无源光网络分析
- 格式:doc
- 大小:282.50 KB
- 文档页数:7
浅谈POL无源光网络组网与传统以太网组网一、网络架构传统以态网局域网多采用的是核心交换机到汇聚交换机最后到接入交换机的传统的三层或二层架构。
POL网络核心层也是采用核心交换机,但在汇聚层由OLT 替代了传统的汇聚交换机,采用光纤替代了铜缆,在接入层采用分光器替代了接入交换机,由分光器连接直接面向用户的ONU设备,ONU充当了接入交换机角色,提供部分二层交换的功能,为用户提供业务服务。
二、POL技术优缺点POL部署快,成本低,后期维护方便,经过多年的发展,POL已经得到大面积应用,如光纤入户方案。
现行POL技术已经成熟,包括GPON技术的更新,很多单位早已应用这种无源光网组网方式。
1.优点:(1)组网速度快:因为采用光缆铺设,摒弃了汇聚层以及接入层交换机,不需要铺设大量的网线,组网速度得到了提升。
(2)光纤的成本低:在综合布线这一块,节约了成本,另外由于减少了汇聚以及接入层交换机,无疑在网络设备方面节约了一定的资金。
(3)配线间无源化:由于采用光交技术,楼宇配线间将无需电源,仅需要很小的空间用于存放设备。
(4)集中式管理:网络通过管理软件统一管理,操作通过软件下发,运维相对较为简单方便。
(5)光纤远距离传输比双绞线更远,突破了传统局域网组网对距离的限制。
2.缺点:(1)品牌众多,性能、质量参差不齐。
(2)网内使用大量的ONU设备,大量的ONU设备也增加了故障节点。
(3)大量的ONU设备就需要一套集中管理软件,才能对网络进行运维。
(4)网络的上下行带宽不对等的出现,在一些场景中会受到一定的限制。
(5)基本无横向联系,所有的横向数据均需要上升到OLT设备中进行交换,再返回至客户端,对于需要大量共享型网络存在一定的制约。
(6)同一区域如有多台接入终端,需要安装一台或多台ONU设备,过多的设备如果没有统一安放位置统一管理,影响美观及占用过多资源。
三、以太网组网1.优点:(1)技术成熟,各厂商提供产品丰富,生态圈相当成熟。
无源光网络(PON)技术1. PON技术的概述无源光网络(PON)技术是最新发展的点到多点的光纤接入技术。
无源光网络由光线路终端(OLT)、光网络单元(ONU)和光分配网络(ODN)组成。
一般其下行采用TDM广播方式、上行采用TDMA(时分多址接入)方式,而且可以灵活地组成树型、星型、总线型等拓扑结构(典型结构为树形结构),PON的本质特征就是ODN全部由无源光器件组成,不包含任何有源电子器件。
这样避免了外部设备的电磁干扰和雷电影响,减少了线路和外部设备的故障率,简化了供电配置和网管复杂度,提高了系统可靠性,同时节省了维护成本,是电信维护部门长期期待的技术,越来越受到业界的关注和重视,发展非常迅猛。
与点到点的有源光网络相比,PON技术的主要特点在于维护简单,成本较低(节省光纤和光接口)和较高的传输带宽,其高性能价格比的特点会使其在很长时间内保持竞争优势,PON一直视被为接入网未来的发展方向。
PON网络由于其简洁、廉价、可靠的网络拓扑结构被普遍认为是宽带接入网的最终解决方案,支持光纤到户FTTH。
与核心网不同的是,FTTH对成本更加敏感。
成本的突破很大程度上意味着条件的成熟。
剖析FTTH成本因素,主要有两个方面,一是设备采购成本,二是运营成本。
根据NTT公布的数据,FTTH的这两项成本已经与高速ADSL基本接近。
值得一提的是,目前ADSL设备的价格下降潜力已经不大,但是FTTH的成本随着规模增长有望继续下降。
从整体上看,在接入网领域光通信酝酿着新一轮的发展。
所以FTTH技术目前已被证实不仅技术上是成熟的,而且经济上是可行的。
继1998年ITU-T通过了基于ATM的G.983系列建议,2001年开始,两大通信标准化组织IEEE和ITU-T开始研究制订新一代PON技术标准,以满足未来宽带接入网的要求。
PON作为FTTH唯一的实现方式,它的三个同胞兄弟APON、EPON和GPON似乎从一开始就注定了要在竞争中不断完善和发展。
配网自动化中的无源光网络技术摘要:随着我国经济的快速开展,给电力行业开展带来了很多益处。
