【物理】2011届新课标高中总复习:专题6 带电粒子在磁场中的运动
- 格式:ppt
- 大小:1.41 MB
- 文档页数:51
专题三:带电粒子在电磁场中的运动(全国卷高考真题版)1、(2011年全国卷,25题,19分)★★★★如图,与水平面成45°角的平面MN 将空间分成I 和II 两个区域。
一质量为m 、电荷量为q (q >0)的粒子以速度0v 从平面MN 上的0p 点水平右射入I 区。
粒子在I 区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在II 区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里。
求粒子首次从II 区离开时到出发点0p 的距离。
(粒子的重力可以忽略。
)0021()v l q E B=+2、(2011年全国新课标卷,25题,19分)★★★★如图,在区域Ⅰ(0≤x ≤d )和区域Ⅱ(d ≤x ≤2d )内分别存在匀强磁场,磁感应强度大小分别为B 和2B ,方向相反,且都垂直于Oxy 平面。
一质量为m 、带电荷量q (q >0)的粒子a 于某时刻从y 轴上的P 点射入区域Ⅰ,其速度方向沿x 轴正向。
已知a 在离开区域Ⅰ时,速度方向与x 轴正方向的夹角为30°;因此,另一质量和电荷量均与a 相同的粒子b 也从p 点沿x 轴正向射入区域Ⅰ,其速度大小是a 的1/3。
不计重力和两粒子之间的相互作用力。
求:(1)粒子a 射入区域I 时速度的大小;(2)当a 离开区域II 时,a 、b 两粒子的y 坐标之差。
(1)2dqB m (2)23(3-2)d3、(2012年全国大纲版,24题,16分)★★如图,一平行板电容器的两个极板竖直放置,在两极板间有一带电小球,小球用一绝缘清线悬挂于O 点。
先给电容器缓慢充电,使两级板所带电荷量分别为﹢Q 和﹣Q ,此时悬线与竖直方向的夹角为π/6。
再给电容器缓慢充电,直到悬线和竖直方向的夹角增加到π/3,且小球与两极板不接触。
求第二次充电使电容器正极板增加的电荷量。
Q=2Q ∆4、(00年全国卷21题,13分)★★★如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r 0。
第六节 带电粒子在匀强磁场中的运动【知能准备】1.带电粒子在匀强磁场中的运动(1)带电粒子的运动方向与磁场方向平行:做 运动。
(2)带电粒子的运动方向与磁场方向垂直:粒子做 运动且运动的轨迹平面与磁场方向 。
轨道半径公式: 周期公式: 。
(3)带电粒子的运动方向与磁场方向成θ角:粒子在垂直于磁场方向作 运动,在平行磁场方向作 运动。
叠加后粒子作等距螺旋线运动。
2.质谱仪是一种十分精密的仪器,是测量带电粒子的 和分析 的重要工具。
3.回旋加速器:(1)使带电粒子加速的方法有:经过多次 直线加速;利用电场 和磁场的 作用,回旋 速。
(2) 回旋加速器是利用电场对电荷的加速作用和磁场对运动电荷的偏转作用,在 的范围内来获得 的装置。
(3)为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个 电压,产生交变电场的频率跟粒子运动的频率 。
⑷带电粒子获得的最大能量与D 形盒 有关。
【同步导学】1.带电粒子在匀强磁场中的运动(1)带电粒子的运动方向与磁场方向平行:当带电粒子的运动方向与磁场方向平行时,粒子不受洛伦兹力。
所以,此时粒子做匀速直线运动。
(2)带电粒子的运动方向与磁场方向垂直:①运动性质:粒子受到垂直于速度方向,也垂直于磁场方向的洛伦兹力的作用。
在垂直于磁场方向的平面内做匀速圆周运动。
如图1所示。
②半径公式、周期公式:一带电粒子的质量为m ,电荷量为q ,速度为v ,带电粒子垂直进入磁感应强度为B 的匀强磁场中,粒子做匀速圆周运动所需的向心力是由粒子所受的洛伦兹力提供的,所以qvB =m v 2r,由此得出轨道半径公式 : r =mv qB将半径r 代入公式T =2πr v中,得到周期公式: T =2πm qB③重要推论:在匀强磁场中做匀速圆周运动的带电粒子,它的轨道半径跟粒子的运动图1速率成正比。
运动的速度越大,轨道的半径也越大。
而运动的周期跟轨道半径和运动速率无关。
④实验验证:电子射线管的工作原理:由电子枪发出的电子射线可以使管内的低压水银蒸气发出辉光,显示出电子的径迹。
带电粒子在磁场中的运动【学习目标】1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法2.理解质谱仪和回旋加速器的工作原理和作用【要点梳理】要点一:带电粒子在匀强磁场中的运动要点诠释:1.运动轨迹带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中:(1)当v∥B时,带电粒子将做匀速直线运动;(2)当v⊥B时,带电粒子将做匀速圆周运动;(3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动.说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动.2.带电粒子在匀强磁场中的圆周运动如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q.(1)轨道半径:由于洛伦兹力提供向心力,则有2vqvB mr=,得到轨道半径mvrqB=.(2)周期:由轨道半径与周期之间的关系2rTvπ=可得周期2mTqBπ=.说明:(1)由公式mvrqB=知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率成正比.(2)由公式2mTqBπ=知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率均无关,而与比荷qm成反比.注意:mvrqB=与2mTqBπ=是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明题中,两公式不能直接当原理式使用.要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:1.分析方法/Bq 或时间”的基本方法和规律,具体分析为: (1)圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键.首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上.通常有两种确定方法:①已知入射方向和出射方向时,可以通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P 为入射点,M 为出射点,O 为轨道圆心).②已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点,O 为轨道圆心).(2)运动半径的确定:作入射点、出射点对应的半径,并作出相应的辅助三角形,利用三角形的解析方法或其他几何方法,求解出半径的大小,并与半径公式mvr Bq=联立求解. (3)运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:360t T α=︒(或2t T απ=).可见粒子转过的圆心角越大,所用时间越长. 2.有界磁场(1)磁场边界的类型如图所示(2)与磁场边界的关系①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长. ③当速率v 变化时,圆周角越大的,运动的时间越长. (3)有界磁场中运动的对称性①从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等; ②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出. 3.解题步骤带电粒子在匀强磁场中做匀速圆周运动的解题方法——三步法: (1)画轨迹:即确定圆心,几何方法求半径并画出轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.注意:道PM 对应的圆心角α,即αϕ=,如图所示.(2)圆弧轨道PM 所对圆心角α等于PM 弦与切线的夹角(弦切角)θ的2倍,即2αθ=,如图所示. 要点三:质谱仪要点诠释: (1)构造质谱仪由粒子注入器、加速电场、速度选择器、偏转电场和照相底片组成,如图所示.(2)工作原理 ①加速:212qU mv =, ②偏转:2v qvB m r=,由以上两式得:粒子在磁场中作匀速圆周运动的半径12mur B q=。