【单元测试】2017-2018学年 九年级数学上册 二次函数 单元检测题 三(含答案)
- 格式:doc
- 大小:178.03 KB
- 文档页数:9
《二次函数》检测题(全卷共五个大题,满分150分,考试时间120分钟)抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --一、 选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷中相应的位置上.1.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大2、k 为任何实数,则抛物线y =2(x +k)2-k 的顶点在( )上A 、直线y=x 上,B 、直线y= -xC 、x 轴D 、y 轴3、0=+q p ,抛物线q px x y ++=2必过点( )A 、(-1,1)B 、(1,-1)C 、(-1,-1)D 、(1,1 ) 4、已知点(3,1y ),(4,2y ), (5,3y )在函数y=2x 2+8x+7的图象上,则y 1,y 2,y 3的大小关系是( )A 、y 1>y 2>y 3B 、y 2> y 1> y 3C 、y 2>y 3> y 1D 、y 3> y 2> y 15.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--6、抛物线234y x x =--+与坐标轴的交点个数是( )A . 0B . 1C . 2D . 37、若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .a b x -=B .x =1C .x =2D .x =3 8.二次函数c bx ax y ++=2的图象如右上图所示,则abc ,ac b 42-,b a +2,cb a ++这四个式子中,值为正数的有( )A . 4个B .3个C .2个D .1个 9、如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c <0的解集是( )A . ﹣1<x <5B . x >5C . x <﹣1且x >5D . x <﹣1或x >5 10.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有( )卷相应位置的横线上.11:抛物线422-+=x x y 的对称轴是________,顶点坐标是_________;12.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(1, 3.2)--及部分图象(如图1所示),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是1 1.3x =和2x =。
人教版九年级数学上册第22章《二次函数》单元测试及答案 (2)一.选择题(每小题3分,共30分)1.下列函数关系中,可以看做二次函数y =ax 2 +bx +c (a ≠0)模型的是( ) A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率1%,这样我国人口总数随年份的关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系.2.抛物线y =x 2 –2x –3 的对称轴和顶点坐标分别是( )A .x =1,(1,-4)B .x =1,(1,4)C .x =-1,(-1,4)D .x =-1,(-1,-4)3.对称轴平行于y 轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( )A .y =-2x 2 + 8x +3B .y =-2x -2 –8x +3C .y = -2x 2 + 8x –5D .y =-2x -2 –8x +24.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .ab >0,c >0B .ab >0,c <0C .ab <0,c >0D .ab <0,c <05.把二次函数y =213212---x x 的图象向上平移3个单位,再向右平 移4个单位,则两次平移后的图象的解析式是( )A .x y (21-=- 1)2 +7 B .x y (21-=+7)2 +7 C .x y (21-=+3)2 +4 D .x y (21-=-1)2 +16.下列各点中是抛物线3)4(312--=x y 图像与x 轴交点的是( )A . (5,0)B . (6,0)C . (7,0)D . (8,0)7. 在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )8. 已知二次函数y =2x 2+8x +7的图象上有有点A 1(2)y -,,B 21(5)3y -,,C 31(1)5y -,,则 y 1、y 2、y 3的大小关系为( )A . y 1 > y 2> y 3B . y 2> y 1> y 3C . y 2> y 3> y 1D . y 3> y 2> y 1 9.二次函数y =ax 2+bx +c的图象如图所示,则点M c b a ⎛⎫⎪⎝⎭,在( )Oyx9题x yO x yO xyOxyOA .第一象限B .第二象限C .第三象限D .第四象限 10.关于二次函数y =ax 2+bx +c 图像有下列命题:(1)当c =0时,函数的图像经过原点;(2)当c >0时,函数的图像开口向下时,方程ax 2 +bx + c =0 必有两个不等实根; (3)当b =0时,函数图像关于原点对称.其中正确的个数有( )A .0个B .1个C .2个D .3个 二.填空题(每题3分,共21分)11.已知抛物线y =ax 2 +bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.12.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2 – 4x – 1的顶点坐标是_______,对称轴是__________.13.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______.14.当m=_________时,函数y = (m 2 -4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.15.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________16.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称的抛物线的解析式是__________.17.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x =4乙:与x 轴两个交点的横坐标都是整数.丙:与y 轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式__________________.三.解答题(共52分)18.(6分) (1)如果二次函数y =x 2 - x + c 的图象过点(1,2),求这个二次函数的解析式,并写出该函数图象的对称轴.19.(10分)有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-.(1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.20.(10分) 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:yO 331 yO xx (元) 15 20 30 … y (件)252010…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日销售利润最大,每件产品的销售价应定为多少元?此时,每日销售的利润是多少元? 