电力电子技术直流交流变换技术
- 格式:ppt
- 大小:1.78 MB
- 文档页数:54
第五章直流—交流(DC—AC)变换5.1 逆变电路概述5.1.1 晶闸管逆变电路的换流问题DC—AC变换原理可用图5-1所示单相逆变电路来说明,其中晶闸管元件VT1、VT4,VT2、VT3成对导通。
当VT1、VT4导通时,直流电源E通过VT1、VT4向负载送出电流,形成输出电压左(+)、右(-),如图5-1(a)所示。
当VT2、VT3导通时,设法将VT1、VT4关断,实现负载电流从VT1、VT4向VT2、VT3的转移,即换流。
换流完成后,由VT2、VT3向负载输出电流,形成左(-)、右(+)的输出电压,如图5-1(b)所示。
这两对晶闸管轮流切换导通,则负载上便可得到交流电压,如图5-1(c)波形所示。
控制两对晶闸管的切换导通频率就可调节输出交流频率,改变直流电压E的大小就可调节输出电压幅值。
输出电流的波形、相位则决定于交流负载的性质。
图5-1 DC—AC变换原理要使逆变电路稳定工作,必须解决导通晶闸管的关断问题,即换流问题。
晶闸管为半控器件,在承受正向电压条件下只要门极施加正向触发脉冲即可导通。
但导通后门极失去控制作用,只有使阳极电流衰减至维持电流以下才能关断。
常用的晶闸管换流方法有:(1)电网换流(2)负载谐振式换流(3)强迫换流5.1.2 逆变电路的类型逆变器的交流负载中包含有电感、电容等无源元件,它们与外电路间必然有能量的交换,这就是无功。
由于逆变器的直流输入与交流输出间有无功功率的流动,所以必须在直流输入端设置储能元件来缓冲无功的需求。
在交—直—交变频电路中,直流环节的储能元件往往被当作滤波元件来看待,但它更有向交流负载提供无功功率的重要作用。
根据直流输入储能元件类型的不同,逆变电路可分为两种类型:图5-4 电压源型逆变器图5-5 无功二极管的作用1.电压源型逆变器电压源型逆变器是采用电容作储能元件,图5-4为一单相桥式电压源型逆变器原理图。
电压源型逆变器有如下特点:1)直流输入侧并联大电容C用作无功功率缓冲环节(滤波环节),构成逆变器低阻抗的电源内阻特性(电压源特性),即输出电压确定,其波形接近矩形,电流波形与负载有关,接近正弦。
电力电子技术在电力系统中的应用随着电子技术的迅速发展,电力电子技术得到了广泛的应用。
电力电子技术是指将电力和电子技术相结合,通过半导体器件将电力进行变换、传递和控制的技术。
在电力系统中,电力电子技术的应用已经成为了研究的热点之一。
一、电力电子技术的概述电力电子技术是一种电力工程和电子工程相结合的技术。
其主要应用在将电力进行变换、传递和控制的过程中。
电力电子技术的发展可以追溯到1960年代,当时出现了用半导体器件实现交流电到直流电的变换技术,即交流输电系统的直流输电技术(HVDC)。
这项技术实现了对远距离长距离输电的需求,缩短了电力传输距离,减少了线路损耗,提高了电力传输的效率和可靠性。
随着时代的发展,电力电子技术应用领域不断扩大,如市电变频器、电力电容、UPS等系统都是电力电子技术的代表。
电力电子技术的发展,推动了电力系统的革新,提升了电力传输的能力和效率,实现了电网智能化、数字化、可靠性和安全性的大幅提升。
二、1、 HVDC交流输电系统的直流输电技术(HVDC)是电力电子技术在电力系统中的基础应用之一。
它可以将交流电转换成直流电,从而实现不同地点之间的电力互联、跨越海洋和山区、进行长距离电力输送。
HVDC技术可以提高输电线路的容量、减少输电损耗,并且提高电力传输的可靠性。
HVDC技术正在逐渐普及,已经被应用到欧洲、北美、亚洲等地区的多条输电线路中,成为了电力系统中重要的输电方式。
2、 FACTS灵活交流输电系统(FACTS)技术是一种电力电子技术,它可以根据负荷不同而调整电力系统的电压、电流和相角,从而提高电力系统的稳定性、可靠性以及抗干扰能力。
FACTS技术可以使电力系统在电力负载发生变化时,自动调整电力参数和稳定电力系统,从而提高电网的稳定性,减少配电线路的损耗,降低能源消耗和污染排放。
