七年级数学下册相交线与平行线两条平行线间的距离
- 格式:ppt
- 大小:1.56 MB
- 文档页数:25
数学知识点归纳之平行线间距离数学知识点归纳之平行线间距离在我们平凡的学生生涯里,是不是经常追着老师要知识点?知识点也可以通俗的理解为重要的内容。
那么,都有哪些知识点呢?以下是店铺精心整理的数学知识点归纳之平行线间距离,供大家参考借鉴,希望可以帮助到有需要的朋友。
平行线间距离1、定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。
2、性质:⑴ 两条平行线间的距离处处相等;⑵ 两条平行线间的任何两条平行线段都是相等的。
希望上面对平行线间距离知识的总结学习,能很好的帮助同学们对此知识的巩固学习,相信同学们一定没问题的吧。
数学平行线知识点平行线:在同一平面内,永不相交的两条直线叫平行线(parallel lines),平行线具有传递性。
平行线的判定方法1.平行线的定义(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理推论:平行于同一直线的两条直线互相平行。
3.在同一平面内,垂直于同一直线的两条直线互相平行。
4.内错角相等,两直线平行。
5.同旁内角互补,两直线平行。
6.同位角相等,两直线平行平行线的性质1.两条平行线被第三条直线所截,同位角相等2.两条平行线被第三条直线所截,内错角相等3.两条平行线被第三条直线所截,同旁内角互补4. 两条平行线被第三条直线所截,外错角相等以上性质可简单说成:1.两条直线平行,同位角相等2.两条直线平行,内错角相等3.两条直线平行,同旁内角互补4.两条直线平行,外错角相等平行公理1.在同一平面内,经过直线外一点,有且只有一条直线与这条直线平行。
平行公理的推论:(平行传递性)1.如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
即平行于同一条直线的两条直线平行。
2.经过直线外一点,有且只有一条直线与这条直线平行。
《相交线与平行线》的知识点归纳一、目标与要求同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。
本文将对其中的重点知识点进行总结。
5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。
其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。
2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。
垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。
3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。
画法可采用“一靠二移三画”的方法。
4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。
记忆时应结合图形进行理解。
本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。
在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。
垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。
它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。
点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。
线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。
平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。
判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。
平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。
同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。
湘教版七年级下册数学第4章相交线与平行线含答案一、单选题(共15题,共计45分)1、下列命题正确的是( )A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等2、如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.1253、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cmB.6cmC.3 cmD.6 cm4、下列四组图形中,平移其中一个三角形可以得到另一个三角形的一组图形是()A. B. C. D.5、如图,如果AB∥DE,那么∠BCD=( )A.∠2=∠1B.∠1+∠2C.180°+∠1-∠2D.180°+∠2-2∠16、在同一平面内,不重合的两条直线的位置关系有()A.平行和相交B.平行和垂直C.平行、垂直和相交D.垂直和相交7、如图,AB∥CD,直线l分别与AB、CD相交,若∠1=120°,则∠2=()A.30°B.50°C.60°D.120°8、如图,在矩形ABCD中,AB=10, BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为()A.10B.8C.5D.69、如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°10、如图,在平行线l1, l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1, l2上,若∠1=55°,则∠2的度数是()A.25°B.30°C.35°D.40°11、如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE与AD相交于点F,∠EDF=38°,则∠DBE的度数是()A.25°B.26°C.27°D.38°12、已知三角形的三个顶点坐标分别是,把运动到一个确定位置,在下列各点坐标中,()是平移得到的.A. B. C.D.13、如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠4B.∠3C.∠2D.∠514、下列说法正确的是( )A.两条平行线之间的距离是两平行线上任意两点之间的距离B.平行线中一条直线上的任一点到另一条上任意一点的距离都相等C.两条平行线间的距离是定值,等于其中一条直线上的点到另一条直线的距离D.平移已知直线,使所得像与已知直线的距离为3cm,这样的像只有1个15、如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°二、填空题(共10题,共计30分)16、如图,CE是△ABC外角的平分线,且AB∥CE,若∠ACB=36°,则∠A等于________度.17、如图,在中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD 和AC上的动点,则PC+PQ的最小值是________.18、如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为________cm.19、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,则∠BOE=________度,∠AOG=________度.20、如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为________ .21、把一个直角三角板(,)如图放置,已知∥ ,平分,则=________22、∵a∥b,a∥c(已知)∴b∥c理由是________.23、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=________.24、如图,如果∠________=∠________,可得AD∥BC.25、如图,直线AB,CD相交于点O,OE⊥AB,∠COE=68°,则∠BOD的度数为________.三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、已知:如图,a//b,∠1=55°,∠2=40°,求∠3和∠4的度数.28、如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE. 求证:AE∥CF.29、如图,AB∥CD,E为AC上一点,∠ABE=∠AEB,∠CDE=∠CED.求证:BE⊥DE.30、已知,如图,,垂足分别为、,,试说明.将下面的解答过程补充完整,并填空(理由或数学式)解:∵ ,(_▲_),∴ _▲_(__▲_),∴ __▲_(_▲_)又∵ (已知),∴ _▲_(_▲_),∴ _▲_(__▲_),∴ (_▲__)参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、A5、C6、A7、C8、B9、C10、C11、B12、D13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
七下数学“相交线与平⾏线”的知识点开学已经有⼏天了,新的第⼀章知识掌握的怎么样了呢?这⼀单元主要是概念和性质定理⼀定要理解清楚,可以在这篇⽂章梳理⼀下,⼀定能帮到你!⼀、相交线1.邻补⾓与对顶⾓两直线相交所成的四个⾓中存在⼏种不同关系的⾓,它们的概念及性质如下表:注意点:⑴对顶⾓是成对出现的,对顶⾓是具有特殊位置关系的两个⾓;⑵如果∠α与∠β是对顶⾓,那么⼀定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不⼀定是对顶⾓⑶如果∠α与∠β互为邻补⾓,则⼀定有∠α∠β=180°;反之如果∠α∠β=180°,则∠α与∠β不⼀定是邻补⾓。
⑶两直线相交形成的四个⾓中,每⼀个⾓的邻补⾓有两个,⽽对顶⾓只有⼀个。