21.(12分) 某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天12时这头骆驼的体温是多少?⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式.22.(12分)在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.参考答案: 1.C 2.A3.C 点拨:使用待定系数法求解二次函数解析式. 4.C5.A 点拨:此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.(平移含两个方向:一是左右平移,二是上下平移.左右平移时,对应点纵坐标不变;上下平移时,对应点横坐标不变.) 6.C 7.B8.C (本题涉及到比较坐标值大小的问题,可先将一般式y =2x 2+8x +7化成顶点式22(2)1y x =+-便得顶点(-2,-1).因为抛物线开口向上,故当x =-2时,y 1=-1为最小值;又因为115135-> ,由函数图象分布规律,易知对应的y 2>y 3.综上得y 2>y 3>y 1 ) 9.D10.C 11.y =252212++-x x 12.y = 2(x –1)2 –3 , (1,-3), x = 113.①,0,114. 3 , y =5x 2+3 ,y 轴(或x =0) ,(0,3) x =0时y 有最小值3 15.y =-x 2 –2x + 3 (满足条件即可)16. y =x 2+4x +3 点拨:这是一道很容易出错的题目.根据对称点坐标来解.因为点(1,0),(3,0),(0,3)关于y 轴的对称点是(-1,0),(-3,0),(0,3).所以关于y 轴对称的抛物线就经过点(-1,0),(-3,0),(0,3)然后利用待定系数法求解即可. 17.抛物线的解析式为:222218181818113377775555y x x y x x y x x y x x =-+=-+-=-+=-+-或或或(从四个答案中填写一个即可) 点拨:本题是一个开放性题目,主要考查数形结合法,待定系数法以及抛物线与x 轴y 轴的交点坐标等有关性质.根据题意中二次函数图象的特点,用数形结合法画出其示意图,对称轴x =4.可由面积来求.18. (1)y = x 2–x + 2, x = 21;19.解:(1)设所求二次函数的解析式为c bx ax y ++=2,则⎪⎪⎩⎪⎪⎨⎧-=++-=+⋅+⋅=+-+-43005)2()2(22c b a c b a c b a ,即⎪⎩⎪⎨⎧-=+=--=1423b a b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a 故所求的解析式为:322--=x x y . 2)函数图象如图所示.由图象可得,当输出值y 为正数时, 输入值x 的取值范围是1-<x 或3>x . 20.解:一次函数的解析式为 y =k x +b 则y O x15252020k b k b +=⎧⎨+=⎩解的K=-1 b =40 即:一次函数解析式为y =-x +40(2)设每件产品的销售价应定为x 元,所获销售利润为w 元 w=(x -10)(40-x )=-x 2+50x -400=-(x -25)2+225产品的销售价应定为25元,此时每日获得的最大销售利润为225元.21、⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时⑵第三天12时这头骆驼的体温是39℃ ⑶()()的取值范围不写不扣分x x x x y 22102421612≤≤++-= 22.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ;③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC . (2)在(1)中存在抛物线DBC ,它与直线AE 不相交设抛物线DBC 的解析式为y =ax 2+bx +c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得:4a -2b +c =29,a +b +c =0,16a +4b +c =0.解这个方程组,得:a =41,b =-45,c =1.∴抛物线DBC 的解析式为y =41x 2-45x +1【另法:设抛物线为y =a (x -1)(x -4),代入D (-2,29),得a =41也可.】 又设直线AE 的解析式为y =m x +n .将A (-2,0),E (0,-6)两点坐标分别代入,得: -2m+n=0,解这个方程组,得m=-3,n=-6. n=-6.∴直线AE 的解析式为y =-3x -6.。
九年级上册数学《二次函数》单元测试卷【考试时间:90分钟分数:100分】一、选择题(本大题共10小题,每小题3分,共30分.每小题的4个选项中,只有一个选项是符合题目要求的)1.抛物线y=x2+2的图象与y轴的交点坐标是()A.(﹣2,0)B.(2,0)C.(0,﹣2)D.(0,2)2.将抛物线y=(x+1)2﹣2向上平移a个单位后得到的抛物线恰好与x轴有一个交点,则a的值为()A.﹣1B.1C.﹣2D.23.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m4.对于二次函数y=4(x+1)(x﹣3)下列说法正确的是()A.图象开口向下B.与x轴交点坐标是(1,0)和(﹣3,0)C.x<0时,y随x的增大而减小D.图象的对称轴是直线x=﹣15.把抛物线y=﹣2x2﹣4x﹣6经过平移得到y=﹣2x2﹣1,平移方法是() A.向右平移1个单位,再向上平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向下平移3个单位6.若y=x2﹣4,则当y>0时,x的取值范围是()A.x>±2B.x<﹣2或x>2C.x<2或x>﹣2D.﹣2<x<2 7.表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为()x﹣2.1﹣2.2﹣2.3﹣2.4y﹣1.39﹣0.76﹣0.110.56A.x=﹣2.1B.x=﹣2.2C.x=﹣2.3D.x=﹣2.48.已知二次函数y=﹣2(x+b)2,当x<﹣3时,y随x的增大而增大,当x>﹣3时,y随x的增大而减小,则当x=1时,y的值为()A.﹣12B.12C.32D.﹣329.已知正比例函数y=kx的函数值随自变量的增大而增大,则二次函数y=x2﹣2(k+1)x+k2﹣1的图象与x轴的交点个数为()A.2B.1C.0D.无法确定10.若二次函数y=ax2+bx+c(a≠0)的图象如图所示.则实数a,b,c的大小关系是()A.b>c>a B.a>b>c C.b>a>c D.a>c>b二、填空题(本大题共8小题,每小题3分,共24分)11.若抛物线y=(n+2)x有最低点,则n=.12.已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:.13.平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图,建立直角坐标系,抛物线的函数表达式为y=﹣x2+x+(单位:m),绳子甩到最高处时刚好通过站在x=2点处跳绳的学生小明的头顶,则小明的身高为m.14.如果二次函数y=x2+3kx+2k﹣4图象对称轴为直线x=3,那么二次函数的最小值是.15.已知抛物线y=﹣+2,当1≤x≤5时,y的最大值是.16.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n的值为.17.若函数y=(k﹣3)x2+2x+1与坐标轴至少有两个不同的交点,则k的取值范围为.18.二次函数y=ax2+bx+c(a≠0)的自变量x与函数y的部分对应值如下表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列结论:①抛物线的开口向下;②当x>﹣3时,y随x的增大而增大;③二次函数的最小值是﹣2;④抛物线的对称轴是直线x=,其中正确结论的序号是.