3、 STATCOM静止补偿器(STATCOM)是一种电力电子设备,它可以在电力系统中自动实现电容电抗补偿,从而提高电力系统的稳定性和可靠性,减少电力线路的损耗。
电力电子技术中的电能变换与传输的原理是什么电力电子技术是研究电力的变换、传输和控制的学科,其应用广泛涉及各个领域,如能源转换、电动汽车、可再生能源等。
电力电子技术的核心在于电能的变换与传输,本文将从变换和传输两个方面依次介绍电力电子技术中的原理和应用。
一、电能的变换原理1. 直流与交流之间的变换直流电能与交流电能之间的转换通常采用功率电子器件,例如变流器和逆变器。
变流器将交流电转换为直流电,逆变器则将直流电转换为交流电。
它们通过控制电压和电流的波形来实现电能的变换。
这些功率电子器件可通过开关操作来改变电能的传输方式,从而实现电力质量的调节和系统的稳定运行。
2. 频率的变换频率的变换是电能变换的重要环节,尤其在交流电能的变换中。
变频器是一种常见的电力电子设备,它可以将电源的频率进行调整,从而使电能在不同的应用场景中更加灵活地使用。
通过变频器的控制,电能可以在不同的频率下传输,实现不同设备对电能的要求。
3. 峰-平比的变换在电能传输过程中,峰-平比是指信号波形峰值与其平均值之比。
通过调整峰-平比,可以实现电能的传输和变换。
例如,在交流电传输中,变压器可以通过改变输入和输出绕组的匝数比来变换电压,从而实现对电能峰-平比的调整。
二、电能的传输原理1. 无线电传输无线电传输是指通过无线电波将电能传输到远距离的过程。
这种传输方式适用于一些特殊场景,例如无线充电、远程通信等。
无线电传输基于电磁感应原理,利用电磁波的电能将电能从一个地方传输到另一个地方。
无线电传输在电力电子技术中起到了重要作用,使得电能的传输更加便捷和灵活。
2. 电缆传输电缆传输是指通过导线将电能从一点传输到另一点的过程。
电缆传输通常用于短距离的电能传输,例如在建筑物内部的电力输送。
电缆传输利用导线的导电性能将电能传输到目标地点,经过配电系统的调节和分配,最终供应给用户使用。
3. 转换器传输转换器传输是指通过电能转换器将电能从一种形式转换为另一种形式并传输到目标地点的过程。
第五章直流-交流(DC-AC)变换一、概述DC-AC变换器(无源逆变器)V1、V4和V2、V3轮流切换导通,u o为交变电压(1)电网换流 利用电网电压换流,只适合可控整流、有源逆变电路、交—交变频器(2)负载谐振式换流 利用负载回路中形成的振荡特性,使电流自动过零,只要负载 电流超前于电压时间大于t q ,即能实现换流,分串,并联。
VT 2、VT 3通后,u 0经VT 2、VT 3反向加在VT 1、VT 4上1. 晶闸管逆变电路的换流方式换流概念:直流供电时,如何使已通元件关断VT 1导通,C 充电左(-)右(+),为换流做准备; VT 2导通,C 上电压反向加至VT 1,换流,C 反向充电。
(3)强迫换流附加换流环节,任何时刻都能换流直接耦合式强迫换流2. 逆变电路的类型(1)电压源型逆变器电流源型逆变器电流源型逆变器功率流向控制(3)两类逆变器的比较比较点电流型电压型直流回路滤波环节电抗器电容器输出电压波形决定于负载,当负载为异步电动机时,近似为正弦波矩形输出电流波形矩形近似正弦波,有较大谐波分量输出动态阻抗大小续流二极管不需要需要过流及短路保护容易困难线路结构较简单较复杂适用范围适用于单机拖动,频繁加减速下运行,需经常反向的场合适用于多机供电不可逆拖动,稳速工作,快速性不高的场合二、强迫换流式逆变电路1.串联二极管式电流源型逆变器结构VT1~VT6为晶闸管C1~C6为换流电容VD1~VD6为隔离二极管2.工作过程(换流机理)(1)换流前运行阶段(2)晶闸管换流与恒流充、放电阶段(3)二极管换流阶段(4)换流后运行阶段diL dt引起三、逆变器的多重化技术及多电平化1. 多重化技术改善方波逆变的输出波形:中小容量:SPWM大容量:多重化技术思路:用阶梯波逼近正弦波(1)串联多重化特点:适合于电压源型逆变器二重化三相电压源逆变器单个三相逆变电路输出电压波形桥Ⅱ输出电压相位比桥Ⅰ滞后30º桥Ⅰ输出变压器△/Y,桥Ⅱ输出变压器△/Z变比为1变比为13二重化逆变电路输出电压比单个逆变电路输出电压台阶更多、更接近正弦。
