温度传感器测试及半导体致冷控温实验
- 格式:doc
- 大小:105.62 KB
- 文档页数:7
温度传感器实验一、实验原理:温度传感器在各个领域运用极为广泛,其中热电偶、热敏电阻(包括金属和半导体热敏电阻)和集成电路温度传感器尤为突出。
热电偶应用金属的热电效应将温度变化直接转换为电压,用的有K型、J型和B型等,表征热电偶的参数是分度号。
金属材料的电阻率随温度的升降而升降,选用一些电阻温度系数较大且比较稳定的金属如铂、铜、镍等可制成金属热敏电阻。
半导体PN结对温度变化十分敏感,PN结的电流与端电压随温度变化呈线性关系,集成电路温度传感器利用半导体PN结的温度特性制成,其温度检测的依据是PN结正向电压和温度的关系,即当集成电路中晶体管的集电极偏置电流Ic为常数时,基极与发射极之间的电压与温度近似为线性关系。
集成电路温度传感器又分为电压输出型和电流输出型,即输出电压(电流)随温度变化呈线性关系,电压输出型一般以0 ℃为零点,温度系数为10mV/℃;电流输出型一般以0°K为零点,温度系数1μA/K,更适合长距离测量。
本实验旨在通过热电偶、金属热敏电阻和集成电路温度传感器的相关实验,认识、了解其特性及使用方法。
二、实验材料:K型热电偶、Pt100铂热电阻、AD590、OP77运放、LM35、TL431、LM324、温度计、小电炉、烧杯,三、实验内容:(一)热电偶实验将热电偶热端置于0—100℃的环境中,通过K 型热电偶的温度/电压转换电路,观察放大器输出端的电平变化,学会热电偶及分度表的使用。
图1-1是K 型热电偶的温度/电压转换电路,图中由热电偶、放大电路等构成,热电偶的输出电压极小,每1℃约为40 μV ,因此运算放大器要采用高灵敏度器件,本电路中采用OP77运算放大器接成同相放大电路形式。
K 型热电偶的100 ℃的感应电动势为4.095mV ,为观察方便,运算放大器增益Av 设为Av =1000倍。
此外电路还有由温度传感器集成电路LM35D构成的冷端温度补偿电路。
该集成电路的输出为10mV /℃,通过电阻分压,在 端可以产生40.44μV*t(t为环境温度)热电偶热电动势的电压。
实验12 温度传感器特性和半导体制冷温控实验【实验目的】1、了解半导体制冷和制热原理。
2、测量NTC热敏电阻、PTC热敏电阻及集成温度传感器的温度特性【实验原理】1、半导体制冷和制热原理如图1所示,由X和Y两种不同的金属导线所组成的封闭线路,通上电源之后,冷端的热量移到热端,导致冷端温度降低,热端温度升高,这就是帕尔贴效应。
实际的半导体制冷片结构如图2所示,由许多N型P型办斗提之颗粒互相排列而成,而NP之间以一般的导体相连接而成一完整线路,通常是铜、铝或其他导体,最后由两片陶瓷片像夹心饼乾一样夹起来,陶瓷片必须绝缘且导热良好。
2、温度控制原理实验样品结构如下图所述,将半导体制冷片一面与铝制散热器津贴,并用风扇强行散热,使其与环境温度接近。
另一面与实验样品室紧贴,试验样品室采用优质导热材料,并装上温度传感器,温度传感器测量实验样品室的温度,由该温度与仪器设定的温度相比较,通过微型处理器确定半导体制冷片工作方式,即制冷或制热,由温度差确定制冷或制热的策略,即在不同的温度差之下,输出不同的制冷或制热功率,并以适当的速度改变温度的变化,从而实现实验样品室的温度控制,保持温度的稳定。
微型处理器工作框图如图3.3、NTC 电阻器的温度系数(负温度系数)——温度特性NTC 热敏电阻通常具有很大的负温度系数,在一定的温度范围内,NTC 热敏电阻的阻值与温度的关系满足下列经验公式:011()0B T T R R e -=------------------------(1)式中,R 为该热敏电阻在热力学温度T 时的电阻值,0R 为热敏电阻处于热力学温度0T 时的阻值,B 是材料的常数,它不仅与材料性质有关,而且与温度有关,在一个不太大的温度范围内,B 是常数。
由(1)式得该热敏电阻在0T 时的电阻温度系数α20B T α=----------------------------------(2) 进一步得到 0011()InR B InR T T =-+ 在一定温度范围内,可以用作图法或最小二乘法求得B 的值,并进一步求得α的值。