在我国的电力行业中,电力配网的自动化建设是目前建设的一个方向,要把保护和控制计量以及管理和监测这些整合到一起来使得自动化可以有效推进,配网自动化的建设有效地增加的企业的效益,节约了资源,提升了配电质量。
那么无源光技术具有可靠性高、稳定性强、衰减小的特点。
基于此,本文简要介绍了无源光技术在配网自动化中的实践情况。
关键词:电力行业;配电网;无源光技术;配网自动化0引言我国经济和科学技术的大力开展对我国的电力行业的开展有着至关重要的作用,在电力系统建设中配网自动化具有十分重要的地位,也是电力系统建设中重要的组成局部。
在电力系统建设中运用无源光网络技术可以使运输质量提高,企业效益提升。
因此,本文主要介绍了无源光网络技术在配网自动化中的实践情况。
1配网自动化的理论分析电力系统的配网自动化利用了计算机和通信技术以及网络集成优化的电网结构、一定的拓扑结构和一定的电网数据,这样就可以把这种自动化的系统构造出来,就可以完成现代化管理,保证配网的平安运行。
运用无源光技术可以使配网自动化很好的开展。
配网自动化系统包括配网的终端、配网的主站、配网的子站等3局部。
配网主站是整个电力系统监控和配网自动化管理系统最主要的核心,而对于特定的柱上开关和辖区开闭所以及辖区配电的终端控制系统和监控设备大多数是由配网的子系统来进行控制的,对数据进行很好的处理和整理,向配网主站及时反应整个系统的所有信息,配网的终端主要负责的就是发挥它自身监控配电所运行状况和监控终端的作用。
在整个配网自动化的系统中,最重要的构成局部就是配网的通信系统,配网自动化是基于配网通信自动化上建立起来的。
在电力系统中一些配网工程里最主要的就是通信系统,其主要就是为了实现10kV配网子站和一些馈线终端来有效地和配网主站到达一种双向传输信息的作用。
一些配电网设备由于数量极大而且又非常分散,通过无源光网络技术就可以有效地实现在配网自动化的信息传送。
一、无源光网络的概念无源光网络(PON),是指在OLT(光线路终端)和ONU(光网络单元)之间的光分配网络(ODN)没有任何有源电子设备.PON(无源光网络)技术是一种点对多点的光纤传输和接入技术,下行采用广播方式、上行采用时分多址方式,可以灵活地组成树型、星型、总线型等拓朴结构,在光分支点不需要节点设备,只需要安装一个简单的光分支器即可,因此具有节省光缆资源、带宽资源共享、节省机房投资、设备安全性高、建网速度快、综合建网成本低等优点。
PON包括A TM-PON(APON,即基于A TM的无源光网络)和Ethernet-PON(EPON,即基于以太网的无源光网络)两种。
二、无源光网络的优势无源光网络(PON)是一种纯介质网络,避免了外部设备的电磁干扰和雷电影响,减少了线路和外部设备的故障率,提高了系统可靠性,同时节省了维护成本,是移动维护部门长期期待的技术。
无源光网络的优势具体体现在以下几方面:(1)无源光网络设备简单,安装维护费用低,投资相对也较小。
(2)无源光设备组网灵活,拓扑结构可支持树型、星型、总线型、混合型、冗余型等网络拓扑结构。
(3)安装方便,它有室内型和室外型。
其室外型可直接挂在墙上,或放置于"H"杆上,无须租用或建造机房。
而有源系统需进行光电、电光转换,设备制造费用高,要使用专门的场地和机房,远端供电问题不好解决,日常维护工作量大。
(4)无源光网络适用于点对多点通信,仅利用无源分光器实现光功率的分配。
(5)无源光网络是纯介质网络,彻底避免了电磁干扰和雷电影响,极适合在自然条件恶劣的地区使用。
(6)从技术发展角度看,无源光网络扩容比较简单,不涉及设备改造,只需设备软件升级,硬件设备一次购买,长期使用,为光纤入户奠定了基础,使用户投资得到保证。
三、基于A TM的无源光网络1.APON技术简介近年来,在接入网上使用A TM技术以提供视频广播、远程教育以及数据通信等多种业务的趋势越来越明显。
OLT供给网络侧接口并连至一个或多个ODN,达成下行电到光、上行光到电的转换,以及分派和控制各信道的连结,并对各个光电接口实行监控,供给 OAM功能。