三、解答题(本大题共7小题,共46分)19.(6分)已知:二次函数的表达式y=x2﹣2x﹣3.(1)用配方法将其化为y=a(x﹣h)2+k的形式;(2)画出这个二次函数的图象,并写出该函数的一条性质.20.(6分)已知点(2,8)在函数y=ax2+b的图象上,当x=﹣1时,y=5.(1)求a,b的值.(2)如果点(12,m),(n,17)也在这个函数的图象上,求m与n的值.21.(6分)已知某二次函数图象的对称轴是直线x=2,与y轴的交点坐标为(0,1),且经过点(5,6),且若此抛物线经过点(﹣2,y1)、(3,y2),求抛物线的解析式并比较y1与y2的大小.22.(6分)如图,抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0).(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求△ABC的面积.23.(6分)已知抛物线y=﹣x2+bx+c与直线y=﹣x+m相交于第一象限内不同的两点A(4,n),B(1,4),(1)求此抛物线的解析式.(2)抛物线上是否存点P,使直线OP将线段AB平分?若存在直接求出P点坐标;若不存在说明理由.24.(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?25.(8分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)141628合理用地(m2/棵)0.410.4答案与解析一、选择题(本大题共10小题,每小题3分,共30分.每小题的4个选项中,只有一个选项是符合题目要求的)1.D.2.D.3.D.4.C.5.A.6.B.7.C.8.D.9.A.10.D.二、填空题(本大题共8小题,每小题3分,共24分)11.2.12.4(答案不唯一).13.1.514.﹣17.15..16.5.17.k≤4.18.④.三、解答题(本大题共7小题,共46分)19.解:(1)y=x2﹣2x+12﹣12﹣3=(x﹣1)2﹣4;(2)画出图象如图:由图知,当x>1时,y随x的增大而增大(答案不唯一).20.解(1)由题意可知:,解得.(2)将(12,m),(n,17)代入y=x2+4,得:m=144+4,17=n2+4,解得m=148,n=±.21.解:设该抛物线的解析式为y=ax2+bx+c(a≠0),由题意可得:,解得:,∴该抛物线的解析式为y=x2﹣4x+1,当x=﹣2时,y1=13,当x=3时,y2=﹣2,∵13>﹣2,∴y1>y2.22.解:(1)∵抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0),∴0=a(﹣1﹣1)2+4,得a=﹣1,∴y1=﹣(x﹣1)2+4,即该抛物线所表示的二次函数的表达式是y1=﹣(x﹣1)2+4;(2)由,得或,∵一次函数y2=x+1的图象与抛物线相交于A,C两点,点A(﹣1,0),∴点C的坐标为(2,3),∵过点C作CB垂直于x轴于点B,∴点B的坐标为(2,0),∵点A(﹣1,0),点C(2,3),∴AB=2﹣(﹣1)=3,BC=3,∴△ABC的面积是.23.解:(1)把B(1,4)代入y=﹣x+m得,m=5,∴直线的解析式为:y=﹣x+5,∴A(4,1),把A(4,1),B(1,4)代入y=﹣x2+bx+c得,,解得:,∴抛物线解析式为:y=﹣x2+4x+1;(2)存在,设P点坐标为(m,﹣m2+4m+1),∵线段AB的中点E的坐标为(,),∴直线OP的解析式为:y=x,∴m=﹣m2+4m+1,解得:m=或m=,∴P点坐标为(,)(,).24.解:(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.25.解:(1)y=x(36﹣2x)=﹣2x2+36x(9≤x<18)(2)由题意:﹣2x2+36x=160,解得x=10或8.∵x=8时,36﹣16=20>18,不符合题意,∴x的值为10.(3)∵y=﹣2x2+36x=﹣2(x﹣9)2+162,∴x=9时,y有最大值162,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,此时a=2,需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=161.2<162,∴这批植物可以全部栽种到这块空地上.。
九年级上册数学 二次函数单元测试卷(解析版)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题. (3)分OD 是平行四边形的边或对角线两种情形求解即可. 【详解】解:(1)∵抛物线L :y =ax 2﹣4ax (a >0), ∴抛物线的对称轴x =﹣42aa-=2. (2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD为平行四边形的边时,PQ=OD=2,设P(m,12m2﹣2m),则Q[m﹣2,﹣12(m﹣2)2+2(m﹣2)]或[m+2,﹣12(m+2)2+2(m+2)],∵PQ∥OD,∴12m2﹣2m=﹣12(m﹣2)2+2(m﹣2)或12m2﹣2m=﹣12(m+2)2+2(m+2),解得m =3±3或1±3,∴P (3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3), 当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为(3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题2.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22bb D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22bb D ⎛⎫- ⎪⎝⎭.3B 在抛物线2C 上,2333122222b b b⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去),()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=-⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.3.已知点P(2,﹣3)在抛物线L :y =ax 2﹣2ax+a+k (a ,k 均为常数,且a≠0)上,L 交y 轴于点C ,连接CP .(1)用a 表示k ,并求L 的对称轴及L 与y 轴的交点坐标; (2)当L 经过(3,3)时,求此时L 的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a <0时,若L 在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,求a 的取值范围;(4)点M(x 1,y 1),N(x 2,y 2)是L 上的两点,若t≤x 1≤t+1,当x 2≥3时,均有y 1≥y 2,直接写出t 的取值范围.【答案】(1)k=-3-a ;对称轴x =1;y 轴交点(0,-3);(2)2y=2x -4x-3,顶点坐标(1,-5);(3)-5≤a <-4;(4)-1≤t ≤2. 【解析】 【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2ax==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围. 