2.垂线⑴定义:当两条直线相交所成的四个⾓中,有⼀个⾓是直⾓时,就说这两条直线互相垂直,其中的⼀条直线叫做另⼀条直线的垂线,它们的交点叫做垂⾜。
符号语⾔记作:如图所⽰:AB⊥CD,垂⾜为 O⑵垂线性质 1:过⼀点有且只有⼀条直线与已知直线垂直 (与平⾏公理相⽐较记)⑶垂线性质 2:连接直线外⼀点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上⼀点画已知直线的垂线;⑵过直线外⼀点画已知直线的垂线。
注意:①画⼀条线段或射线的垂线,就是画它们所在直线的垂线;②过⼀点作线段的垂线,垂⾜可在线段上,也可以在线段的延长线上。
画法:⑴⼀靠:⽤三⾓尺⼀条直⾓边靠在已知直线上,⑵⼆移:移动三⾓尺使⼀点落在它的另⼀边直⾓边上,⑶三画:沿着这条直⾓边画线,不要画成给⼈的印象是线段的线。
4.点到直线的距离直线外⼀点到这条直线的垂线段的长度,叫做点到直线的距离。
应该结合图形进⾏记忆。
如图,PO⊥AB,同 P 到直线 AB 的距离是 PO 的长。
PO 是垂线段。
PO 是点 P 到直线 AB所有线段中最短的⼀条。
现实⽣活中开沟引⽔,牵⽜喝⽔都是“垂线段最短”性质的应⽤。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近⽽⼜相异的概念。
第5章相交线与平行线一.选择题(共20小题)1.同一平面内,三条不同直线的交点个数可能是()个.A.1或3 B.0、1或3 C.0、1或2 D.0、1、2或3 2.如图,直线AB、CD相交于点O,且∠AOC+∠BOD=120°,则∠AOD的度数为()A.130°B.120°C.110°D.100°3.如图,若AB,CD相交于点O,∠AOE=90°,则下列结论不正确的是()A.∠EOC与∠BOC互为余角B.∠EOC与∠AOD互为余角C.∠AOE与∠EOC互为补角D.∠AOE与∠EOB互为补角4.如图,直线AB、CD相交于点O,OE平分∠AOC,若∠AOE=35°,则∠BOD的度数是()A.40°B.50°C.60°D.70°5.如图,经过直线l外一点画l的垂线,能画出()A.1条B.2条C.3条D.4条6.已知线段AB、CD,点M在线段AB上,结合图形,下列说法不正确的是()A.延长线段AB、CD,相交于点FB.反向延长线段BA、DC,相交于点FC.过点M画线段AB的垂线,交CD于点ED.过点M画线段CD的垂线,交CD于点E7.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点8.点P为直线m外一点,点P到直线m上的点A的距离为PA=3cm,则点P到直线m的距离为()A.3cm B.小于3cm C.大于3cm D.不大于3cm 9.如图,A是直线l外一点,过点A作AB⊥l于点B,在直线l上取一点C,连结AC,使AC=2AB,P在线段BC上连结AP.若AB=3,则线段AP的长不可能是()A.3.5 B.4 C.5.5 D.6.510.下列所示的四个图形中,∠1和∠2是同位角的是()A.①②B.②③C.①③D.②④11.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠1与∠3是同位角C.∠2与∠A是同位角D.∠2与∠3是内错角12.如图,直线AB,AF被BC所截,则∠2的同位角是()A.∠1 B.∠2 C.∠3 D.∠413.如图,直线l与∠BAC的两边分别相交于点D、E,则图中是同旁内角的有()A.2对B.3对C.4对D.5对14.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线15.如图,下列四个条件中,能判断DE∥AC的是()A.∠3=∠4 B.∠1=∠2 C.∠EDC=∠EFC D.∠ACD=∠AFE 16.如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度17.下列命题中,是真命题的是()A.有两条边相等的三角形是等腰三角形B.同位角相等C.如果|a|=|b|,那么a=bD.等腰三角形的两边长是2和3,则周长是718.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多19.如图,一块砖的外侧面积为x,那么图中残留部分墙面的面积为()A.4x B.12x C.8x D.16x20.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.48二.填空题(共3小题)21.在△ABC中∠B=90°,BC=5,AB=12,AC=13,则点B到斜边AC的距离是.22.如图,CD⊥AB,点E、F在AB上,且CE=10cm,CD=8cm,CF=12cm,则点C到AB的距离是.23.如图,在四边形ABCD中,AD∥BC,AD=BC,E为AB上一点,CF⊥BE,垂足为点F.如果四边形ABCD面积为48,BE=7,那么CF=.三.解答题(共15小题)24.材料1:反射定律当入射光线AO照射到平面镜上时,将遵循平面镜反射定律,即反射角(∠BOM)的大小等于入射角(∠AOM)的大小,显然,这两个角的余角也相等,其中法线(OM)与平面镜垂直,并且满足入射光线、反射光线(OB)与法线在同一个平面.材料2:平行逃逸角对于某定角∠AOB=α(0°<α<90°),点P为边OB上一点,从点P发出一光线PQ(射线),其角度为∠BPQ=β(0°<β<90°),当光线PQ接触到边OA和OB时会遵循反射定律发生反射,当光线PQ经过n次反射后与边OA或OB平行时,称角为定角α的n阶平行逃逸角,特别地,当光线PQ直接与OA平行时,称角β为定角α的零阶平行逃逸角.(1)已知∠AOB=α=20°,①如图1,若PQ∥OA,则∠BPQ=°,即该角为α的零阶平行逃逸角;②如图2,经过一次反射后的光线P1Q∥OB,此时的∠BPP1为α的平行逃逸角,求∠BPP1的大小;③若经过两次反射后的光线与OA平行,请补全图形,并直接写出α的二阶平行逃逸角为°;(2)根据(1)的结论,归纳猜想对于任意角α(0°<α<90°),其n(n为自然数)阶平行逃逸角β=(用含n和a的代数式表示).25.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,将下列推理过程补充完整:(1)∵∠1=∠ABC(已知)∴AD∥BC()(2)∵∠3=∠5(已知)∴∥(内错角相等,两直线平行)(3)∵∠ABC+∠BCD=180°(已知)∴∥,()26.看图填空:如图,∵∠1=∠2∴∥,∵∠3+∠4=180°∴∥,∴AC∥FG,.27.如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF吗?试说明理由.28.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.29.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.30.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG ⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.31.根据题意结合图形填空:已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.答:是,理由如下:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°()∴AD∥EG()∴∠1=∠E()∠2=∠3()∵∠E=∠3(已知)∴(∠1)=(∠2)(等量代换)∴AD是∠BAC的平分线()32.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.33.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(﹣1,7),B(﹣5,1),C(1,3),请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移7个单位长度,再向右平移2个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点),请画出三角形A1B1C1;并判断线段AC与A1C1的关系.34.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:①∠BAD=2∠F;②∠E+∠F=90°注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.解:(1)AD∥BC.理由如下:∵∠ADE+∠ADF=180°,(平角的定义)∠ADE+∠BCF=180°,(已知)∴∠ADF=∠,()∴AD∥BC(2)AB与EF的位置关系是:.∵BE平分∠ABC,(已知)∴∠ABE=∠ABC.(角平分线的定义)又∵∠ABC=2∠E,(已知),即∠E=∠ABC,∴∠E=∠.()∴∥.()35.如图,已知∠1=∠ACB,∠2=∠3,试说明∠BDC+∠DGF=180°.请将下面的解答过程补充完整.解:∵∠1=∠ACB(已知)∴DE∥()∴∠2=∠DCF()∵∠2=∠3()∴∠3=∠DCF()∴CD∥()∴∠BDC+∠DGF=180°()36.如图,已知:点A在射线BG上,∠1=∠2,∠1+∠3=180°,∠EAB=∠BCD.求证:EF∥CD.37.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么,为什么?38.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.参考答案与试题解析一.选择题(共20小题)1.同一平面内,三条不同直线的交点个数可能是()个.A.1或3 B.0、1或3 C.0、1或2 D.0、1、2或3 【分析】根据两直线平行和相交的定义作出图形即可得解.【解答】解:如图,三条直线的交点个数可能是0或1或2或3.故选:D.2.如图,直线AB、CD相交于点O,且∠AOC+∠BOD=120°,则∠AOD的度数为()A.130°B.120°C.110°D.100°【分析】利用对顶角的性质和邻补角的定义即可求得.【解答】解:∵∠AOC=∠BOD,∠AOC+∠BOD=120°,∴∠AOC=60°,∴∠AOD=180°﹣60°=120°,故选:B.3.