ODN为 OLT和ONU供给光传输手段,主要功能是达成光信号功率的分派,完整出光纤无源器件构成,这也是PON名称的由来。
ONU供给用户侧接口并和 ODN相连,达成下行光到电和上行电到光的变换,还要达成对语音信号的数/模和模/数转换、复用、信令办理和保护管理功能,实现各种业务的接入。
AF(Adaption Facility适配设备 ) 为ONU和用户设备供给适配功能,它能够包含在 ONU内,也能够完整独立。
无源光网络中采纳的接入方式主要有:光纤到家(FTTH:Fiber to the Home)、光纤到大楼 (FTTB:Fiber to the Building) 光纤到办公室(F ’兀 O: Fiber to the Office) 、光纤到路 J,2 /(FTTC:Fiber to the Curb) 、、光纤到小区 (FTTZ:Fiber to the Zone)及光纤到节点 (FTTN:Fiberto the Node) 等等。
各样接入方式的主要差别在于 ONU搁置的地点不一样,此中最典型的方式是 FTTB、FTTC和FTTH。
PON在下行方向 ( 从OLT到 ONU)是点对多点网络, OLT一直拥有整个下行带宽。
在上行方向 (ONU到 OLT),PON是多点对一点的网络,多个 ONU都向一个 OLT发送数据,共享干路光纤带宽资源。
所以,在上行方向应当采纳信道切割体制来防止发生碰撞,公正有效地利用骨干光纤的传输资源。
依据信道切割体制的不一样,适用的PON技术大致分为两类:一是鉴于时分复用技术的无源光接入网 (TDM.PON);二是鉴于波分复用技术的无源光接入网 (WDM—PON)。
PON网络的突出长处是除去了户外的有源设备,所有的信号办理功能均在互换机和用户宅内设备达成,防止了外面设备的电磁扰乱和雷电影响,减少了线路和外面设备的故障率,提升了系统靠谱性,同节气俭了保护成本。
无源光网络(PON)技术概述摘要:简单介绍无源光网络(PON)技术,包括它们的组成、分类和性能特点,实际应用中的组网方式和光功率计算等。
关键词:无源光网络EPON GPON FTTx我国目前的主流有线宽带接入技术主要包括ADSL、FTTB+LAN、FTTx等,其中光纤接入(FTTx)技术是今后一定时期内的发展方向,它主要通过无源光网络(PON)技术实现。
1 光纤传输的优势光纤传输具有带宽高、线路直径小且重量轻、传输质量高和成本低等优势。
如今光纤的带宽理论上已经超过10GHz,每公里衰减小于0.3db,随着技术的发展,未来10~100Gb/s的传输也将成为可能;光纤即便包裹着保护套,也比同等的铜线尺寸小重量轻;更为突出的是,光纤传输抗干扰能力强,几乎可以忽略附近各种电子噪声源的干扰;此外,传输途中的低损耗可以增加中继器间的距离,因此减少了外部设备的成本,降低了维护运行费用。
2 无源光网络(PON)的组成与分类无源光网络(PON)系统由局端设备(OLT)、用户端设备(ONU/ONT)和光分配网(ODN)组成。
所谓“无源”,是指ODN 全部由无源光分路器和光纤等无源器件组成,不包括任何有源器件。
PON技术采用点到多点的拓扑结构,下行和上行分别采用时分复用(TDM)的广播方式和时分多址(TDMA)方式传输数据。
PON技术可以细分为很多种,目前常见的有APON(ATM PON)、EPON(Ethernet PON)和GPON(Gigabit PON),它们的主要区别体现在数据链路层和物理层的不同。
其中,APON以ATM作为数据链路层;EPON使用以太网作为数据链路层,并扩充以太网使之具有点到多点的通信能力;GPON则结合了APON和EPON的优点,使用ATM/GEM作为数据链路层,能够对多种业务提供良好支持,同时引入了更多的来自电信业的网络管理和运行维护思想。
目前,APON技术由于成本高,宽带低,已经基本被市场淘汰,主流代表技术为EPON 和GPON。
以太网无源光网络和工业以太网交换机在配电网上混合组网的分析与应用随着信息通信技术的不断发展,以太网已成为现代化配电网系统中不可或缺的技术之一、以太网无源光网络和工业以太网交换机作为两种重要的网络设备,可以在配电网上进行混合组网,提供高效、可靠的通信服务。