传感器实验报告——温度传感器测量与控制实验学院:电子工程学院班级:学号:姓名:一、实验目的:(1) 通过对温度传感器性能的测量, 加深对传感器原理的理解。
(2) 学习ADC0809模/数(A/D)转换器件与微机接口的使用。
(下面的2、3步骤由于实验箱的)(3) 学习单片机数据采集原理,并利用温度传感器进行自动控制。
二、实验仪器及器件:计算机、单片机实验箱、双路稳压电源、示波器、万用表,ADC0809转换器件、运算放大器、电阻、电容、温度计、电烙铁、热敏电阻(1.2K/25︒C , 200Ω/25︒C 各一只)。
三、实验原理:●热敏电阻的温度—电阻特性利用电阻随着温度变化特性制成的传感器叫热电阻传感器。
它主要用于对温度和与温度有关的参数进行检测。
按电阻的性质来分,可分为金属热电阻和半导体热电阻两大类。
半导体热电阻又称热敏电阻。
不同材料烧结的热敏电阻其特性也不同。
热敏电阻的特性,基本取决于初始电阻R(Ω),热敏电阻B常数(K),热扩散常数K(mW/︒C)和热时常数τ(s)四个常数。
热敏电阻大致可分为负温度系数热敏电阻(NTC)、正温度系数热敏电阻(PTC)和临界温度电阻器(CTR)三类。
图<一>是几种热敏电阻的电阻温度特性。
在某一特定的温度值,PTC和CTR的电阻值会发生急剧的变化,因此不能用于宽范围温度的测量,而适于特定温度的检测。
负温度系数热敏电阻的温度系数一般为-2~-6%/℃,而开关型则大于10%/℃。
热敏电阻传感器可用于液体、固体、固熔体等方面的温度测量。
测量范围一般为-10~300℃,也可以做到-200~10℃和300~1200℃。
●热敏电阻V-I特性热敏电阻为一种温度响应器件, 受外界温度影响而改变其阻值。
但由于其电流过大,而使自身发热,也会改变其阻值。
因此V-I特性不是一条直线。
通过V-I特性的测量可了解器件工作状态、误差。
经常使用电桥作为传感器测量电路,因为电桥能精确地测量电阻的微小变化。
温度传感器实验A 温度源的温度控制调节实验一、实验目的了解温度控制的基本原理及熟悉温度源的温度调节过程,为以后实验打下基础。
二、基本原理当温度源的温度发生变化时温度源中的Pt100热电阻(温度传感器)的阻值发生变化,将电阻变化量作为温度的反馈信号输给智能调节仪,经智能调节仪的电阻——电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)或继电器触发信号(冷却),使温度源的温度趋近温度设定值。
温度控制原理框图如图3-1所示。
图3-1温度控制原理框图三、需用器件、单元与软件:主机箱、温度源、Pt100温度传感器、温度控制仪器软件。
1.主机箱提供高稳定的±15V、±5V、+5V、±2V~±10V(步进可调)、+2V~+24V(连续可调)直流稳压电源;直流恒流源0.6mA~20mA可调;音频信号源(音频振荡器)1KHz~10KHz (连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);气压源0~20KPa(可调);温度(转速)智能调节仪(开关置内为温度调节、置外为转速调节);计算机通信口;主机箱面板上装有电压、电流、频率转速、气压、光照度数显表;漏电保护开关等。
其中,直流稳压电源、音频振荡器、低频振荡器都具有过载切断保护功能,在排除接线错误后重新开机一下才能恢复正常工作。
2.温度源温度源是一个小铁箱子,内部装有加热器和冷却风扇;加热器上有二个测温孔,加热器的电源引线与外壳插座(外壳背面装有保险丝座和加热电源插座)相连;冷却风扇电源为+24V DC,它的电源引线与外壳正面实验插孔相连。
温度源外壳正面装有电源开关、指示灯和冷却风扇电源+24V DC插孔;顶面有二个温度传感器的引入孔,它们与内部加热器的测温孔相对,其中一个为控制加热器加热的传感器Pt100的插孔,另一个是温度实验传感器的插孔;背面有保险丝座和加热器电源插座。
使用时将电源开关打开(O为关,-为开)。
温度传感器测试及半导体致冷控温实验温度传感器是指能感受温度并转换成可用输出信号的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。