如图,若AB,CD相交于点O,∠AOE=90°,则下列结论不正确的是()A.∠EOC与∠BOC互为余角B.∠EOC与∠AOD互为余角C.∠AOE与∠EOC互为补角D.∠AOE与∠EOB互为补角【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵∠AOE=90°,∴∠BOE=90°,∵∠AOD=∠BOC,∴∠EOC+∠BOC=90°,∠EOC+∠AOD=90°,∠AOE+∠EOB=180°,故A、B、D选项正确,C错误.故选:C.4.如图,直线AB、CD相交于点O,OE平分∠AOC,若∠AOE=35°,则∠BOD的度数是()A.40°B.50°C.60°D.70°【分析】直接利用角平分线的定义结合对顶角的定义得出答案.【解答】解:∵直线AB、CD相交于点O,OE平分∠AOC,∠AOE=35°,∴∠EOC=∠AOE=35°,∴∠AOC=∠BOD=70°.故选:D.5.如图,经过直线l外一点画l的垂线,能画出()A.1条B.2条C.3条D.4条【分析】平面内经过一点有且只有一条直线垂直于已知直线,据此可得.【解答】解:经过直线l外一点画l的垂线,能画出1条垂线,故选:A.6.已知线段AB、CD,点M在线段AB上,结合图形,下列说法不正确的是()A.延长线段AB、CD,相交于点FB.反向延长线段BA、DC,相交于点FC.过点M画线段AB的垂线,交CD于点ED.过点M画线段CD的垂线,交CD于点E【分析】根据线段和垂线段的定义,结合图形进行分析即可.【解答】解:A、延长线段AB、CD,相交于点F,说法正确;B、反向延长线段BA、DC,相交于点F,说法正确;C、过点M画线段AB的垂线,交CD于点E,说法正确;D、过点M画线段CD的垂线,交CD于点E,说法错误;故选:D.7.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点【分析】根据垂线段最短可得答案.【解答】解:根据垂线段最短可得:应建在A处,故选:A.8.点P为直线m外一点,点P到直线m上的点A的距离为PA=3cm,则点P到直线m的距离为()A.3cm B.小于3cm C.大于3cm D.不大于3cm【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【解答】解:当PA⊥m时,PA是点P到直线m的距离,即点P到直线m的距离为3cm,当PA不垂直直线m时,点P到直线m的距离小于PA的长,即点P到直线m的距离小于3cm,综上所述:点P到直线m的距离不大于3cm,故选:D.9.如图,A是直线l外一点,过点A作AB⊥l于点B,在直线l上取一点C,连结AC,使AC=2AB,P在线段BC上连结AP.若AB=3,则线段AP的长不可能是()A.3.5 B.4 C.5.5 D.6.5【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【解答】解:∵过点A作AB⊥l于点B,AC=2AB,P在线段BC上连结AP,AB=3,∴AC=6,∴3≤AP≤6,故AP不可能是6.5,故选:D.10.下列所示的四个图形中,∠1和∠2是同位角的是()A.①②B.②③C.①③D.②④【分析】根据同位角,内错角,同旁内角的概念解答即可.【解答】解:∠1和∠2是同位角的是①②,故选:A.11.如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠1与∠3是同位角C.∠2与∠A是同位角D.∠2与∠3是内错角【分析】根据同旁内角、同位角、内错角的意义,可得答案.【解答】解:由图可知:∠1与∠3是同旁内角,故B说法错误,故选:B.12.如图,直线AB,AF被BC所截,则∠2的同位角是()A.∠1 B.∠2 C.∠3 D.∠4【分析】根据同位角的定义逐个判断即可.【解答】解:如果直线AB,AF被BC所截,那么∠2的同位角是∠4,故选:D.13.如图,直线l与∠BAC的两边分别相交于点D、E,则图中是同旁内角的有()A.2对B.3对C.4对D.5对【分析】根据第三条截线可能是直线AB、直线AC、直线l,结合同旁内角的定义,数出同旁内角即可.【解答】解:直线AC与直线AB被直线l所截形成的同旁内角有:∠ADE与∠AED、∠CDE 与∠BED;直线AC与直线DE被直线AB所截形成的同旁内角有:∠DAE与∠DEA;直线AB与直线DE被直线AC所截形成的同旁内角有:∠EAD与∠EDA;故选:C.14.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.15.如图,下列四个条件中,能判断DE∥AC的是()A.∠3=∠4 B.∠1=∠2 C.∠EDC=∠EFC D.∠ACD=∠AFE 【分析】可以从直线DE、AC的截线所组成的“三线八角”图形入手进行判断.【解答】解:A、∵∠3=∠4,∴DE∥AC,正确;B、∵∠1=∠2,∴EF∥BC,错误;C、∵∠EDC=∠EFC,不能得出平行线的平行,错误;D、∵∠ACD=∠AFE,∴EF∥BC,错误;故选:A.16.如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.【解答】解:由图可得,a∥b,AP⊥a,∴直线a与直线b之间的距离是线段PA的长度,故选:A.17.下列命题中,是真命题的是()A.有两条边相等的三角形是等腰三角形B.同位角相等C.如果|a|=|b|,那么a=bD.等腰三角形的两边长是2和3,则周长是7【分析】根据等腰三角形的定义、平行线的性质、绝对值的性质一一判断即可;【解答】解:A、有两条边相等的三角形是等腰三角形,是真命题,本选项符合题意;B、同位角相等.假命题,两直线平行,同位角相等,本选项不符合题意;C、如果|a|=|b|,那么a=b,错误,结论:a=±b,本选项不符合题意;D、等腰三角形的两边长是2和3,则周长是7,错误,周长为7或8.本选项不符合题意;故选:A.18.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,柳丁6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.19.如图,一块砖的外侧面积为x,那么图中残留部分墙面的面积为()A.4x B.12x C.8x D.16x【分析】本题主要考查对图形的观察能力和平移方法的运用,图形的平移只改变图形的位置,而不改变图形的形状和大小.【解答】解:观察图形,利用平移的方法可将空白的部分移到一起,可发现它是由4个外侧面积为x的砖构成;整个墙面由16个外侧面积为x的砖构成,故残留部分墙面的面积为16x﹣4x=12x.故选:B.20.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.48【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形=S梯形ABEO,根据梯形的面积公式即可求解.ODFC【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:D.二.填空题(共3小题)21.在△ABC中∠B=90°,BC=5,AB=12,AC=13,则点B到斜边AC的距离是.【分析】设AC边上的高为h,再根据三角形的面积公式即可得出结论.【解答】解:设AC边上的高为h,∵在Rt△ABC中,∠B=90°,AB=5,BC=12,AC=13,∴AB•BC=AC•h,∴h===.故答案为:.22.如图,CD⊥AB,点E、F在AB上,且CE=10cm,CD=8cm,CF=12cm,则点C到AB的距离是8cm.【分析】根据点到直线的距离是垂线段的长度,可得答案.【解答】解:∵CD⊥AB,点E、F在AB上,CD=8cm,∴点C到AB的距离是CD=8cm,故答案为:8cm.23.如图,在四边形ABCD中,AD∥BC,AD=BC,E为AB上一点,CF⊥BE,垂足为点F.如果四边形ABCD面积为48,BE=7,那么CF=.【分析】连结CE,先根据平行四边形的判定得出四边形ABCD是平行四边形,根据等底等高的平行四边形面积是三角形的两倍可得△BCE的面积,再根据三角形面积公式即可求解.【解答】解:连结CE,∵在四边形ABCD中,AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵四边形ABCD面积为48,∴△BCE的面积是48÷2=24,∴CF=24×2÷7=.故答案为:.三.解答题(共15小题)24.材料1:反射定律当入射光线AO照射到平面镜上时,将遵循平面镜反射定律,即反射角(∠BOM)的大小等于入射角(∠AOM)的大小,显然,这两个角的余角也相等,其中法线(OM)与平面镜垂直,并且满足入射光线、反射光线(OB)与法线在同一个平面.材料2:平行逃逸角对于某定角∠AOB=α(0°<α<90°),点P为边OB上一点,从点P发出一光线PQ(射线),其角度为∠BPQ=β(0°<β<90°),当光线PQ接触到边OA和OB时会遵循反射定律发生反射,当光线PQ经过n次反射后与边OA或OB平行时,称角为定角α的n阶平行逃逸角,特别地,当光线PQ直接与OA平行时,称角β为定角α的零阶平行逃逸角.(1)已知∠AOB=α=20°,①如图1,若PQ∥OA,则∠BPQ=20 °,即该角为α的零阶平行逃逸角;②如图2,经过一次反射后的光线P1Q∥OB,此时的∠BPP1为α的平行逃逸角,求∠BPP1的大小;③若经过两次反射后的光线与OA平行,请补全图形,并直接写出α的二阶平行逃逸角为60 °;(2)根据(1)的结论,归纳猜想对于任意角α(0°<α<90°),其n(n为自然数)阶平行逃逸角β=(n+1)α(用含n和a的代数式表示).【分析】(1)①根据平行线的性质即可解决问题;②根据反射定律以及平行线的性质即可解决问题;③画出图形,利用反射定律以及平行线的性质解决问题即可;(2)探究规律后,利用规律即可解决问题;【解答】解:(1)①如图①中,∵PQ∥OA,∴∠BPQ=∠AOB=20°,故答案为20.②如图2中,∵P1Q∥OB,∴∠AP1Q=∠PP1O=∠AOB=20°,∴∠BPP1=∠AOB+∠PP1O=40°.③如图3中,如图所示,α的二阶平行逃逸角为20°×3=60°,(2)由(1)可知:α的零阶平行逃逸角为α,α的1阶平行逃逸角为2α,α的二阶平行逃逸角为3α,…,由此可以推出,α的n阶平行逃逸角为(n+1)α,故答案为(n+1)α.25.