【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+∴k=-3-a ;抛物线L 的对称轴为直线-2ax=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3);(2)∵L 经过点(3,3),将该点代入解析式中, ∴9a-6a+a+k=3,且由(1)可得k=-3-a , ∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5, ∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1, ∴1<-a-3≤2, ∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1, ∴就要保证1x 的取值范围要在[-1,3]上, 即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去, 综上所述:-1≤t ≤2. 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.4.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=52∴﹣m2+3m+4=214∴3521(,)24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539(,)24M--21139(,)24M-3521(,)24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.5.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)2535,0453593535,(4359355)4t tS tt⎧⎛⎫≤≤⎪ ⎪⎪⎪⎝⎭=-<≤+<≤.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t 3535<t3535<t5【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:232nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F 的坐标为:(3,2)或(173,﹣509); (4)如图2,设∠ACO =α,则tanα=12AO CO =,则sinα=5,cosα=5;①当0≤t ≤35时(左侧图), 设△AHK 移动到△A ′H ′K ′的位置时,直线H ′K ′分别交x 轴于点T 、交抛物线对称轴于点S ,则∠DST =∠ACO =α,过点T 作TL ⊥KH , 则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; ②当355<t 35时(右侧图),同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 53594+; 综上,S =2535,023593535,(435935(5)4t t t t ⎧⎛≤≤⎪ ⎪⎝⎭⎪⎪⎨-<≤⎪⎪+<≤⎩.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.6.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)-- 【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得,93003ab c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++, ∵y=x 2+4x+3=(x+2)2-1, ∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0), ∴AB=-1-(-3)=2, ∵OA=OC ,∠AOC=90°, ∴△AOC 是等腰直角三角形, ∴AC=2OA=32,∠BAC=45°, ∵B (-1,0),D (-2,-1), ∴∠ABD=45°,①AB 和BP 是对应边时,△ABC ∽△BPA , ∴AB ACBP BA =, 即232BP =, 解得BP=223, 过点P 作PE ⊥x 轴于E ,则BE=PE=23×22=23, ∴OE=1+23=53, ∴点P 的坐标为(-53,-23); ②AB 和BA 是对应边时,△ABC ∽△BAP ,∴AB ACBA BP =, 即2322BP=, 解得BP=32, 过点P 作PE ⊥x 轴于E , 则BE=PE=32×2=3, ∴OE=1+3=4,∴点P 的坐标为(-4,-3); 综合上述,当52,33P ⎛⎫-- ⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似; 【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.7.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y值同时随着x 的增大而增大时,则x 的取值范围是_______; (2)判断四边形AMDN 的形状(直接写出,不必证明); (3)抛物线1L ,2L 均会分别经过某些定点; ①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少? 【答案】(1)()1,41m --+,13x;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】 【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解. 【详解】解:(1)12bx a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大.故答案为:(1,41)m --+;13x;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m-+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0), AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点, ②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形, 则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2, 即22242(4)x =+-, 解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.8.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C . (1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1). 【解析】 【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标. 【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.9.