电力电子技术1.1:电力变换通常可分为四大类,即交流变直流(AC-DC)、直流变交流(DC-AC)、直流变直流(DC-DC)和交流变交流(AC-AC )。
交流变直流称为 整流 ,直流变交流称为 逆变 。
1.2:(1);晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于 半控型器型 。
对晶闸管电路的控制方式主要是相位控制方式,简称 相控方式 。
(2);才用全控型器件的电路的主要控制方式为脉冲宽度调制(PWM)方式。
相对应相位控制方式,可称为斩波控制方式,简称 斩控方式 。
2.1.2:电力电子器件在实际应用中,一般是由 控制电路 、 驱动电路 、和以 电力电子器件 为核心的主电路组成一个系统。
2.1.3:电力电子器件分为以下三类:1)通过控制信号可以控制其导通而不能控制其关断的电力电子器件被称为 半控型器件 。
2)通过控制信号既可以控制其导通,又可以控制其关断的女电力电子器件被称为全控型器件 。
3)也有不能用控制信号来控制其通断的电力电子器件,因此也就不需要驱动电路,这就是 电力二极管 ,又被称为 不可控器件 。
2.2.1:从外形上看,电力二极管可以有 螺栓形 、 平板形 等多种封装。
2.3.2:晶闸管正常工作的特性如下:1)当晶闸管承受反向电压时,无论门极是否有触发电流,晶闸管都 不会导通 。
2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管 才能导通 。
3)晶闸管一旦导通,门极就失去控制作用,无论门极触发电流是否还存在,晶闸管都 保持导通 。
4)若要使已导通的晶闸管 关断 ,只能利用外加电压电路的作用使流过晶闸管的电流降到接近零的某一数值以下。
2.3.4:晶闸管的派生器件分为哪几类 快速晶闸管 、 双向晶闸管 、 逆导晶闸管 、光控晶闸管 。
3.1.1:(1)从晶闸管开始承受正向阳极电压起,到施加触发脉冲止的电角度称为 触发延迟角 ,α用表示,也称 触发角 或 控制角 。
电力电子技术概述电力电子技术是指在电力系统中应用电子元器件和电子技术,从而实现对电能的调节、变换和控制的一门技术。
它在现代电力系统中扮演着重要的角色,对于提高电力传输、转换和利用效率起到至关重要的作用。
本文将概述电力电子技术的基本原理、应用领域和未来发展趋势。
一、基本原理电力电子技术的基本原理是通过应用晶体管、二极管、开关等电子元件,实现对电能的调节和控制。
通过改变电压、电流的形状、频率和幅值来实现对电能的变换。
电力电子技术的核心是开关技术和变换技术。
1. 开关技术:开关技术是指通过控制开关的通断状态,来控制电流和电压的变化。
常见的开关元件有晶体管、功率开关管等。
通过合理的开关控制,可以实现电流的调节、电压的变换等功能。
2. 变换技术:变换技术是指通过变换电流和电压的形状、频率和幅值,将电能从一种形式转换为另一种形式。
常见的变换技术有直流-直流变换、直流-交流变换等。
通过变换技术,可以将电能从电网中提取出来,或者将直流电能转换为交流电能。
二、应用领域电力电子技术在多个领域广泛应用,其中包括能源转换、电力传输和利用、电动汽车等。
1. 能源转换:电力电子技术在可再生能源领域发挥着重要作用。
通过电力电子技术,可以将太阳能、风能等可再生能源转换为电能,从而实现清洁能源的利用。
2. 电力传输和利用:电力电子技术在电力系统中的传输和利用环节起着关键作用。
通过电力电子技术,可以实现高压交流输电与变频无级调速控制,提高电力传输效率和系统稳定性。
3. 电动汽车:电力电子技术在电动汽车领域的应用不断增加。
通过电力电子技术,可以实现电动汽车的充电与放电控制、能量回馈、效率提升等功能,推动电动汽车的发展与普及。
三、未来发展趋势随着能源需求的不断增长和环境问题的日益突出,电力电子技术将在未来得到更广泛的应用和发展。
1. 高效能源转换:未来电力电子技术将更加注重能源转换的高效率。