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,将下列推理过程补充完整:(1)∵∠1=∠ABC(已知)∴AD∥BC(同位角相等,两直线平行)(2)∵∠3=∠5(已知)∴AB∥CD(内错角相等,两直线平行)(3)∵∠ABC+∠BCD=180°(已知)∴AB∥CD,(同旁内角互补,两直线平行)【分析】(1)根据同位角相等,两直线平行得出结论;(2)根据内错角相等,两直线平行得出结论;(3)根据同旁内角互补,两直线平行得出结论.【解答】解:(1))∵∠1=∠ABC(已知)∴AD∥BC(同位角相等,两直线平行).故答案为:同位角相等,两直线平行;(2)∵∠3=∠5,∴AB∥CD(内错角相等,两直线平行).故答案为:AB,CD;(3))∵∠ABC+∠BCD=180°(已知)∴AB∥CD,(同旁内角互补,两直线平行).故答案为:AB,CD,同旁内角互补,两直线平行.26.看图填空:如图,∵∠1=∠2∴AC∥DE,内错角相等,两直线平行∵∠3+∠4=180°∴DE∥FG,同旁内角互补,两直线平行∴AC∥FG,平行于同一直线的两直线平行.【分析】根据平行线的判定方法,逐一判定即可.【解答】解:∵∠1=∠2∴AC∥DE,内错角相等,两直线平行;∵∠3+∠4=180°∴DE∥FG,同旁内角互补,两直线平行,∴AC∥FG,平行于同一直线的两直线平行.故答案为:AC;DE;内错角相等,两直线平行;DE;FG;同旁内角互补,两直线平行;平行于同一直线的两直线平行.27.如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF吗?试说明理由.【分析】先根据四边形内角和定理得出∠ABC+∠ADC=180°,再由角平分线的性质得出∠ABE+∠ADF=90°,根据直角三角形的性质可得出结论.【解答】解:BE∥DF.理由:∵∠A=∠C=90°,∴∠ABC+∠ADC=180°.∵BE,DF分别为∠ABC与∠ADC的平分线,∴∠ABE=∠ABC,∠ADF=∠ADC,∴∠ABE+∠ADF=90°.∵∠ABE+∠AEB=90°,∴∠AEB=∠ADF,∴BE∥DF.28.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【分析】运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).29.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.【分析】(1)由平行线的性质可求得∠A+∠ABC=180°,可则可求得答案;(2)利用平行线的性质可求得∠ADC=∠DCN,∠ADC+∠BCD=180°,则可求得答案;(3)利用平行线的性质,可求得∠AEB=∠EBC,∠ADB=∠DBC,再结合角平分线的定义可求得答案.【解答】解:(1)∵AM∥BN,∴∠A+∠ABC=180°.∴∠ABC=180°﹣∠A=180°﹣108°=72°.(2)与∠ABC相等的角是∠ADC、∠DCN.∵AM∥BN,∴∠ADC=∠DCN,∠ADC+∠BCD=180°.∴∠ADC=180°﹣∠BCD=180°﹣108°=72°.∴∠DCN=72°.∴∠ADC=∠DCN=∠ABC.(3)不发生变化.∵AM∥BN,∴∠AEB=∠EBC,∠ADB=∠DBC.∵BD平分∠EBC,∴∠DBC=∠EBC,∴∠ADB=∠AEB,∴∴=.30.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG ⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.【分析】(1)依据平行线的性质以及三角形外角性质,即可得到∠MAG+∠PBG=90°;(2)分两种情况讨论:当点C在AG上时,依据平行线的性质以及三角形外角性质,2∠AHB﹣∠CBG=90°;当点C在DG上时,依据平行线的性质以及三角形外角性质,2∠AHB+∠CBG=90°;(3)分两种情况讨论:当点C在AG上时,依据平行线的性质以及三角形外角性质,2∠AHB+∠CBG=270°;当C在DG上时,依据平行线的性质以及三角形外角性质,2∠AHB ﹣∠CBG=270°.【解答】解:(1)如图1,∵MN∥PQ,∴∠MAG=∠BDG,∵∠AGB是△BDG的外角,BG⊥AD,∴∠AGB=∠BDG+∠PBG=90°,∴∠MAG+∠PBG=90°;(2)2∠AHB﹣∠CBG=90°或2∠AHB+∠CBG=90°,证明:①如图,当点C在AG上时,∵MN∥PQ,∴∠MAC=∠BDC,∵∠ACB是△BCD的外角,∴∠ACB=∠BDC+∠DBC=∠MAC+∠DBC,∵AH平分∠MAC,BH平分∠DBC,∴∠MAC=2∠MAH,∠DBC=2∠DBH,∴∠ACB=2(∠MAH+∠DBH),同理可得,∠AHB=∠MAH+∠DBH,∴∠ACB=2(∠MAH+∠DBH)=2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=∠CBG+90°,∴2∠AHB=∠CBG+90°,即2∠AHB﹣∠CBG=90°;②如图,当点C在DG上时,同理可得,∠ACB=2∠AHB,又∵Rt△BCG中,∠ACB=90°﹣∠CBG,∴2∠AHB=90°﹣∠CBG,即2∠AHB+∠CBG=90°;(3)(2)中的结论不成立.存在:2∠AHB+∠CBG=270°;2∠AHB﹣∠CBG=270°.①如图,当点C在AG上时,由MN∥PQ,可得:∠ACB=360°﹣∠MAC﹣∠PBC=360°﹣2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°﹣2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=90°+∠CBG,∴360°﹣2∠AHB=90°+∠CBG,即2∠AHB+∠CBG=270°;②如图,当C在DG上时,同理可得,∠ACB=360°﹣2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°﹣2∠AHB,又∵Rt△BCG中,∠ACB=90°﹣∠CBG,∴360°﹣2∠AHB=90°﹣∠CBG,∴2∠AHB﹣∠CBG=270°.31.根据题意结合图形填空:已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.答:是,理由如下:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直定义)∴AD∥EG(同位角相等,两条直线平行)∴∠1=∠E(两条直线平行,同位角相等)∠2=∠3(两条直线平行,内错角相等)∵∠E=∠3(已知)∴(∠1)=(∠2)(等量代换)∴AD是∠BAC的平分线(角平分线定义)【分析】首先要根据平行线的判定证明两条直线平行,再根据平行线的性质证明有关的角相等,运用等量代换的方法证明AD所分的两个角相等,即可证明.【解答】答:是,理由如下:∵AD⊥BC,EG⊥BC(已知),∴∠4=∠5=90°(垂直定义),∴AD∥EG(同位角相等,两条直线平行),∴∠1=∠E(两条直线平行,同位角相等),∠2=∠3(两条直线平行,内错角相等);∵∠E=∠3(已知),∴∠1=∠2(等量代换),∴AD是∠BAC的平分线(角平分线定义).32.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.【分析】(1)根据AC∥BD,可得∠DAE=∠D,再根据∠C=∠D,即可得到∠DAE=∠C,进而判定AD∥BC;(2)根据∠CGB是△ADG是外角,即可得到∠CGB=∠D+∠DAE,再根据△BCG中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,进而得出2∠C+∠DAE=90°;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD=180°﹣8α,再根据2∠C+∠DAE=90°,即可得到2(180°﹣8α)+α=90°,求得α的值,即可运用三角形内角和定理得到∠BAD的度数.【解答】解:(1)如图1,∵AC∥BD,∴∠DAE=∠D,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.33.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(﹣1,7),B(﹣5,1),C(1,3),请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移7个单位长度,再向右平移2个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点),请画出三角形A1B1C1;并判断线段AC与A1C1的关系.【分析】(1)根据点A、B、C三点的坐标在坐标系中描出各点,再顺次连接即可得;(2)将三顶点分别向下平移7个单位长度,再向右平移2个单位长度后得到对应点,顺次连接可得,继而根据平移的性质解答可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.34.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:①∠BAD=2∠F;②∠E+∠F=90°注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.解:(1)AD∥BC.理由如下:∵∠ADE+∠ADF=180°,(平角的定义)∠ADE+∠BCF=180°,(已知)∴∠ADF=∠BCF,(同角的补角相等)∴AD∥BC(2)AB与EF的位置关系是:AB∥EF.∵BE平分∠ABC,(已知)∴∠ABE=∠ABC.(角平分线的定义)又∵∠ABC=2∠E,(已知),即∠E=∠ABC,∴∠E=∠ABE.(等量代换)∴AB∥EF.(内错角相等,两直线平行)【分析】(1)欲证明AD∥BC,只要证明∠ADF=∠BCF即可;(2)结论:AB∥EF,只要证明∠E=∠ABE即可;(3)①根据平行线的性质以及角平分线的定义即可证明;②只要证明∠OAB+∠OBA=90°即可解决问题;【解答】(1)解:结论:AD∥BC.理由如下:∵∠ADE+∠ADF=180°,(平角的定义)∠ADE+∠BCF=180°,(已知)∴∠ADF=∠BCF,(同角的补角相等)∴AD∥BC(2)解:结论:AB与EF的位置关系是:AB∥EF,∵BE平分∠ABC,(已知)∴∠ABE=∠ABC.