它们广泛应用于工业、农业、商业等部门。
对温度传感器性能的了解及测试是大学物理实验的一项必备内容,本实验主要针对美国ANALOG DEVICES公司开发的温度传感器,使学生了解AD590温度传感器的测温原理并掌握其测温方法。
【实验目的】1.了解温度传感器AD590的性能及应用;2.掌握TCF708智能温度调节仪的使用。
【实验器材】温度传感器测试及半导体致冷控温实验仪、AD590温度传感器、PT100温度传感器。
【实验原理】1.温度传感器AD590原理AD590电流型集成电路温度传感器是将PN结(温度传感器)与处理电路利用集成化工艺制作在同一芯片上的具有测温功能的器件。
它具有精度高、动态电阻大、响应速度快、线性好、使用方便等特点。
芯片中R1,R2是采用激光校正的电阻。
在298.15K(+25℃)下,输出电流为298.15uA。
V T8和V T11产生与热力学温度(K)成正比的电压信号,再通过R5,R6把电压信号转换成电流信号,为了保证良好的温度特性,R5,R6采用激光校准的SiCr薄膜电路,其温度系数低至(-30~-50)*10-6/℃。
V T10的C极电流跟随V T9和V T11的C极电流的变化,使总电流达到额定值。
R5,R6同样在298.15K(+25℃)的温度标准下校正。
AD590等效于一个高阻抗的恒流源,其输出阻抗>10Ω,能大大减小因电源电压变动而产生的测温误差(如下图)。
AD590的工作电压为+4——+30V ,测温范围是-55——150℃。
对应于热力学温度T ,每变化1K ,输出电流变化1uA 。
温度传感器的特性实验一、实验目的:1、熟悉常用的集成温度传感器实验原理、性能与应用。
2、熟悉热电阻的特性与应用。
二、实验原理:1、集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间温度测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极――发射极电压与温度成线性关系。
为克服温敏晶体管U电压生产时的b 离散性、均采用了特殊的差分电路。
集成温度传感器有电压型和电流型二种,电流输出型集成温度传感器,在一定温度下,它相当于一个恒流源。
因此它具有不易受接触电阻、引线电阻、电压噪声的干扰。
具有很好的线性特性。
本实验采用的是国产的AD590。
它只需要一种电源(+4V-+30V)。
即可实现温度到电流的线性变换,然后在终端使用一只取样电阻(本实验见图14-1)即可实现电流到电压的转换。
它使用方便且电流型比电中为R2压型的测量精度更高。
2、利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用铂电阻和铜电阻、铂电阻在0-630.74℃以内,电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2)Ro系温度为0℃时的电阻。
本实验Ro=100℃。
A=3.9684×10-2/℃,B=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。
三、实验设备与仪器:温度控制单元、加热源、K型热电偶、Pt100热电阻、集成温度传感器、温度传感器实验模板、数显单元、万用表。
四、实验步骤:(一)、集成温度传感器1.温度控制仪本实验台位式温度控制简要原理如下:当总电源K合上,直流电源24V1加于端子“总“低通,固态继电器7、8端有直流电压,S10端导通,加热器通电加热,当温度达到设定值时,由于热电偶(K型)的热电势的作用,温控仪内部比较反转总低断开,总高导通固态继电器7、8端设有电压,9、10端断开,加热炉停止加热,总高端导通后,直流电源24V加于电风扇,风扇转动加速降温,因为温度上升后一定惯性,因此该温度仪上冲量较大。