通过研究和改进电力电子器件的性能,提高能源转换效率,减少能源损失,从而推动清洁能源的大规模利用。
一、选择题2-1、单相半波电阻性负载可控整流电路中,控制角α的最大移相范围是( D)A、0º-90°B、0º-120°C、0º-150°D、0º-180°2-2、单相半波可控整流电路输出最大直流电压的平均值等于整流前交流电压的(C)倍。
A 1,B 0.5,C 0.45,D 0.9.2-3、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差(A )度。
A、180°,B、60°,C、360°,D、120°2-4、在单相桥式全控整流电路中,大电感负载时,控制角α的有效移相范围是(A)。
A、0°~90°B、0°~180°C、90°~180°2-5、普通的单相半控桥可控整流装置中一共用了(B )晶闸管。
A 一只,B 二只,C 三只,D 四只。
2-6、在单相全控桥整流电路中,两对晶闸管的触发脉冲,应依次相差(A)度。
A 、180度;B、60度;C、360度;D、120度2-7、α为( C )度时,三相半波可控整流电路电阻性负载输出电压波形处于连续和断续的临界状态。
A,0度,B,60度,C,30度,D,120度,2-8、晶闸管触发电路中,若改变(B)的大小,则输出脉冲产生相位移动,达到移相控制的目的。
A,同步电压,B、控制电压,C、脉冲变压器变比。
2-9、三相半波可控整流电路的自然换相点是( B)A、交流相电压的过零点;B、本相相电压与相邻相电压正、负半周的交点处;C、比三相不控整流电路的自然换相点超前30°;D、比三相不控整流电路的自然换相点滞后60°。
2-10、α=( 60度)度时,三相全控桥式整流电路带电阻负载电路,输出负载电压波形处于连续和断续的临界状态。
A、0度;B、60度;C、30度;D、120度;2-11、三相全控桥式整流电路带大电感负载时,控制角α的有效移相范围是(A)度。
电力电子技术在节能环保中的应用随着社会经济的快速发展和能源资源的逐渐枯竭,能源问题成为全球关注的焦点。
节能环保已经成为推动可持续发展和减少碳排放的重要途径之一。
在这个背景下,电力电子技术的应用变得尤为重要。
本文将重点探讨电力电子技术在节能环保中的应用,并探讨其带来的潜在益处。
一、电力电子技术概述电力电子技术是指基于半导体器件和电力电子电路构成的电力调节和控制技术。
其核心是将电能从一种形式转换为另一种形式,以实现电能的调节、控制和转换。
电力电子技术包括直流变换技术、交流调节技术、功率因数校正技术等,具有高效、低损耗、可控性强等优点。
二、电力电子技术在节能中的应用1. 新能源发电系统随着可再生能源的广泛应用和发展,利用太阳能、风能、潮汐能等新能源发电系统已经成为减少碳排放和保护环境的重要途径。
电力电子技术在新能源发电系统中发挥着至关重要的作用,可以实现新能源的高效利用和输电,提高发电系统的稳定性和可靠性。
2. 电动汽车技术电动汽车作为一种清洁能源交通工具,具有零排放、低噪音等优点,在降低空气污染和缓解交通拥堵等方面具有巨大潜力。
而电力电子技术则是电动汽车技术的关键,可以实现电池的充电与放电控制、驱动电机的控制和能量回馈等功能,提高电动汽车的性能和续航里程。
3. 高效电力传输与分配系统传统的电力传输和分配系统存在能量损耗大、传输距离有限等问题,而电力电子技术能够实现高效的电能传输与分配,提高能源利用率。
例如,柔性交流输电技术可以将输电损耗降低到最低,并且实现可靠的智能电网。
4. 电力负荷控制电力电子技术可实现对电力负荷的实时监测和控制,以优化用电行为和调节电力负荷。
通过智能电网和电能管理系统,电力供需可以更加平衡,避免资源的浪费和能源的过度消耗。
5. 光伏逆变技术光伏逆变技术是指将光伏发电系统中的直流电能转化为交流电能的过程。
通过电力电子技术实现光伏逆变,可以提高光伏发电系统的效率、可靠性和稳定性。
三、电力电子技术应用的益处1. 减少能源损耗:电力电子技术的应用可以降低能源的损耗,提高能源的利用效率。