如图,已知二次函数22(0)y ax ax c a的图象与x轴负半轴交于点A(-1,0),与y轴正半轴交与点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1) 求一次函数解析式;(2)求顶点P的坐标;(3)平移直线AB使其过点P,如果点M在平移后的直线上,且3tan2OAM∠=,求点M坐标;(4)设抛物线的对称轴交x轴与点E,联结AP交y轴与点D,若点Q、N分别为两线段PE、PD上的动点,联结QD、QN,请直接写出QD+QN的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P 的坐标为(1,4)(3) M 点的坐标为:15,2(,39⎛⎫- ⎪⎝⎭或 23-)(4【解析】【分析】(1)根据抛物线的解析式即可得出B (0,3),根据OB=3OA ,可求出OA 的长,也就得出了A 点的坐标,然后将A 、B 的坐标代入直线AB 的解析式中,即可得出所求;(2)将(1)得出的A 点坐标代入抛物线的解析式中,可求出a 的值,也就确定了抛物线的解析式进而可求出P 点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M 点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M在x轴下方时,有31312xx+-=+,∴59x=-∴25 (,9M-23 -)(4)作点D关于直线x=1的对称点D’,过点D’作D’N⊥PD于点N 当-x2+2x+3=0时,解得,x=-1或x=3,∴A(-1,0),P点坐标为(1,4),则可得PD解析式为:y=2x+2,令x=0,可得y=2,∴D(0,2),∵D与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD,设ND′解析式为y=kx+b,则k=-12,即y=-12x+b,将D′(2,2)代入,得2=-12×2+b,解得b=3,可得函数解析式为y=-12x+3,将两函数解析式组成方程组得:13222y xy x⎧=-+⎪⎨⎪=+⎩,解得25145xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214 ,) 55,由两点间的距离公式:5 =,∴所求最小值为5【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t =或98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点,∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=,∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =, ∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得 222OP OF PF +=,∴222(45)55(2)t t +-=+-∴51t +=. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。
2018年九年级数学上册二次函数单元测试题一、选择题:1、将二次函数y=x2﹣4x+6化成顶点式,变形正确的是()A.y=(x﹣2)2+2B.y=(x+2)2+2C.y=(x+2)2﹣2D.y=(x﹣2)2﹣22、抛物线y=x2﹣3x+2与y轴交点的坐标为()A.(0,2)B.(1,0)C.(2,0)D.(0,﹣3)3、已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.-2B.2C.±2D.04、对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象开口向下B.图象的对称轴是直线x=﹣1C.x>1时,y随x的增大而减小D.x<1时,y随x的增大而减小5、将抛物线y=x2+1先向上平移2个单位,再向右平移1个单位后所得的抛物线是()A.y=(x-1)2+3B.y=(x+1)2+3C.y=(x+2)2D.y=(x+1)2-16、如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.27、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)8、已知点(1,y1)、(-2,y2)、(-4,y3)都是抛物线y=-2ax2-8ax+3(a<0)图象上的点,则下列各式中正确的是()A.y1<y3<y2B.y3<y2<y1C.y2<y3<y1D.y1<y2<y39、图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x210、如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4B.﹣2C.1D.311、已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF ⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A. B. C. D.12、如图,二次函数y=ax2+bx+c的图象经过点A(-1,2),且与x轴交点的横坐标分别为x1、x2,其中-2<x1<-1,0<x2<1,下列结论:①a+b+c<0;② 2a-b<0;③b2+8a<4ac;④a-3b>0,其中正确的有()A.1个B.2个C.3个D.4个二、填空题:13、二次函数y=﹣(x+1)2+4的图象的对称轴为.14、抛物线y=x2-6x+7的顶点坐标是________.15、如果将抛物线向上平移,使它经过点A(1,3),那么所得新抛物线表达式是 .16、如图是一座抛物线形拱桥,当水面宽为12m时,拱顶离水面4m,当水面下降2m时,水面宽为 m.17、在平面直角坐标系中,A(-2,0)、B(1,-6).若抛物线y=ax2+(a+2)x+2与线段AB有且仅有一个公共点,则a的取值范围是___________________18、二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0,其中正确的是.三、解答题:19、已知抛物线与x交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3),求抛物线的解析式.20、抛物线部分图象如图所示,过点C(0,-3),顶点D(1,-4)(1) 求抛物线的解析式及它与x轴的交点坐标(2) 结合函数图象,直接写出当y>-3时x的取值范围21、已知二次函数y=x2+bx+c的图象过点A(﹣3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是﹣2.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.22、为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x 天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.24、在平面直角坐标系中,已知抛物线y=ax2+bx﹣4经过A(﹣4,0),C(2,0)两点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,点B是抛物线与y轴交点.判断有几个位置能够使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.参考答案1、A.2、A3、B4、D5、A6、A.7、B8、.C9、C10、B11、A12、C13、x=﹣1 .14、(3,-2)15、;16、;17、-5<a<1且a≠0.18、①②③.19、解:设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入得:3=﹣3a,即a=﹣1,则抛物线解析式为y=﹣(x﹣3)(x+1)=﹣x2+2x+3.20、(1)Y=(X-1)2-4.(2)x<0或x>2.21、解:(1)将A(﹣3,0),B(1,0)代入y=x2+bx+c,得,解得∴y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4∴对称轴x=﹣1,又∵A,B关于对称轴对称,∴连接BD与对称轴的交点即为所求P点.过D作DF⊥x轴于F.将x=﹣2代入y=x2+2x﹣3,则y=4﹣4﹣3=﹣3,∴D(﹣2,﹣3)∴DF=3,BF=1﹣(﹣2)=3Rt△BDF中,BD=∵PA=PB,∴PA+PD=BD=.