仪器使用说明TEACHER'S GUIDEBOOKFD-TM温度传感器测试及半导体致冷控温实验仪中国.上海复旦天欣科教仪器有限公司Shanghai Fudan Tianxin Scientific & Educational Instruments Co.,Ltd.FD-TM 温度传感器测试及半导体致冷控温实验仪一、概述对温度传感器性能的了解及测试是大学物理实验的一项必备内容,但大多数实验仪器只具备做环境温度以上的实验,FD-TM-A温度传感器测试及半导体致冷控温实验仪具备了半导体致冷功能使之能做环境温度以下的实验。
本仪器主要测试温度传感器AD590的性能(可根据要求增加多种温度传感器的测试)及了解半导体致冷堆的性能。
二、用途1.用加热井和致冷井分别加热和冷却温度传感器并使温度传感器精确地保持在所设定的温度(±0.1℃),利用实验电路来测试温度传感器的温度-输出特性。
2.了解半导体致冷片的致冷原理及致冷效率。
3.了解TCF-708智能控温仪的精确控温原理,利用P.I.D控温原理精确设定控温参数使每一点设定温度精确控温至±0.1℃。
三、仪器组成和技术指标1. TCF-708智能控温仪:分辨率0.1℃;控温精度±0.1℃;测温范围-50--150℃;测温精度±3%。
2. 4 1/2数字电压表: 分辨率0.0001V;量程0~1.9999V;测量精度±0.1%。
3.加热井:环境温度~100℃。
4.致冷井:环境温度~低于环境温度30℃5.AD590实验系统①温度/输出电流特性测试(0~2.0000V/1K=0~2000.0μA);实验电压5~10V可调。
②非平衡电桥测温(AD590测温范围-50℃~100℃)。
四、仪器外形图及使用方法仪器面板示意如下图,测温传感器是3线制PT100,加热、致冷由琴键开关选择,测试温度传感器AD590特性时,AD590与PT100需同时插入加热井(测环境温度以上-加热)或致冷井(测环境温度以下-致冷),测AD590的25℃时的温度特性(25℃是AD590的定标温度)。
实验题目:半导体温度计的设计和制作实验目的:学用惠斯通电桥制作半导体温度计并用其测量温度。
实验原理:电路原理图及所用公式:实验步骤:1.根据(2)式算得R 1=R 2=4785.86Ω2.断开R 1,R 2连接,调整R 1,R 2。
3.根据地板图焊接电路。
4.用电阻箱代替热敏电阻,调节R 3,使R T 为20℃对应阻值时电表示数为0;调R 使使R T 为70℃对应阻值时电表满偏。
5.开关置2档,调R 4,使电表满偏。
6.从R -T 曲线(在下页)中读20℃~70℃每隔2.5℃对应阻值,读出R T 为上述阻值时微安表示数T 。
把表盘可读改为温度刻度并画出I-T 曲线。
6.用实际热敏电阻代替电阻箱并测出55.5℃水浴和34.5℃水浴对应电流值和温度。
(1)CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+= (2))(2)21(221212121T T T T G T T T G CD R R R R R R R R I V R ++-+-=图表1:R-T曲线图表2:I-T曲线及其线性拟合线性回归方程:T=17.31755+0.97318I实验结果:在55.5℃水浴下测得电流值为40.3μA与从图表2中读到对应温度电流值:39.2μA相对误差为2.73%在35.4℃水浴下测得电流值为20.0μA与从图表2中读到对应温度电流值:19.5μA相对误差为2.5%误差分析:1. R1,R2, R3, R4难以调校准确,误差较大,有的电位器阻值自己会变,且在焊接和其它操作过程中阻值可能有变化。
2.电池电力可能已经不足。
3.测量温度可能在热敏电阻的非线性区间。
4.实验室温度等其它因素可能对元件性能产生影响。
思考题:为什么在测R1,R2时,需将开关置为1档,拔下E处接线,断开微安表?答:如果没有如上操作,将会有其它元件接入电路。