本文将对以太网无源光网络和工业以太网交换机在配电网上混合组网的分析与应用进行探讨。
一、以太网无源光网络在配电网上的应用分析以太网无源光网络是一种将以太网协议与光纤传输技术相结合的网络技术。
它通过光模块将电信号转换为光信号进行传输,克服了传统以太网存在的距离限制和干扰问题,提供了高速、稳定的数据传输服务。
在配电网上,以太网无源光网络具有以下应用优势:1.长距离传输能力:利用光纤传输技术,以太网无源光网络可以实现数十甚至数百公里的远距离传输,适用于大规模配电系统跨区域的数据传输需求。
2.高带宽传输:以太网无源光网络支持千兆甚至万兆级别的高速数据传输,能够满足配电网系统大量数据实时传输的需求。
3.抗干扰性优异:光纤传输具有较好的抗干扰性,可以有效降低电磁干扰对数据传输的影响,提高数据传输的可靠性。
4.灵活可扩展:以太网无源光网络可以根据系统需求进行网络拓扑结构的调整和扩展,具有较高的灵活性和扩展性。
基于以上特点,以太网无源光网络在配电网上的应用涵盖了数据传输、远程监测与控制等多个方面。
例如,可以实现配电网状态监测数据的实时传输,配合高性能数据处理系统进行配电网的远程监控和故障诊断;同时,还可以实现对配电设备的远程控制,比如对配电开关的操作与调控,提高配电网的智能化水平。
二、工业以太网交换机在配电网上的应用分析工业以太网交换机是一种专用于工业环境的交换机设备,能够适应高强度、高可靠性、抗干扰等特殊环境要求。
在配电网上,工业以太网交换机的应用主要体现在以下几个方面:1.高可靠性:工业以太网交换机具有较高的可靠性,可以通过冗余环路和冗余电源等技术手段实现对网络的自动切换和备份,提供高可靠性的网络连接。
无源光网络[浏览次数:约272次]•无源光网络(PON)技术是为了支持点到多点应用而发展起来的光接入技术。
由于采用光纤作为传输媒质,并使用无源光分配网,P ON避免了外部设备的电磁干扰和环境影响,减少了线路和外部设备的故障率,提高了系统的可靠性,同时节约了维护成本。
窄带PON几乎没有怎么实际应用就被宽带PON(BPON)取代了,BPON目前出现了APON、EPON和GPON这3种技术。
目录•无源光网络优势与核心构成•无源光网络原理•无源光网络(PON)需要FPGA设计的支持•无源光网络发展趋势无源光网络优势与核心构成目前,作为新一代接人技术的PON已经成为当前实现丌Tx的首选方案,下属BPON、EPON、GPON和WPON等多种技术,其应用范围也包含了宽带接人、TDM专线和基站回传等多个领域。
与传统的网络结构相比,PON技术具有以下优点:(1)PON是无源的,因此会节省更多的网络建设费和网络运营维护费。
(2)PON可以实现多用户分担成本。
PON协议所固有的安全性和带宽共享机制,可以确保用户共用线路的安全和透明。
(3)为相同数量客户提供业务的PON设备的体积更小,占用中心局的空间更少。
(4)PON同时支持传统语音业务和宽带业务,具备良好的业务扩展性,能平地滑向NGN 网络演进,还能轻松加载各种增值业务。
(5)PON支持所有住宅用户和许多商业用户共享一个接入网(包括物理层和协议层),因而减少了分散的接入网的数量。
PON中最主要的三个部分,包括位于局端的OLT(OpticalLineTerminal,光线路终端)、终端ONU(OpticalNetwork Unit,光网络单元)以及ODN(Optical Distribution Network,光配线网)。
PON“无源”是指ODN全部由光分路器(Splitter)等无源器件组成,不含有任何电子器件及电源。
如图1所示。
图1 基于PON的宽带接入方式面对未来运营商的多种需求,PON技术以其高带宽、高可靠性以及强大的全业务接入能力已成为兀Tx的主流技术,并配合“光进铜退”的发展战略,在光通信市场占据领先地位。
无源光网络原理PON是在所谓的“最后一公里”中缺少带宽时的解决方案。
家庭用户为了获得快速因特网接入,可以选择的方法极其有限(电话或电缆系统)。
同样,企业也局限于T1和T3载波提供的性能,虽然目前的无线、光纤和卫星业务都已更加成熟。