故PA+PD的最小值为.22、解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600(x≥45);(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.23、解:(1)设p=kx+b(k≠0),∵第3天时,每盒成本为21元;第7天时,每盒成本为25元,∴,解得,所以,p=x+18;(2)1≤x≤6时,w=10[50﹣(x+18)]=﹣10x+320,6<x≤15时,w=[50﹣(x+18)](x+6)=﹣x2+26x+192,所以,w与x的函数关系式为w=,1≤x≤6时,∵﹣10<0,∴w随x的增大而减小,∴当x=1时,w最大为﹣10+320=310,6<x≤15时,w=﹣x2+26x+192=﹣(x﹣13)2+361,∴当x=13时,w最大为361,综上所述,第13天时当天的销售利润最大,最大销售利润是361元;(3)w=325时,﹣x2+26x+192=325,x2﹣26x+133=0,解得x1=7,x2=19,所以,7≤x≤15时,即第7、8、9、10、11、12、13、14、15天共9天销售利润不低于325元.24、解:(1)将A(﹣4,0),C(2,0)两点代入函数解析式,得解得所以此函数解析式为:y=x2+x﹣4;(2)∵M点的横坐标为m,且点M在这条抛物线上,∴M点的坐标为:(m,m2+m﹣4),∴S=S△AOM+S△OBM﹣S△AOB=×4×(m2+m﹣4)+×4×(﹣m)﹣×4×4=﹣m2﹣2m+8﹣2m﹣8=﹣m2﹣4m=﹣(m+2)2+4,∵﹣4<m<0,当m=﹣2时,S有最大值为:S=﹣4+8=4.答:m=﹣2时S有最大值S=4.(3)∵点Q是直线y=﹣x上的动点,∴设点Q的坐标为(a,﹣a),∵点P在抛物线上,且PQ∥y轴,∴点P的坐标为(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以点P,Q,B,O为顶点的四边形是平行四边形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4时,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以点Q坐标为(﹣4,4),②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,解得a=﹣2±2,所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2).综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.。
2017-2018学年九年级数学上册二次函数单元检测题一、选择题:1、抛物线y=-(x-2)2+3的顶点坐标是( )A.(-2,-3)B.(-2,3)C.(2,-3)D.(2,3)2、抛物线y=(x+1)2+2的对称轴为( )A.直线x=1B.直线y=1C.直线y=﹣1D.直线x=﹣13、下列说法错误的是( )A.二次函数y=3x2中,当x>0时,y随x的增大而增大B.二次函数y=﹣6x2中,当x=0时,y有最大值0C.a越大图象开口越小,a越小图象开口越大D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点4、将抛物线y=x2-2x+3平移得到抛物线y=x2,则这个平移过程正确的是( )A.先向左平移1个单位,再向下平移2个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移2个单位,再向上平移1个单位5、若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为( )A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=56、已知抛物线y=x2-8x+c的顶点在x轴上,则c的值是( )A.16B.-4C.4D.87、二次函数y=kx2﹣2x+1的图象与x轴有两个交点,则k的取值范围是( )A.k<1B.k<1且k≠0C.k≤1D.k≤1且k≠08、生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为y=-n2+14n-24,则该企业一年中利润最高的月份是( )A.5月B.6月C.7月D.8月9、向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A.第8秒B.第10秒C.第12秒D.第15秒10、已知二次函数y=﹣x2+bx+c中,函数y与自变量x之间的部分对应值如表所示,点A(x1,y1),B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是( )A.y1>y2B.y1≤y2C.y1<y2D.y1≥y211、已知二次函数y=x2-2x-3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2.设d=d1+d2,下列结论中:①d没有最大值;②d没有最小值;③;-1<x<3时, d随x的增大而增大;④满足d=5的点P有四个.其中正确结论的个数有( )A.1个B.2个C.3个D.4个12、如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=-1,且过点(-3,0).下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是抛物线上两点,则y1>y2.其中正确的是( )A.①②B.②③C.①②④D.②③④二、填空题:13、如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是 .14、若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为 .15、已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线 .16、把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为.17、如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是 .18、用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为(不写定义域).三、解答题:19、已知二次函数的顶点坐标为(2,﹣2),且其图象经过点(3,1),求此二次函数的解析式,并求出该函数图象与y轴的交点坐标.20、已知抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(2,﹣1.5).(1)求此抛物线的解析式;(2)当y<0时,x的取值范围是______(直接写出结果)21、已知二次函数y=﹣x2+2x+3.(1)在如图所示的坐标系中,画出该函数的图象;(2)根据图象回答,x取何值时,y>0?(3)根据图象回答,x取何值时,y随x的增大而增大?x取何值时,y随x的增大而减小?22、如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x米,面积为y平方米.(1)求y与x的函数关系式,并求自变量x的取值范围;(2)生物园的面积能否达到210平方米?说明理由23、某商店现在的销售价格为每件35元,每天可卖出50件,市场调查发现,如果调整价格,每降价1元你,每天可多卖出2件,设每件商品降价x元,每天的销售额为y元.(1)求y与x的函数关系式;(2)当每件商品降价多少元时,可使每天的销售额最大.最大销售额是多少?24、已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.参考答案1、D2、D3、C4、A.5、D6、A7、B8、C9、B10、C11、B12、C13、答案为:-1<x<3.14、答案为:12.15、答案为:x=2.16、答案为:y=-(x+1)2+3.17、答案为:﹣1.18、答案为:y=﹣x2+4x19、二次函数的解析式为y=3(x﹣2)2﹣2,当x=0时,y=3×4﹣2=10,函数图象与y轴的交点坐标(0,10).20、解:(1)把A(﹣1,0),B(3,0),C(2,﹣1.5)代入抛物线解析式,得解得∴该函数的解析式为:y=x2﹣x﹣.