(角平分线的定义)又∵∠ABC=2∠E,(已知),即∠E=∠ABC,∴∠E=∠ABE.(等量代换)∴AB∥EF.(内错角相等,两直线平行)故答案为BCF,同角的补角相等,AB∥EF,ABE,等量代换,AB,EF,内错角相等,两直线平行.(3)证明:①∵AB∥EF,∴∠BAF=∠F,∵∠BAD=2∠BAF,∴∠BAD=2∠F.②∵AD∥BC,∴∠DAB+∠CBA=180°,∵∠OAB=DAB,∠OBA=∠CBA,∴∠OAB+∠OBA=90°,∴∠EOF=∠AOB=90°,∴∠E+∠F=90°.35.如图,已知∠1=∠ACB,∠2=∠3,试说明∠BDC+∠DGF=180°.请将下面的解答过程补充完整.解:∵∠1=∠ACB(已知)∴DE∥BC(同位角相等两直线平行)∴∠2=∠DCF(两直线平行内错角相等)∵∠2=∠3(已知)∴∠3=∠DCF(等量代换)∴CD∥FG(同位角相等两直线平行)∴∠BDC+∠DGF=180°(两直线平行同旁内角互补)【分析】根据平行线的性质和判定即可解决问题;【解答】解:∵∠1=∠ACB(已知)∴DE∥BC(同位角相等两直线平行)∴∠2=∠DCF(两直线平行内错角相等)∵∠2=∠3(已知)∴∠3=∠DCF(等量代换)∴CD∥FG(同位角相等两直线平行)∴∠BDC+∠DGF=180°(两直线平行同旁内角互补)故答案为BC,同位角相等两直线平行,两直线平行内错角相等,已知,等量代换,同位角相等两直线平行,两直线平行同旁内角互补;36.如图,已知:点A在射线BG上,∠1=∠2,∠1+∠3=180°,∠EAB=∠BCD.。
第五章相交线与平行线第一节、知识梳理:相交线与平行线一、学习目标1.理解对顶角、邻补角的概念,掌握其性质,会用其性质进行有关推理和计算;2.掌握垂线、垂线段、点到直线的距离的概念;3.掌握“三线八角”的内容.二、学习重点与难点学习重点:1.邻补角、对顶角以及点到直线距离的概念;2.掌握两直线平行的三个判定方法.学习难点: 1.对顶角的性质、垂线性质;2.灵活运用平行线的判定方法来解题.三、知识概要1.要正确理解邻补角、对顶角的含义:(1)判断两个角是否是邻补角,关键要看这两个角的两边,其中一边是公共边,另外两边是互为反向延长线;(2)邻补角是成对的,是具有特殊位置关系的两个互补的角;(3)判断两个角是否是对顶角,看这两个角是不是有公共顶点且有相同的邻补角,只有符合这两个条件时,才能确定这两个角是对顶角.2.垂线、垂线段和点到直线的距离是三个不同的概念,不要混淆:(1)两条直线互相垂直是两条直线相交的特殊情况,特殊在交角都为直角,垂线是其中一条直线对另一条直线的称呼;(2)垂线是直线,垂线段是一条线段,是图形.(3)点到直线的距离是垂线段的长度,是一个数量,不能说成垂线段是距离.3.两条直线的位置关系,是在两条直线在“同一平面内”的前提下提出来的,它们的位置关系只有两种:一是相交(有一个公共点),二是平行(没有公共点):(1)识别同位角、内错角、同旁内角的关键是要抓住“三线八角”,只有“三线”出现且必须是两线被第三线所截才能出现这三类角;(2)判定两条直线平行时要正确判断出是什么角,什么关系,由此可以推出哪两条直线平行.四、知识链接1.本周相交线、平行线是以前学的直线的位置关系的延伸.2.通过内错角、同位角、同旁内角等角度的比较得到平行线.而由平行线又可得到下周的平行线性质.五、中考视点平行与相交线中的垂直是经常考的内容.一般考其基础知识,以填空选择为主.平行线的性质与平移一、学习目标1.掌握平行线的性质并会应用.2.理解命题并会判断.3.理解平移的定义并会应用平移的特征.二、知识概要1.平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.2.两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.对于这个概念,应注意三点:(1)两条直线必须是平行的;(2)第三条直线同时垂直于它们;(3)距离是线段的长度,是个具体的数,而不是线段这个图形.3.关于命题判断一件事情的语句叫做命题.每个命题都是由条件和结论两部分组成的.4.平移的概念在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动就称做为平移. 5.平移的基本特征平移的基本特征是:经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行且相等,对应角相等.三、重点难点学习重点:1.平行线的性质及其应用.2.平移的特征.学习难点:1.命题的判断.2.平移变换及其性质应用.四、知识链接平行线的性质与判定定理有互逆性,平移变换及性质是研究动态几何的基础内容之一.五、中考视点平行线的知识是每年必考的内容,在填空选择中经常直接考平行线的性质.在解答题中经常与其他知识联系,综合考查.平移知识也是考的比较多的内容,尤其是在做辅助线时经常用到.第二节、教材解读:理解“三线八角”当两条直线AB和CD被第三条直线EF所截(如图),可得到八个角.根据位置特征不同,把∠1和∠5、∠2和∠6、∠4和∠8、∠3和∠7这样的称作同位角;把∠4和∠6、∠3和∠5这样的称作内错角;把∠4和∠5、∠3和∠6这样的称作同旁内角.在数学中也常把与同位角、内错角、同旁内角相关的问题称作“三线八角”问题.1.所谓同位角也就是位置特征相同,如∠1和∠5同在“左上”(AB和CD左侧,EF上方);∠2和∠6同在“左下”(AB和CD左侧,EF下方);∠4和∠8同在“右上”(AB和CD右侧,EF上方);∠3和∠7同在“右下”(AB和CD右侧,EF下方).2.所谓内错角是指在两条被截直线之内,在第三条直线左右错开的位置的角,如∠4和∠6在AB和CD之内,而在EF左右两边错开的角;∠3和∠5在AB和CD之内,而在EF左右两边错开的角.3.所谓同旁内角是指在第三条直线同旁,而在两条被截直线之内的位置的角,如∠4和∠5同在EF 上边而在AB和CD之内;∠3和∠6同在EF 下边而在AB和CD之内.第三节、错解剖析【例1】填空:从直线外一点到这条直线的 ____,叫做点到直线的距离.错解:垂线段.【思考与分析】点到直线的距离是指垂线段的长度,它是一个数量而不是图形.错误的原因是概念不清.正解:垂线段的长度.【例2】判断正误:有公共端点且没有公共边的两个角是对顶角.错解:正确.【思考与分析】此题错在没有抓住对顶角概念的实质,出现了扩大概念实质和概念外延的错误,把一些不是对顶角的角看成了对顶角,如下图中∠1和∠2有公共顶点且没有公共边,但它们不是对顶角.错误的原因是概念不清.正解:如果一个角与另一个角有公共端点且两边分别是这个角的两边的反向延长线,那么这两个角叫对顶角.【例3】如图,若AB∥CD,CD∥EF,则AB∥EF.理由是什么?错解:等量代换.【思考与分析】上面的回答把相等和平行混为一谈,相等说的是两个量的大小关系,平行说的则是两条直线的位置关系,完全不是一码事,所以,平行线的传递性是不能用"等量代换"来表达的.错误的原因是位置关系和数量关系混淆正解:平行于同一条直线的两条直线平行.【例4】判断正误:同一平面内不相交的两条线是平行线.错解:正确.【思考与分析】平行线是讲同一平面内两条直线的位置关系.不相交的两条射线或线段有可能延长或反向延长后相交.错误的原因是没有分清“三线”的区别和联系.正解:同一平面内不相交的两条直线是平行线.【例5】判断正误:不相交的两条直线是平行线.错解:正确.【思考与分析】在同一平面内不相交的两条直线是平行线,但在空间里很容易找到不相交的两条直线,而且它们并不平行,错误的原因是思考不周.正解:在同一平面内不相交的两条直线是平行线.第四节、思维点拨【例1】已知,如图,直线AB、CD相交于O,OE平分∠BOD且∠AOE=150°,你能求出∠AOC的度数吗?【思考与分析】观察图形我们可知,∠AOE与∠BOE是邻补角,所以∠BOE的度数可求,又由OE是∠BOD的角平分线可求得∠BOD=2∠BOE,而∠AOC与∠BOD是对顶角,故∠AOC 可求.解:∵ AB是直线(已知),∴∠AOE与∠BOE 是邻补角(邻补角定义).∴∠AOE+∠BOE=180°(补角定义).又∠AOE=150°(已知),∴∠BOE=180°-∠AOE=180°-150°=30°(等式性质).∵ OE平分∠BOD(已知),∴∠BOD=2∠BOE(角平分线定义).即∠BOD=2×30°=60°.∵∠AOC与∠BOD是对顶角(由图可知),∴∠AOC=∠BOD(对顶角相等).∴∠AOC=60°.反思:在思考过程中抓住角平分线DE与各个角的关系是解题的关键.【例2】如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是().A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′思考与解: ∵OE⊥AB,∴∠AOE=90°.∵OF平分∠AOE,∵∠1与∠3是对顶角,∴∠1=∠3.∴B正确.∵∠AOD与∠1互为补角.∴C正确.∵∠1=15°30′,∴∠1的余角=90°-15°30′=74°30′.∴D不正确.故选D.【小结】我们在做这类选择题时,首先把题中条件与图形一一对应,然后看每个结论是否与条件冲突.【例3】已知,如图,直线AB、CD互相垂直,垂足为O,直线EF过点O,∠DOF=32°,你能求出∠AOE的度数吗?【思考与分析】我们由AB⊥CD可知∠AOC=90°,因此,∠AOE与∠EOC 互余.又因为∠EOC与∠DOF是对顶角,于是∠EOC=32°,于是∠AOE可求.解法一:∵直线CD与EF交于O(已知),∴∠EOC=∠DOF (对顶角相等).∵∠DOF=32°(已知),∴∠EOC=32°(等量代换).∵AB、CD互相垂直(已知),∴∠AOC=90°(垂直定义).∴∠AOE+∠EOC=90°.∴∠AOE=90°-∠EOC=90°-32°=58°.解法二:∵直线AB、CD互相垂直(已知),∴∠BOD=90°(垂直定义).∴∠BOF+∠DOF=90°.∵∠DOF=32°(已知),∴∠BOF=90°-∠DOF=58°.∵直线AB与直线EF交于点O(已知),∴∠AOE=∠BOF(对顶角相等).∴∠AOE=58°.反思:第一种解法先用对顶角后用互余,第二种解法先用互余后用对顶角,我们在平时做题时也应该多想多做,多角度分析解决问题.【例4】如图3,直线AB与CD相交于点F,EF⊥CD,则∠AFE与∠DFB之间的关系是______.