PON提供了城域中的另一种解决方案。
它主要用于解决宽带最终用户接入终端局的问题,由于这种接入技术使得接入网的局端(OLT)与用户(ONU)之间只需光纤、光分路器等光无源器件,不需租用机房和配备电源,因此被称为无源光网络。
它用于FITH(光纤到家庭)。
混合PON系统将光缆延伸到通信公司的远程终端,然后利用铜线DSL业务进入家庭。
在PON的架构中,一个光纤终端(OLT)下可以有多个无源光网络(PON)的单元。
每一个单元均可形成一个独立的PON网,藉由并不昂贵的分波器和光纤分布连接多种不同类型的ONT。
对于接入网络的无源性设计,减少了对电子元件的需求,如此一来便可以降低维修成本的支出。
无源光网络是“复兴的”光缆技术,它最初是为有线电视网络设计的。
最近以来,它作为一种能在城域提供高速接入的体系结构而得到关注。
PON现在是ITU规范。
通过PON,单根光纤从服务提供商的设备延伸到靠近居民区或商务中心的位置。
“无源”是指该系统在服务提供商和客户之间不需要电源和有源的电子组件。
它仅由光纤、分路器、接头和连接器组成。
一根光纤可为多个客户提供服务,而此前的系统要求每个客户都有独立的光纤。
PON可远距离使用,它是农村地区的理想选择。
在图中描述了基本的PON体系结构。
其概念是将光纤中继线从服务提供商的头端辐射到用户。
此系统具有以下组件:OLT (光线路终端) PON光纤在服务提供商设施处的终端。
ONT(光网络终端) 在用户位置的终端。
OAS(光接人交换机) 位于服务提供商处的交换机,它聚合来自所有用户的信元/数据分组并提供向因特网和PSTN的连接。
POS(无源光分路器) 或“分路器”在沿着进入多点树状拓扑的路径的任意点分离中继线和光信号。
ONU(光网络单元) 提供对用户的扇出连接。
每条PON中继线最多可支持32次分路和64个0NU。
用户与ONU的连接可以使用同轴电缆、双绞线、光缆,甚至是无线连接。
I0T(智能光终端) 主要指设计用于商业连接的0NU。
它为企业提供多种话音和数据业务,与综合接入设备非常类似。
PON中继线的带宽范围从l55Mbit/s到622Mbit/s。
每一次分路都会减少带宽,因此用户可用的带宽取决于在他和头端设备之间的分路次数。
例如,对622Mbit/s的中继线,如果对其分路以支持32个0NU,则与0NU相连的用户最多可获得19.5Mbit/s的带宽。
该带宽由所有用户分享。
为了组织此缆路上的通信,可以采用许多技术,包括ATM、以太网、FDM(频分复用)以及WDM(波分复用)。
FSAN (全业务接入网络)联盟对ATM PON(APON)作出了决定,APON变成ITU G.983标准。
APON使用众所周知的技术,并提供有保障的QoS(因为ATM信元有固定的大小以及ATM专用的QoS协议功能)。
APON是一种基于ATM信元的TDM/TDMA技术,由于ATM在实现不同业务的复用以及适应不同带宽方面的灵活性,使APON成为一种结合ATM多业务多比特率支持能力和无源光网络透明宽带传送能力的比较理想的长远解决方案,是未来宽带接入技术的发展方向,其标准遵循ITU-TG.983建议,最高速率为622Mbit/s。
因为APON二层采用的是ATM封装和传送技术,因此存在带宽不足、技术复杂、价格高、承载IP业务效率低等问题。
为更好适应IP业务,第一英里以太网联盟(EFMA)在2001年初,IEEE802.3ah工作小组对其进行了标准化,由Cisco和Corning牵头的数家公司正在促进以太网PON的使用。
他们称以太网比ATM更有理由成为PON的选择,因为大多数企业都使用以太网连接,所以提出了在二层用以太网取代ATM的EPON技术。
IEEE组成了“Ethernet in the First Mile Study Group(第一英里以太网研究组)”对以太网PON以及其他接入技术进行评估。
EPON可以支持1.25Gbit/s对称速率,将来速率还能升级到10Gbit/s,EPON产品得到了更大程度的商用。
无源光网络(PON)需要FPGA设计的支持FPGA技术、低成本光学器件以及无源架构都为无源光网络(PON)以及这些网络的演进做出了巨大贡献。