(2)由抛物线开口向上,交点为A(﹣1,0),B(3,0)可知,当y<0时,x的取值范围是﹣1<x<3;21、解:(1)列表:描点、连线可得如图所示抛物线.(2)当﹣1<x<3时,y>0;(3)当x<1时,y随x的增大而增大.当x>1时,y随x的增大而减小.22、()、,方程无解,不能23、解:(1)根据题意得:y=(35﹣x)(50+2x);(2)∵每天的销售额y=(35﹣x)(50+2x),(0<x<35)配方得y=﹣2(x﹣5)2+1800,∵a<0,∴当x=5时,y取得最大值1800.答:当每件商品降价5元时,可使每天的销售额最大,最大销售额为l 800元24、解:(1)根据题意得,解得,所以抛物线的解析式为y=x2﹣2x﹣3.∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)根据题意,﹣y=x2﹣2x﹣3,所以y=﹣x2+2x+3.(3)∵抛物线y=x2﹣2x﹣3的顶点为(1,﹣4),当x=﹣2时,y=5,抛物线y=﹣x2+2x+3的顶点(1,4),当x=﹣2时,y=﹣5.∴当﹣2<x<2时,直线y=m与该图象有一个公共点,则4<m<5或﹣5<m<﹣4.。
二次函数单元测试题一、选择题:1.对于y=ax2+bx+c,有以下四种说法,其中正确的是( )A.当b=0时,二次函数是y=ax2+cB.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+cD.以上说法都不对2.在平面直角坐标系中,抛物线y=x2-1与x轴的交点的个数是( )A.3B.2C.1D.03.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0,其中正确的个数为( )A.1B.2C.3D.44.已知二次函数y=3(x-1)2+k的图象上有A(,y),B(2,y2),C(-,y3)三个点,则y1,y2,y3的大小关1系是( )A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y15.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是( )A.5B.3C.3或-5D.-3或56.把抛物线向右平移3个单位,再向下平移2个单位,得到抛物线( ).A. B. C. D.7.如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是()A.(-3,0)B.(-2,0)C.(0,-3)D.(0,-2)8.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()A.60 m2 B.63 m2 C.64 m2 D.66 m29.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60B.y=(60﹣x)C.y=300(60﹣20x)D.y=(60﹣x)10.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A、开口向下B、对称轴是x=-1C、顶点坐标是(1,2)D、与x轴有两个交点11.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(-1.5,y1)、C(-2.5,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0.其中正确结论的个数是()A.1B.2C.3D.412.如图是二次函数y=ax2+bx+c(a≠0)的图象,有下列判断:①b2>4ac,②2a+b=0,③3a+c>0,④4a﹣2b+c <0;⑤9a+3b+c<0.其中正确的是()A.①②③B.②③④ C.①②⑤ D.③④⑤二、填空题:13.若二次函数y=x2+6x+k的图象与x轴有且只有一个交点,则k的值为.14.在平面直角坐标系中,若将抛物线y=﹣(x+3)2+1先向左平移2个单位长度,再向下平移3个单位长度,则经过这两次平移后所得抛物线的顶点坐标是.15.将抛物线y=﹣2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为.16.已知抛物线y=a(x﹣m)2+k与y2=a(x+m)2+k(m≠0)关于y轴对称,我们称y1与y2互为“和谐抛物线”.请1写出抛物线y=﹣4x2+6x+7的“和谐抛物线”.17.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=10t﹣5t2,则小球运动到的最大高度为米.18.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(0.5,1),下列结论:①abc<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确的有____个。
鲁教版数学九年级上册第三单元测试题(时间:60分钟 满分:100分)一、选择题(每小题3分,共36分)1.下列表达式中能够表示y 是x 的函数的是( )A.y=±x (x>0)B.x 2+y 2=1 C.y=x3 D.x= 9y 22.若y 与x 的关系式为y=36x 2-6,当x=31时,y 的值为( ) A.5 B.10 C.2 D.-2 3.关于二次函数y=ax 2+b,下列说法正确的是( )A.若a>0,则y 随x 的增大而增大B.x>0,y 随x 的增大而增大C.x<0,y 随x 的增大而增大D.若a>0,则y 有最小值 4.二次函数y=-21(x-21)2+21的对称轴是( ) A.x=- 21 B. x= 21C.x=1D.x=-15.如图所示,已知抛物线与x 轴的一个交点A(1,0),对称轴是直线x=-1,则该抛物线与x 轴的另一个交点坐标是( )A.(-3,0)B.(-2,0)C.r=-3D.x=-26.抛物线y=-3x 2-0.1x+4与x 轴的交点的个数是( )A.3个B.2个C.1个D.0个 7.二次函数y=-31x 2+2x-1配方后,结果正确的是( ) A.y=-31(x+1)2-1 B. y= -31(x-3)2+2 C.y=31(x-3)2+2= C.y=-31(x+3)2+28.在平面直角坐标系中,将抛物线y=x 2-x-6向上(下)或向左(右)平移m 个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )A.1B.2C.3D.69.如果对于任意实数x,二次函数y=ax 2+bx+c+1的值都小于1,那么有( ) A.a>0,b 2-4ac>0 B.a<0,b 2-4ac>0 C.a>0,b 2-4ac<0 D.a<0,b 2-4ac<010.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,下列说法错误的是( )A.图象关于直线x=1对称B.函数y=ax 2+bx+c(a ≠0)的最小值是-4C.-1和3是方程ax 2+bx+c=0(a ≠0)的两个根 D.当x<1时,y 随x 的增大而增大11.已知二次函数y=ax 2+bx+c,如果a>0,b<0,c<0,那么这个二次函数图象的顶点必在( )A.第一象限B.第二象限C.第三象限D.第四象限 12.已知抛物线y=k(x+1)(x-k3)与x 轴交于点A,B,与y 轴交于点C,则能使△ABC 为等腰三角形的抛物线的条数是( )A.2条B.3条C.4条D.5条二、填空题(每小题3分,共15分)13.(2018·泰安中考)将抛物线y=2(x-1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为__________________________。