【思考与分析】我们由所给的条件EF⊥CD,得∠CFE=90°,也就是说∠AFE+∠AFC=90°,又根据对顶角相等,得∠AFC=∠DFB,所以∠AFE+∠DFB=90° .本题也可利用平角的定义来解,即由∠AFE+∠DFB+∠EFD=180°,又因为∠EFD=90°,所以∠AFE+∠DFB=90°.解:∠AFE与∠DFB互为余角(或∠AFE+∠DFB=90°).【小结】这类题目的特点是有条件而无结论,要从所给的条件出发,通过分析、比较、猜想,寻找多种解法和结论,再进行说理证明.这类题目具有较强的探索性,思维空间较大且灵活,突破了死记概念的传统模式.【例5】平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.A. 4对B. 8对C. 12对D. 16对【思考与解】我们可将原图分解为八个“三线八角”即“直线AB和CD 被直线EF所截”、“直线AB和CD 被直线GH所截”、“直线EF和GH被直线AB所截”、“直线EF和GH被直线CD所截”、“直线AB和EF被直线GH所截”、“直线EF和CD 被直线GH所截”、“直线AB和GH被直线EF所截”、“直线GH和CD 被直线EF所截”.每一个“三线八角”都有两对同旁内角,故原图中共有16对,因此选择D.【小结】解这类问题,关键是如何用图形分解法把图形分成若干个“三线八角”.【例题】(1)如图1,在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是°.(2)已知:如图2,直线AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE 的平分线相交于点P.你能说明∠P=90°吗?(3)如图3,已知AB∥CD,∠C=75°,∠A=25°,则∠E的度数为 .【思考与解】(1)解法一:由题意我们知BD∥AC.所以∠ABD+∠BAC=180°.所以∠CBD=180°-50°-90°=40°.解法二:由题意我们知∠C=90°-∠A=90°-50°=40°.又因为BD∥AC. 所以∠CBD=∠C=40°.(2)因为AB∥CD.所以根据平行线的性质得:∠BEF+∠EFD=180°.又因为EP、FP分别平分∠BEF和∠EFD.所以∠P=180°-(∠1+∠2)= 180°-90°=90°.(3)因为AB∥CD. 所以∠BFE=∠C=75°.所以∠AFE=180°-∠BFE= 180°-75°=105°.所以∠E=180°-∠A-∠AFE=180°-25°-105°=50°反思:我们在做这类题的时候,一定要想是不是这样做最简单,是不是只有这一种解法?【例6】如图1,如果∠B=∠1=∠2=50°,那么∠D= .【思考与分析】我们通过观察图形,由∠B=∠1=∠2=50°可得AB∥DC、AD∥BC,再利用其性质同旁内角互补可得∠D的度数.解:因为∠B=∠1,所以AB∥DC,所以∠B+∠BCD=180°,∠BCD=130°.又因为∠B=∠2,所以AD∥BC,所以∠BCD+∠D=180°,∠D=50°.反思:我们解题时用的是同旁内角互补.还可以利用∠D=∠1=∠B=50°.也可以利用∠D=∠2=∠B=50°.大家可以试一试.【例7】如图2,直线l1、l2分别与直线l3、l4相交,∠1与∠3互余,∠3的余角与∠2互补,∠4=125°,则∠3= .思考与解:因为∠1与∠3互余,∠3的余角与∠2互补,所以∠1+∠2=180°.所以l1∥l2.所以∠3=∠5=180°-∠4=55°.反思:我们难以理解的是为什么∠1+∠2=180°?我们可由题意列式∠1+∠3=90°,90°-∠3+∠2=180°.两个式子相加可得∠1+∠2=180°.在解决有关平行问题的时候,有时需要添加必要的辅助线,而添加平行线作为辅助线,更是解决此类问题好的帮手.下面举几例说明.【例8】如图1所示,直线a∥b,∠ACF=50°,∠ABE=28°,求∠A的大小.【思考与分析】要求∠A的大小,关键是确定辅助线的位置.于是我们会想到过点A作AD∥b,这样利用平行线的知识即可求解.解:过点A作AD∥b,则∠DAC=∠ACF=50°.又因为a∥b,所以AD∥a.所以∠DAB=∠ABE=28°.所以∠BAC=∠DAC-∠DAB=50°-28°=22°,即∠A的大小是22°.反思:在解题时我们做AD∥b,那么是不是必须要做辅助线呢?我们继续思考:∠A在△ABG中,∠ABE也在△ABG中且等于28°,那么只要求出∠AGB的度数,就可求∠A的度数.【例9】如图2,AB∥CD,EO与FO相交于点O,试猜想∠AEO、∠EOF、∠CFO之间的关系,并说明理由.【思考与分析】由于∠BEO、∠EOF、∠DFO三个角的位置较散,设法通过辅助线使之相对集中,我们可以考虑AB∥CD,可以过点O作MN∥AB,这样即可找到三个角之间的关系了.由此猜想∠AEO+∠CFO+∠EOF=360°.解:过点O作MN∥AB.因为AB∥CD,所以CD∥MN.所以∠AEO+∠EOM=180°,∠MOF+∠CFO=180°.所以∠AEO+∠CFO+∠EOF=∠AEO+∠EOM+∠MOF+∠CFO=180°+180°=360°.反思:我们解这道题是用的两组同旁内角之和.其实我们还可以连结EF,正好把这三个角分成一组同旁内角和一个三角形的三个内角.由同旁内角和三角形内角和可得出同样的结论.【例10】如图3,已知AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.试探索β与2α的数量关系,并说明你的理由.【思考与分析】我们由已知条件AB∥ED可知α=∠A+∠E=180°,于是只需知道β=∠B+∠C+∠D的大小即可探索出β与2α的数量关系.此时可以过点C作CF∥AB,从而求出β=∠B+∠C+∠D=360°,即有β=2α.解:猜想β=2α.理由是:过C作CF∥AB,因为 AB∥ED,所以∠α=∠A+∠E=180°.又因为AB∥ED,所以CF∥DE,即(∠B+∠1)+(∠2+∠D)=360°.故β=2α.【小结】这道题的思路与我们做的上题是相同的,也可以连结BD来解.第五节、竞赛数学在竞赛试题中,平行和垂直是做为基础知识应用在一些综合性的题目之中,单独出题的情况很少,但当平行和垂直的性质与实际情况结合时,往往也会被做为新题型来考查.【例1】请说明在同一平面内三条直线的位置关系及交点个数.【思考与分析】本题有多种分类,如以两条直线的位置关系分类,再考虑第三条直线的位置;又如以三条直线交点的个数分类等.下面我们就第二种分类加以说明.解:(1)如图1,三条直线互相平行,此时交点个数为0;(2)如图2,三条直线相交于同一点,此时交点个数为1;(3)如图3,三条直线两两相交且不交于同一点,此时交点个数为3;(4)如图4,其中两条直线平行,都与第三条直线相交,此时交点个数为2.综上所述,平面内三条直线的交点个数为0或1或2或3个.(如果按第一种情况进行分类研究,又该如何呢?请大家思考一下.)反思:求解中(2)、(3)两种情况称为三条直线两两相交.当题目中图形不全或不确定时,我们一定要注意分类.【例2】(1)请你在平面上画出6条直线(没有三条共点),使得它们中的每条直线都恰与另3条直线相交,并简单说明画法.(2)能否在平面上画出7条直线(任意3条都不共点),使得它们中的每条直线都恰与另3条直线相交,如果能,请画出一例,如果不能,请简述理由.【思考与分析】“6条直线相交且任意3条都不共点”,要解决这个问题,我们可以首先画出两条相交直线,这样可以发现若不出现3条直线共点可以出现平行线.对于(2)中所求,可以根据(1)得到的结论先对其进行推理,不要盲目的画图.解:(1)在平面上任取一点A,过A作两直线m1与n1.在n1 上取两点B、C,在m1上取两点D、G.过B作m2∥m1,过C作m3∥m1,过D作n2∥n1,过G作n3∥n1,这时m2、m3、n2、n3交得E、F、H、I四点,如图所示.由于彼此平行的直线不相交,所以,图中每条直线都恰与另3条直线相交.(2)在平面上不能画出没有3线共点的7条直线,使得其中每条直线都恰与另外3条直线相交.理由如下:假设平面上可以画出7条直线,其中每一条都恰与其它3条相交,因两直线相交只有一个交点,又因没有3条直线共点,所以每条直线上恰有与另3条直线交得的3个不同的交点.根据直线去数这些交点,共有3×7=21个交点,但每个交点分属两条直线,被重复计数一次,所以这7条直线交点总数为因为这与交点个数应为整数矛盾.所以,满足题设条件的7条直线是画不出来的.反思:本题在说明理由时应用了假设法.利用假设推导出结果是否与题中条件冲突.这与我们以后要学的反证法相类似.【例3】平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.A. 4对B. 8对C. 12对D. 16对【思考与解】我们可将原图分解为八个“三线八角”即“直线AB和CD 被直线EF所截”、“直线AB和CD 被直线GH所截”、“直线EF和GH被直线AB所截”、“直线EF和GH被直线CD所截”、“直线AB和EF被直线GH所截”、“直线EF和CD 被直线GH所截”、“直线AB和GH被直线EF所截”、“直线GH和CD 被直线EF所截”.每一个“三线八角”都有两对同旁内角,故原图中共有16对,因此选择D.【小结】解这类问题,关键是如何用图形分解法把图形分成若干个“三线八角”.【例4】有10条公路(假设公路是笔直的,并且可以无限延伸),无任何三条公路交于同一个岔口,现有31名交警,刚好满足每个岔口有且只有一名交警执勤,请你画出公路示意图.【思考与解】我们可以把公路想象成直线,岔口想象成交点,由警察的人数及题意可知,10条直线刚好有31个交点.根据前面所学知识,平面上的10条直线,若两两相交,最多出现45个交点,现在只要求出现31个交点,就要减去14个交点,这种情况下,通常采取两种办法:(1)多条直线共点;(2)出现平行线.根据题意,方法(1)不能实现,所以想到使用平行线.在某一方向上有5 条直线互相平行,则减少10个交点,若6条直线平行,则可减少15个交点,所以这个方向上最多可取5条平行线,这时还有4个点要去掉,换一个方向取3条平行线,即可再减少3个交点,这时还剩下2条直线与1个要减去的点,只须让其在第三个方向上互相平行即可,如图所示:【小结】本题考查我们对知识的综合应用能力,在做题时,要牢牢把握平行线的性质,与图形结合,从简单的图形推理找出问题的入手点.【例5】把正方形ABCD边AD平移得到EF,作出平移后的正方形能有几种作法?【思考与分析】据题意,平移是指正方形整体平移,只有一个.