高精度温度控制的半导体制冷系统实验研究曹琳;李海龙;刘华坤【摘要】为解决常规高精密环控系统温度波动大的问题,提出了1种高精度温度控制的半导体制冷系统.该系统基于半导体制冷技术,并结合直流变频压缩机恒温冷水机组.以专家比例-积分-微分(PID)控制方法和制冷量与电加热量双向趋近调节方式进行控制.试制了实验样机,对该系统的制冷性能、供水温度控制精度及系统抗干扰性能进行了实验研究.研究结果表明,系统供水温度波动范围为±0.01℃;开机启动至供水温稳定仅需16 min;2 kW负载瞬间冲击的响应时间为2 min,冲击结束后95%时间内系统供水温度的波动幅度仅为±0.005℃,且未发生超限和震荡现象.【期刊名称】《南京理工大学学报(自然科学版)》【年(卷),期】2019(043)003【总页数】8页(P345-352)【关键词】高精度温度控制;半导体制冷;直流变频压缩机;恒温冷水机组;双向趋近调节【作者】曹琳;李海龙;刘华坤【作者单位】南京理工大学能源与动力工程学院,江苏南京210094;广东吉荣空调有限公司博士后工作站,广东揭阳522000;南京理工大学能源与动力工程学院,江苏南京210094;南京理工大学能源与动力工程学院,江苏南京210094【正文语种】中文【中图分类】TU831.6随着科学技术的发展,诸如航天航空、精密加工计量、化工等高精密加工测量行业对高精度温度控制的要求进一步提高。
统计表明:在高精密加工测量领域,温度飘移对加工及测量精度有较大的影响,热变形引起的加工测量误差可占总误差的40%、70%,已成为影响精密制造与计量行业发展的重要因素之一[1-3]。
国内外微纳米加工与测量技术对精密仪器设备温度控制的精度要求为±0.005 ℃,有些甚至是±0.001 ℃[4]。
在这些高精密的领域中,通常需要高精度控制的环控设备维持环境的稳定。
传统方法是将数码涡旋或变频压缩机作为温控元件来保证高精度测量仪的工作环境温度[5]。
温度传感器测试及半导体致冷控温实验温度传感器是指能感受温度并转换成可用输出信号的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。
它们广泛应用于工业、农业、商业等部门。
对温度传感器性能的了解及测试是大学物理实验的一项必备内容,本实验主要针对美国ANALOG DEVICES公司开发的温度传感器,使学生了解AD590温度传感器的测温原理并掌握其测温方法。
【实验目的】
1.了解温度传感器AD590的性能及应用;
2.掌握TCF708智能温度调节仪的使用。
【实验器材】
温度传感器测试及半导体致冷控温实验仪、AD590温度传感器、PT100温度传感器。
【实验原理】
1.温度传感器AD590原理
AD590电流型集成电路温度传感器是将PN结(温度传感器)与处理电路利用集成化工艺制作在同一芯片上的具有测温功能的器件。
它具有精度高、动态电阻大、响应速度快、线性好、使用方便等特点。
芯片中R1,R2是采用激光校正的电阻。
在298.15K(+25℃)下,输出电流为298.15uA。
V T8和V T11产生与热力学温度(K)成正比的电压信号,再通过R5,R6把电压信号转换成电流信号,为了保证良好的温度特性,R5,R6采用激光校准的SiCr薄膜电路,其温度系数低至(-30~-50)*10-6/℃。
V T10的C极电流跟随V T9和V T11的C极电流的变化,使总电流达到额定值。
R5,R6同样在298.15K(+25℃)的温度标准下校正。
AD590等效于一个高阻抗的恒流源,其输出阻抗>10Ω,能大大减小因电源电压变动而产生的测温误差(如下图)。
AD590的工作电压为+4——+30V ,测温范围是-55——150℃。
对应于热力学温度T ,每变化1K ,输出电流变化1uA 。
其输出电流I 0(uA)与热力学温度T (K )严格成正比。
电流温度系数K I 的表达式为:
8ln 30qR
k T I K I == 式中k,q 分别为玻尔兹曼常数和电子电量,R 是内部集成的电阻。
Ln8表示内部V T9与V T11的发射极面积之比R=S 9/S 11=8倍。
然后再取自然对数值,将k/q=0.0862mV/K,R=538Ω代入上式,即可得到:
K uA T
I K I /000.10== 因此,输出电流Io 的微安数就代表着被测
温度的热力学温度值(K )。
AD590的电流-
温度(I-T )特性曲线如下图所示:
AD590经激光调整其准确度在整个测温
范围内≤±0.5℃(AD590准确度与其级别
有关),线性极好。
利用AD590的上述特性,
在最简单的应用中,用一个电源,一个电阻,
一个电压表即可构成温度的测量。
由于。