2017-2018学年九年级数学上册二次函数单元检测题一、选择题:1、抛物线y=2(x﹣3)2+1的顶点坐标是( )A.(3,1)B.(4,﹣1)C.(﹣3,1)D.(﹣3,﹣1)2、抛物线y=﹣2x2先向左平移1个单位,再向下平移3个单位,所得抛物线是( )A.y=﹣2 (x+1)2+3B.y=﹣2 (x+1)2﹣3C.y=﹣2 (x﹣1)2﹣3D.y=﹣2 (x﹣1)2+33、已知抛物线y=ax2+bx+c的图象如图所示,则|b﹣a﹣2c|+|3a+b|=( )A.2a+2bB.﹣2a﹣2bC.﹣4a﹣2bD.4a4、已知二次函数y=﹣2x2+4x﹣3,如果y随x的增大而减小,那么x的取值范围是( )A.x≥1B.x≥0C.x≥﹣1D.x≥﹣25、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.其中,正确结论的个数是( )A.1B.2C.3D.46、已知二次函数y=ax2+bx+c的y与x的部分对应值如表:则下列判断中正确的是( )A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=4时,y>0D.方程ax2+bx+c=0的正根在3与4之间7、若A(﹣,y1),B(,y2),C(,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y28、某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米9、将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润则应降价( )A.20元B.15元C.10元D.5元10、如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴只有一个交点M,与平行于x轴的直线l交于A、B两点.若AB=3,则点M到直线l的距离为( )A.2.5B.2.25C.2D.1.7511、已知二次函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是( )A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠312、对于下列结论:①二次函数y=6x2,当x>0时,y随x的增大而增大.②关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=﹣2,x2=1.③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是( )A.0个B.1个C.2个D.3个二、填空题:13、将二次函数y=x2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是.14、已知抛物线y=x2﹣4x+c与x轴只有一个交点,则c= .15、若二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2= .16、若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为 .17、抛物线y=2x2+3 上有两点 A(x1,y1)、 B(x2,y2),且x1≠x2,y1=y2,当x=x1+x2时,y= .18、如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为 .三、解答题:19、已知二次函数y=-x2+2x+3.(1)写出这个二次函数的开口方向、对称轴、顶点坐标和最大值;(2)求出这个抛物线与坐标轴的交点坐标.20、在平面直角坐标系中,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并请直接写出平移后所得图象与x轴的另一个交点的坐标.21、已知x=1+2m,y=1﹣m.(1)若点(x,y)恰为抛物线y=ax2﹣ax+1的顶点,求a的值;(2)求y关于x的函数表达式;(3)若﹣3≤m≤1,x≤0,求y的取值范围.22、已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x元(x为整数),每星期的销售利润为w元.(1)求w与x之间的函数关系式,并写出自变量x的取值范围;(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.23、已知抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.24、如图,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.参考答案1、A2、B.3、D.4、A.5、D.6、D.7、B.8、A.9、D.10、B.11、D.12、D.13、答案为:y=(x﹣1)2+2.14、答案为:4.15、答案为:﹣1.16、答案为:4.17、答案为:318、答案为:(1+2,2)或(1-2,2)19、解:∵ y=-x2+2x+3=-(x-1)2+4∴开口方向向下,对称轴x=1,顶点坐标是(1,4)当x=1时,y有最大值是4(2)∵当y=0时,-x2+2x+3=0,解得x1=-1,x2=3当x=0时,y=3∴抛物线与x轴的交点坐标是(-1,0),(3,0),与y轴的交点坐标是(0,3) 20、(1)y=(x-1)2-4;(2)向右平移1个单位,另一个交点为(4,0)21、解:(1)抛物线y=ax2﹣ax+1的对称轴为直线x=,即1+2m=,∴m=﹣,即x=1+2m=,y=1﹣m=,把顶点(,)代入y=ax2﹣ax+1,得:=a﹣a+1,解得:a=﹣1;(2)由x=1+2m得:m=x﹣,∴y=1﹣m=1﹣(x﹣)=﹣x+;(3)当x≤0时,1+2m≤0,解得m≤﹣,又﹣3≤m≤1,∴﹣3≤m≤﹣,∴≤1﹣m≤4,则y的范围为≤y≤4.22、解:(1)w=(20﹣x)(300+20x)=﹣20x2+100x+6000,∵300+20x≤380,∴x≤4,且x为整数;(2)w=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∵﹣20(x﹣)2≤0,且x≤4的整数,∴当x=2或x=3时有最大利润6120元,即当定价为57或58元时有最大利润6120元;(3)根据题意得:﹣20(x﹣)2+6125≥6000,解得:0≤x≤5.又∵x≤4,∴0≤x≤4答:售价不低于56元且不高于60元时,每星期利润不低于6000元.23、解:(1)根据题意得,解得,所以抛物线的解析式为y=x2﹣2x﹣3.∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)根据题意,﹣y=x2﹣2x﹣3,所以y=﹣x2+2x+3.(3)∵抛物线y=x2﹣2x﹣3的顶点为(1,﹣4),当x=﹣2时,y=5,抛物线y=﹣x2+2x+3的顶点(1,4),当x=﹣2时,y=﹣5.∴当﹣2<x<2时,直线y=m与该图象有一个公共点,则4<m<5或﹣5<m<﹣4.24、解:(1)设此函数的解析式为y=a(x+h)2+k,∵函数图象顶点为M(﹣2,﹣4),∴y=a(x+2)2﹣4,又∵函数图象经过点A(﹣6,0),∴0=a(﹣6+2)2﹣4解得a=,∴此函数的解析式为y=(x+2)2﹣4,即y=x2+x﹣3;(2)∵点C是函数y=x2+x﹣3的图象与y轴的交点,∴点C的坐标是(0,﹣3),又当y=0时,有y=x2+x﹣3=0,解得x1=﹣6,x2=2,∴点B的坐标是(2,0),则S△ABC=|AB|•|OC|=×8×3=12;(3)假设存在这样的点,过点P作PE⊥x轴于点E,交AC于点F.设E(x,0),则P(x, x2+x﹣3),设直线AC的解析式为y=kx+b,∵直线AC过点A(﹣6,0),C(0,﹣3),∴,解得,∴直线AC的解析式为y=﹣x﹣3,∴点F的坐标为F(x,﹣x﹣3),则|PF|=﹣x﹣3﹣(x2+x﹣3)=﹣x2﹣x,∴S△APC=S△APF+S△CPF=|PF|•|AE|+|PF|•|OE|=|PF|•|OA|=(﹣x2﹣x)×6=﹣x2﹣x=﹣(x+3)2+,∴当x=﹣3时,S△APC有最大值,此时点P的坐标是P(﹣3,﹣).。