我们根据以前学过的作图方法和本周学的平移作图,作法有如下几个:作法1:过E作EF的垂线,截取EG=EF,过G点作EF的平行线,截取GH=EF(注意截取方向),连接FH就得到平移后的正方形.如图(1).作法2:过E、F分别作EF的垂线,截取EG=EF,FH=EF(注意截取方向),连接GH,就得到平移后的正方形.如图(1).作法3:过F作EF的垂线,截取FH=EF,过H点作EF的平行线,截取GH=EF(注意截取方向),连接EG就得到平移后的正方形.如图(1).作法4:过E作AC的平行线,过F作BD的平行线,截取EH=AC,FG=BD(注意截取方向).连接EG,GH,HF,就得到平移后的正方形.如图(2).作法5:连接EA,FD,过B点作EA的平行线,过C作FD的平行线.截取BG=EA,CH=FD (注意截取方向).如图(3).连接EG,GH,HF,就得到平移后的正方形.【小结】平移变换不改变图形的形状、大小和方向.连结对应点的线段平行且相等.要描述一个平移变换,必须指出平移的方向和移动的距离.【例6】电脑游戏上有一种俄罗斯方块的游戏,游戏规则:在所给各种各样的方块中,通过平移、旋转的方式,罗列方块使之排满每一横行,每排满一行,便消去一行,得100分,依次类推(本题特殊规定,只准平移),小方块在屏幕顶端居中出现(奇数列时居中偏左).现在电脑屏幕上显示(如图所示).(1)若按规定,想得分,甲方块需要怎样平移,才可能直接得分或为以后打下得分基础?乙方块呢?(2)若你把甲方块放到左侧,发现屏幕已暗示出丙方块为形状,在这种情况下,丙方块只需如何移动,便可得多少分?(注:屏幕上一共有10行10列)【思考与分析】第(1)题观察甲方块与底部方块的特点,我们可得出平移方式.第(2)题将丙方块通过平移嵌入空隙之中,即可得分.解:(1)甲方块可左移3个单位,下移7个单位放到屏幕左侧;乙方块需向右平移3个单位,下移8个单位,放到屏幕右侧.(可用其他平移方式)(2)丙方块下移7个单位,便可排满2行,得200分.【小结】解本题的关键是将各个方块通过平移嵌成一个长方形,需根据方块和现有图形选择合理的平移方式.【例7】如图1,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD 之间的关系又是如何?【思考与分析】若P点在C、D之间运动时,我们只要过点P作出l1的平行线即可知道∠APB=∠PAC+∠PBD;若点P在C、D两点的外侧运动时(P点与点C、D不重合),则可以分为如图2和如图3两种情形,同样分别过点P作出l1或l2的平行线,即有∠APB=∠PBD -∠PAC或∠APB=∠PAC-∠PBD.解:若P点在C、D之间运动时,则有∠APB=∠PAC+∠PBD.理由是:如图1,过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:(1)如图2,有结论:∠APB=∠PBD-∠PAC.理由是:过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APB=∠BPE-∠APE,即∠APB=∠PBD-∠PAC.(2)如图3,有结论:∠APB=∠PAC-∠PBD.理由是:过点P作PE∥l2,则∠BPE=∠PBD,又因为l1∥l2,所以PE∥l1,所以∠APE=∠PAC,所以∠APB=∠APE-∠BPE,即∠APB =∠PAC-∠PBD.【小结】我们做这类题的时候可以发现:点的移动带动角的位置变化,角的位置变化决定了角之间的关系.因此我们可以利用分类思想来分析题意,解决多种情况的讨论.第六节、本章训练基础训练题一、选择题(每题5分,共35分)1.两条平行线被第三条直线所截,那么一组同位角的平分线的关系是().A.互相垂直B.互相平行C.相交但不垂直D.不能确定2.下列说法正确的是().A.相等的角是对顶角B.两直线平行,同位角相等C.同旁内角互补D.两直线平行,同位角互补3.如图1所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,那么∠BDC等于().A.78°B.90°C.88°D.92°4.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是().A.①B.②和③C.④D.①和④5.船向北偏东50°方向航行到某地后,依原航线返回,船返回时方向应该是()A.南偏西40°B.北偏西50°C.北偏西40°D.南偏西50°6.线段AB是由线段CD经过平移得到的,那么线段AC与BD的关系为().A.平行B.相交C.相等D.平行且相等7.如果两个角有一条边在同一条直线上,而另一条边互相平行,那么这两个角的关系是().A.相等B.互补C.相等或互补D.没有关系二、填空题(每题5分,共35分)8. a∥b,a∥c则_______∥_______,根据______.9.经过平移后的图形与原来图形的______.和______.分别相等,图形的______.和______.没有发生改变.10.在同一平面上,如果AB⊥EF,AC⊥EF,那么点C与直线AB的位置关系是______.11.把△ABC向右平移4cm得△A1B1C1,再把△A1B1C1向下平移3cm得△A2B2C2,若把△A2B2C2看成是由△ABC经一次平移得到的,请量一量,其平移的距离是______.cm.12.船的航向从正北方向依逆时针方向驶向西南方向,它转了_____度.13.已知梯形ABCD,AD∥BC,BC=6,AD=3,AB=4,CD=2,AB平移后到DE处,则△CDE的周长是_____14.如果△ABC经过平移后得到△DEF,若∠A=41°,∠C=32°,EF=3cm,则∠E=______,BC= ______ cm三、解答题(每题10分,共30分)15.如图,AC⊥AB,∠1=30°,∠B=60°,(1)你能确定AD与BC平行吗?(2)能确定AB平行于CD吗?16.如图,AD平分∠EAC,AD∥BC,你能确定∠B与∠C的数量关系吗?17.如图所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,求∠A和∠D的度数.答案一、 1.B 2.B 3.C 4.A 5.D 6.D 7.C二、 8. b,c,平行于同一条直线的两条直线平行9. 对应角、对应边,形状、大小10. 在直线AB上11. 512. 13513. 914. 107°,3三、15.【思考与分析】通过观察图形并结合题中条件我们可以得到:∠ACB=180°-∠BAC -∠ABC=180°-90°-60°=30°.由此可得AD∥BC.但是由题中条件我们求不出∠D或者∠ACD,因此不能判定AB与CD是否平行.解:(1)因为∠BAC=90°,∠B=60°,且∠BAC+∠B+∠ACB=180°,所以∠ACB=180°-∠BAC-∠B=180°-90°-60°=30°.所以AD∥BC(内错角相等,两直线平行).(2)不能确定.因为求不出∠D或者∠ACD,找不到两直线平行的判定条件,所以AB与CD不一定平行.16.【解题思路】我们通过观察图形并结合题中条件可知,要想知道∠B与∠C的数量关系,就得利用AD∥BC,从而得到∠B=∠1,∠C=∠2.只要∠1=∠2,那么∠B=∠C.而题中给出了AD平分∠EAC,正好得到∠1=∠2!解:因为AD∥BC,所以∠B=∠1(两直线平行,同位角相等).所以∠C=∠2(两直线平行,内错角相等).又因为AD平分∠EAC,所以∠1=∠2.所以∠B=∠C.17.【思考与分析】经过仔细分析我们可知,题目要求∠A和∠D的度数,而条件只给出了∠A和∠C的关系.因此,分清∠A、∠C和∠D三者之间的关系是解题的关键.解:因为AB∥CD,所以∠A+∠D=180°.所以∠A=180°-∠D.因为AD∥BC,所以∠C+∠D=180°.所以∠C=180°-∠D.所以∠A=∠C.再由2∠A+3∠C=180°解得∠A=∠C=36°.所以∠D=144°.提高训练题一、填空题1. 直线l1,l2在同一平面内不相交,则它们的位置关系是.2. 若直线l1// l2,l2// l3,则 ____ // ____,其理由是.3. 若直线l1//l2,一条射线与l1有交点,那么这条射线与l2的位置关系是___________ .二、选择题1. 下列哪种情况,直线l1和l2不一定是平行线()A. l1和l2是不相交的两条直线B. l1和l2都平行于直线l3C. 在同一平面内l1和l2没有一个公共点D. 在同一平面内,l1⊥l3,l2⊥l32. 若∠1与∠2的关系为内错角,∠1=40°,则∠2等于()A. 40°B. 140°C. 40°或140°D. 不确定3. 下列说法正确的是()A.若两个角相等,则这两个角是对顶角B.若两个角是对顶角,则这两个角是相等C.若两个角不是对顶角,则这两个角不相等D.所有的对顶角相等三、解答题1. 如图,已知三角形ABC,分别过A,B,C三点作它们的对边BC,CA,AB的平行线.。
七年级下册数学第五章相交线与平行线
以下是七年级下册数学第五章相交线与平行线的知识点:
1. 相交线:相交线是指两条直线在同一个平面内交于一点。
在相交线中,我们主要研究的是对顶角和邻补角。
对顶角相等,邻补角互补。
同时,我们还学习到了垂线,即直线与给定直线垂直,且交于一点。
2. 平行线:平行线是指两条直线在同一平面内,且不相交。
平行线具有传递性,即如果a平行于b且b平行于c,那么a平行于c。
此外,我们还学习了平行线的性质和判定方法。
3. 平行线的性质:平行线的性质包括同位角相等、内错角相等、同旁内角互补等。
这些性质是平行线的基本性质,也是解决相关问题的关键。
4. 平行线的判定方法:平行线的判定方法包括同位角相等、内错角相等、同旁内角互补等。
通过这些判定方法,我们可以确定两条直线是否平行。
5. 平行线的应用:平行线在几何学中有着广泛的应用,如证明两个三角形相似或全等、解决角度和距离的问题等。
同时,在现实生活中,平行线也有很多应用,如建筑、道路规划等。
以上是关于七年级下册数学第五章相交线与平行线的主要知识点,掌握这些知识点有助于更好地理解几何学中的基本概念和性质,提高解决问题的能力。
