约材料,节省成本,并保证作业臂的安全系数。
关键词: 高空作业车作业臂有限元分析截面ANSYSAbstractWith the rapid development of urbanization, The urban architecture is to be more and more, which demand more and more the appropriate equipment for the construction of such buildings. Telescopic boom is one of an important bearing component in Aerial Work Platform, and also is relatively weak machine parts, whose mechanical properties has a direct impact on the normal operation of the machine. It is necessary and important to research the mechanical properties of the working arm in the design field of aerial working platform for ensuring the person safety in aerial working.In this situation, based on the detailed analysis of working arm structure, and then the 3D geometry model has been made in the platform of AutoCAD, the model was imported into the ANSYS. Making use of the solid element solid92 and powerful gridding partition ability of ANSYS and then using the function to analyze the structure of the working arm and the load characteristics of the operating arm. To establish the finite element model of the structure is to analyze strength and stiffness, which will determine the dangerous section or dangerous point and deformation to identify the unreasonable factors of the structural design. The overall performance will be improved. The plate thickness is optimized to reduce the material and the cost and to ensure the safety factor of the operating arm.Key words: Aerial working platform Working arm Finite analysis Section Ansys第1章绪论1.1课题的研究背景与意义工程机械广泛应用于经济建设的各部门,在整个经济发展中占有十分重要的地位。