系统级OEM厂商不断发现,FPGA能够提供技术性设计和经济方面的优势,特别是在网络侧的中心局(CO)基础设施端。
2002年之前,低性能的FPGA主要用于原型创建工具。
而如今的FPGA具有强大的性能和丰富的功能,能更好地满足日益提高的PON设计需求。
另外,更低设计成本、灵活和可扩展的FPGA对于竞争激烈的无源光网络市场来说也是关键。
PON是点到多点(P2MP)光纤到驻地(FTTP)的网络拓扑技术,也常被定义为光纤到路边(FTTC)和光纤到家庭(FTTH)。
在PON定义中采用了FTTP或CPE(用户驻地设备)。
通过无需供电或无源的光分离器,单路光纤可以服务于多个驻地。
分离器通常为32路,不过有时会多达64路。
一个PON网络包括一个位于业务提供商中心局的光线路终端(OLT)和众多的光网络终端(ONT),后者也被称为进入驻地的光网络单元(ONU)。
下行的OLT信号以广播方式送到共享一根光纤的各个ONT。
目前的PON标准规定下行的数据率高达2.5Gb/s(Gbps)。
上行信号则利用时分多路(TDM)技术组合在一起。
与数字用户线(DSL)或电缆相比,PON具有无可比拟的带宽优势,可以提供高速三重播放业务(语音,视频和数据)。
根据Infonetics的预测,到2010年,北美和亚太地区PON用户的年度复合增长率可高达150%。
吉比特PON(GPON)在北美正在取得强劲的增长,而以太网PON (EPON)主要用在日本。
日本政府的津贴政策正在推动PON市场的逐年增长,而中国正在仔细权衡EPON和GPON的优劣。
宽带PON(BPON)或者国际通信联盟(ITU-T) G.983x是流行的美国PON标准。
其最大下行数据速率为622Mb(Mbps),上行数据率为155 Mbps。
安装在光纤链路中的无源分离器允许一根光纤最多连接64个家庭。
今年,GPON或ITU-T G.984,即BPON的演进版本,有望进入更多的美国家庭。
它支持TDM和分组数据,下行和上行数据率最高分别可达2.5 Gbps和1.24Gbps。
GPON的关键优点是无需增加IP就能支持交换式数字视频和原有的TDM语音。
成本敏感性不管哪种标准,用于提供宽带接入的PON系统具有高度的成本敏感度。
DSL是目前使用最为广泛的宽带接入技术。
由于具有庞大的用户数量,DSL为每端口设置了极低的成本标杆。
因此,DSL对PON提出了强大的挑战。
不过PON系统在过去两年里在降低成本和增强功能方面也取得了长足的发展。
随着PON市场的发展,系统级OEM厂商和运营商正密切关注其成本的降低,尤其是OLT的成本。
在ONT侧,数量有望增加到百万台,因为PON将为数以百万计的驻地提供服务。
许多ASIC和ASSP供应商盯上了ONT,并提供各种芯片产品。
由于ONT是一个量很大的市场,ASIC和ASSP芯片厂商能够帮助降低成本,从而帮助系统级OEM和运营商提供较低的价格。
另一方面,OLT系统数量为数万台而非数百万台,故成本较高。
例如,PON家用调制解调器的成本为100到300美金,而PON网络中OLT系统的成本则高达10000美金。
实际上,OLT的成本对运营商来说极为关键,因此大都集成了多端口线路卡,可以处理越来越多的驻地数量。
OLT线路卡的期望数量在可预见的未来将保持在中等到较低的水平,这有两个原因。
首先,64个ONT只需要一个OLT,其次,每个OLT线路卡可以支持4到8个OLT端口。
于是,OLT线路卡的数量和所用的元器件要远远少于大批量的ONT设备。
设计复杂性使成本问题更加严重。
PON OLT和ONT拓扑结构是一个共享的媒体架构,这为系统OEM设计师提出了挑战。
由于PON标准中采用了TDM技术,因此OLT和各个ONT之间的交互非常复杂。
TDM用来共享不同驻地间的容量。
早期的PON标准使用静态TDM,因此每个驻地接收相同的容量。
但是,最新的PON标准要求能够根据驻地的需求变化,为不同的驻地动态分配容量。
这种动态带宽分配(DBA)功能需要利用ONT和OLT之间传送的信令通知OLT每个ONT 所需的容量。