一、本章共分4大节共14个课时;(2.16~3.7第1、4周)章节内容课时第五章 相交线与平行线145.1 相交线35.2 平行线及其判定 35.3 平行线的性质 45.4 平移2单元小结2二、本章有四个数学基本事实1.过直线外一点有且只有一条直线与这条直线平行;2.过一点有且只有一条直线与这条直线垂直;3.两条直线被第三条直线所截,如果同位角相等,那么两直线平行;4.两直线平行,同位角相等. 三、本章共有19个概念1.对顶角2.邻补角3.垂直4.垂线5.垂足6.垂线段7.点到直线的距离8.同位角9.内错角10.同旁内角11.平行12.数学基本事实13.平行公理14.命题15.真命题16.假命题17.定理18.证明19.平移四、转化的数学思想遇到新问题时,常常把它转化为已知(或已解决)的问题.P14五、平移1.找规律2.转化求面积3.作图(2009年安徽中考)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加d cm ,如图所示.已知每个菱形图案的边长cm ,其一个内角为60°.(1)若d =26,则该纹饰要231个菱形图案,求纹饰的长度L ;【解】(2)当d =20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?【解】第19题图相交线与平行线知识点5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线.∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线.注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.1243AB C DO4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆.如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长.PO 是垂线段.PO 是点P 到直线AB 所有线段中最短的一条.现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用.5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念分析它们的联系与区别⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度. 联系:具有垂直于已知直线的共同特征.(垂直的性质)⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间. 联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离.⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同.5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线与直线互相平行,记作∥a b a .b 2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行.因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行 如左图所示,∵∥,∥b a c a ∴∥b cPA BOab 注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行.5、三线八角 两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角. 如图,直线被直线所截b a ,l ①∠1与∠5在截线的同侧,同在被截直线的上方,l b a ,叫做同位角(位置相同) ②∠5与∠3在截线的两旁(交错),在被截直线之间(内),叫做内错角(位置在l b a ,内且交错) ③∠5与∠4在截线的同侧,在被截直线之间(内),叫做同旁内角.l b a , ④三线八角也可以成模型中看出.同位角是“F ”型;内错角是“Z ”型;同旁内角是“U ”型.6、如何判别三线八角 判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全. 例如: 如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8. 我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图. 如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角.abl1234567816B A D 2345789FEC A BF 21ABC17ABCD26ADBF1AF58C注意:图中∠2与∠9,它们是同位角吗?不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成.7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行 几何符号语言: ∵ ∠3=∠2 ∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2 ∴ AB ∥CD (内错角相等,两直线平行) ∵ ∠4+∠2=180° ∴ AB ∥CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行.平行线的判定是写角相等,然后写平行.注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”.上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”.⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行.②如果两条直线都平行于第三条直线,那么这两条直线平行.典型例题:判断下列说法是否正确,如果不正确,请给予改正: ⑴不相交的两条直线必定平行线. ⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交. ⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”.“在同一平面内”是一项重要条件,不能遗漏. ⑵正确 ⑶不正确,正确的说法是“过直线外一点”而不是“过一点”.因为如果这一点不在已知直线上,是作不出这条直线的平行线的.典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由∠2=∠B 可判定AB ∥DE ,根据是同位角相等,两直线平行;A BC DEF 1234⑵由∠1=∠D 可判定AC ∥DF ,根据是内错角相等,两直线平行;⑶由∠ACF +∠F =180°可判定AC ∥DF ,根据同旁内角互补,两直线平行.5.3平行线的性质1、平行线的性质: 性质1:两直线平行,同位角相等; 性质2:两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补. 几何符号语言: ∵AB ∥CD ∴∠1=∠2(两直线平行,内错角相等) ∵AB ∥CD ∴∠3=∠2(两直线平行,同位角相等) ∵AB ∥CD ∴∠4+∠2=180°(两直线平行,同旁内角互补)2、两条平行线的距离 如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离.注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离.3、命题:⑴命题的概念:判断一件事情的语句,叫做命题.⑵命题的组成每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果……,那么……”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论. 有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显.对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.4、平行线的性质与判定①平行线的性质与判定是互逆的关系A BC DEF 1234A EGBC FHDn 两直线平行 内错角相等; 两直线平行 同旁内角互补.其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.典型例题:已知∠1=∠B ,求证:∠2=∠C 证明:∵∠1=∠B (已知) ∴DE ∥BC (同位角相等, 两直线平行) ∴∠2=∠C (两直线平行 同位角相等)注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了.典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65° 求∠2、∠3的度数解答:∵DE ∥BC (已知) ∴∠2=∠1=65°(两直线平行,内错角相等) ∵AB ∥DF (已知) ∴AB∥DF (已知) ∴∠3+∠2=180°(两直线平行,同旁内角互补) ∴∠3=180°-∠2=180°-65°=115°5.4平移1、平移变换 ①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. ②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 ③连接各组对应点的线段平行且相等2、平移的特征: ①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化. ②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.典型例题:如图,△ABC 经过平移之后成为△DEF ,那么:⑴点A 的对应点是点_________;⑵点B 的对应点是点______.⑶点_____的对应点是点F ;⑷线段AB的对应线段是线段_______;⑸线段BC 的对应线段是线段_______;⑹∠A 的对应角是______. ⑺____的对应角是∠F.AD FBE C123解答: ⑴D;⑵E;⑶C;⑷DE;⑸EF;⑹∠D;⑺∠ACB.思维方式:利用平移特征:平移前后对应线段相等,对应点的连线段平行或在同一直线上解答.考点一:对相关概念的理解对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公理的区别等例1:判断下列说法的正误。